Materials and Energy sciences

Marius Sebastian Secula
Benoît Cagnon
Olivier Chedeville
:
Download PDF Link to the publication

Novel cost-efficient Fenton-like catalysts were prepared for the degradation of organic molecules in aqueous solutions. Porous activated carbons (ACs) were directly impregnated with Fe2+ solutions of different concentrations using the wet impregnation method. Their efficiency, as Fenton-like catalysts, was studied. Photo-Fenton tests were performed to establish the performance of the prepared Fe-impregnated ACs in relation to the degradation of organic micropollutants in aqueous solution, under different conditions. Photo-catalytic tests were carried out by means of a laboratory photo-reactor. The influence of several parameters such as solution pH value, initial concentration of the model pollutant, and hydrogen peroxide dose on the process performance was investigated. The ACs and prepared catalysts were characterized by nitrogen adsorption-desorption isotherms at 77K, FTIR, SEM, and thermogravimetric analyses. The total Fe content of the synthesized composites was estimated by the phenanthroline method using UV-Vis spectrophotometry. Photo-catalytic tests were performed in monosolute or mix solutions of MPs in order to compare the efficiency of various conventional AOPs with that of photo-Fenton-peroxone process. The results show an increase in the degradation rate in case of the heterogeneous photo-Fenton-peroxone process.

Emre Erdem
Camille Justeau
Guylaine Poulin-Vittrant
:
:
Download PDF Link to the publication

For efficient and successful mechanical energy harvesting, a configuration that has garnered much focus in recent research is the piezoelectric nanogenerator. The concept of the nanogenerator has shown potential for harvesting energy from the ambient environment to power systems. Kinetic energy harvesting nanogenrators based on the piezoelectric properties of ZnO nanowires have attracted much interest. The aim of this work is to fabricate hydrothermally synthesized ZnO nanowire-based nanogenerators in order to control the average diameter of wires and also the quality of wire alignment. Intrinsic point defects as well as extrinsic defects introduced via doping of transition metal ions by no doubt play a crucial role not only the amplitude of generated voltage signal from nanogenerators but also the conductivity of ZnO. Despite its advantages, the lack of fundamental knowledge about intrinsic defects and doping ions presents an obstacle to the development of practical devices such as nanogenerators which requires high conductivity for high performance. The difficulty to make reliable ZnO nanowire based nanogenerators is closely related to the intrinsic and extrinsic defects specifically interstitials, vacancies and metal ions (i.e., Mn, Fe). This research provides a fundamental understanding of defects in ZnO that could lead to reliable devices using the peculiarity of nanogenerator. The results of electronic (electron paramagnetic resonance spectroscopy), optical (photoluminescence spectroscopy) and electrical (impedance spectroscopy) characterization investigations could give the basis for the industrial and economic manufacturing of ZnO nanowires. This work provides physical understanding of the defect structures in nanoscale wire form of ZnO.

Yiming Chen
Driss Boutat
Dayan Liu
:
Download PDF Link to the publication

During the past decades, fractional calculus has gained great interest and success in the field of automatic control. The research project was on numerical algorithms and observer design for fractional order systems. Various effective algorithms have been proposed to simulate different kinds of systems. Accurate and robust algebraic observers have been designed to estimate useful system information in noisy environment. An international conference has been held with the support of the project, which provided a platform for researchers to exchange results and advanced technology. Moreover, this project has provided an international collaboration opportunity for faculties and students both from INSA Centre Val de Loire and Yanshan University in China.

Satyajit Phadke
Erwan Coadou
Julie Pires
Alexander Korzhenko
Mérièm Anouti
:
Download PDF Link to the publication

The sulphur electrode in LiS batteries suffers from rapid capacity loss and low efficiency due to the solubility of long chain polysulphides formed during discharge. Herein, we demonstrate the beneficial effect of original catholyte formulations containing redox active organyl disulphides (PhS2Ph) on the capacity utilization and retention as well as the efficiency in LiS batteries. Resulting from the chemical equilibria in the electrolyte between the sulphur/polysulphides (S8/Sx2-) and disulphide/thiolates (PhS2Ph/PhSx-), the polysulphide redox shuttle phenomenon is minimized due to the suppression of formation of soluble polysulphides (Sx2-, x > 4). Using the catholyte containing 0.4 M Ph2S2 as an additive in a standard base electrolyte (DOL/DME + LiTFSI/LiNO3), a stable capacity of 1050 mAh.g-1 is obtained under galvanostatic cycling at C/5 with a coulombic efficiency of >99.5%. At 45°C, it is shown that the formulated catholyte enables galvanostatic cycling at a high c-rate of 1C over 500 cycles with a capacity above 900 mAh.g-1 and a high energy efficiency of 82%.

Arlette Richaud-Torres
Florian Pierre
Méndez Francisco
:
Download PDF Link to the publication

Inspired by the active site of the copper-zinc superoxide dismutase enzyme, we studied the reactivity of imidazolic ligands to improve the design and synthesis of coordination compounds, active against the superoxide radical (responsible of DNA, cellular and tissues damage, leading to illness like cancer, atherosclerosis, heart failures, etc.). By the joint use of first-principle calculations and solid state NMR spectroscopy, we identified the relationship between the structural characteristics and the reactivity of the synthesized compounds, that lead and modulates their antioxidant activity. 

Wolfgang Wisniewski
Mathieu Allix
:
Download PDF Link to the publication

This Le Studium Fellowship was used to analyze the crystal growth in levitated melts. Furthermore, methodical questions concerning the method EBSD as well as XRD were addressed. Finally, the literature concerning oriented surface nucleation in glasses was completed. 

Georgios Nikiforidis
Mérièm Anouti
:
Download PDF Link to the publication

A protic ionic liquid is inctroduced for the first time as a solvent for a high energy density vanadium redox flow battery.  The proof-of-concept redox flow cell with a concentration of 3 mol L−1 vandyl sulfate electrolyte was tested for a total of 30 cycles at 40°C, showing an open circuit potential of 1.38 V, a nominal capacity of 1900 mAh at a current density of 40 mA cm−1 and energy and coulombic efficiencies of 64 and 90%, respectively. The continuous 16 hours of cycling suggest that the concentrated anolyte and catholyte are thermally stable and cycleable. This study underlines a new route to improve the energy-to-volume ratio of this promising energy storage system.

 
Michiel Postema
Satyajit Phadke
Anthony Novell
Rustem Uzbekov
Cuthbert Nyamupangedengu
Meriem Anouti
Ayache Bouakaz
:
Link to the publication

The recycling of lithium ion batteries has been mentioned as one of the near-future waste management necessities. In order for recycling to be economically viable, straightforward and cost effective techniques need to be developed to separate the individual materials in a composite electrode. Ultrasonic separation might be such a technique, provided that lithium ion battery microparticles respond predictably to a sound field. Lithium ion battery cathodes contain hydrophobic carbon. Owing to the incompressibility of a solid, the thin gaseous layer surrounding these hydrophobic particles must oscillate asymmetrically, when subjected to ultrasound. Consequently, the harmonic content of the ultrasound signal radiated from hydrophobic microparticles must be higher than that from hydrophilic microparticles with the same size. The question of whether the harmonic signal response generated by physical hydrophobic microparticles present in lithium ion battery cathodes is higher than the harmonic response of other component materials in the cathode is the focus of this paper. The scattering response of cathode materials subjected to 1-MHz ultrasound was measured and compared. The cathode materials C65, PVDF, and NMC respond differently to 1-MHz ultrasound. The superharmonic response of C65 has been attributed to asymmetric oscillations owing to its hydrophobicity. In addition, C65 hydrophobic microparticles might be suitable candidates for harmonic imaging.

Arlette Richaud-Torres
Maria López
Martha Mojica
Julio Alonso
Francisco Méndez
:
Link to the publication

The chemical synthesis of C 60 fullerene in the laboratory is still a challenge. In order to achieve this goal, we propose a synthetic route based on the dimerization between two pentacyclopentacorannulene (C 30 H 10) fragments employing the Diels-Alder cycloaddition reaction. Density functional calculations indicate that a step wise non-concerted dimerization mechanism of C 30 H 10 is favored over a one stage dimerization.

Lei Wang
Yi-Ming Chen
:
Link to the publication

In this paper, an effective numerical algorithm is proposed for the first time to solve the fractional visco-elastic rotating beam in the time domain. On the basis of fractional derivative Kelvin–Voigt and fractional derivative element constitutive models, the two governing equations of fractional visco-elastic rotating beams are established. According to the approximation technique of shifted Chebyshev polynomials, the integer and fractional differential operator matrices of polynomials are derived. By means of the collocation method and matrix technique, the operator matrices of governing equations can be transformed into the algebraic equations. In addition, the convergence analysis is performed. In particular, unlike the existing results, we can get the displacement and the stress numerical solution of the governing equation directly in the time domain. Finally, the sensitivity of the algorithm is verified by numerical examples.

Wenhui Li
Ling Bai
Yiming Chen
Serge Santos
Baofeng Li
:
Link to the publication

In this paper, firstly, a new method which makes a modification of the Bern-stein polynomials is introduced to solve the linear fractional partial differential equations (FPDEs). The biggest advantage of the fractional Bernstein polynomials is that the order can be changed with the order of the fractional partial differential equations. For the first time, we try to use this method to solve the linear fractional partial differential equations. Secondly, convergence analysis and error correction are also given to make the calculation results more accurate. The concrete content of this method and error correction are explained briefly and numerical examples are given to demonstrate the validity and accuracy of the method.