LE STUDIUM Multidisciplinary Journal
The main goal of the project is the development of novel nanostructured carbon dots for their application as solar UV protectors in various materials, ranging from paints/varnishes to pharmaceutical/cosmetic products, which involve an entirely new approach in solar UV protection based on highly photoluminescent Carbon Dots (CDs) through efficient translation of the incident solar UV radiation towards longer wavelengths. The lower energy photons produced in the radiative processes within the CDs are less capable of inducing irreversible changes over the chemical/structural properties of the exposed surfaces. CDs are particularly suited for this approach due to their wide range UV excitation of the radiative processes, physico-chemical stability, inertness, lack of toxicity, biocompatibility and ease of fabrication. The provided UV protection is intended to be assayed upon their integration in various polymers matrices of relevance for coating materials and also targeting cosmetic skin UV protection formulations.
In oviparous animals such as birds, embryonic development occurs in the egg, and after oviposition there is no further possibility of material exchange with the hen to fulfill the needs of the embryo. In such a context, the egg must contain all systems required for proper development of a living organism. Among these, the chorioallantoic membrane (CAM) is a novel placenta-like structure which is the nexus for many different physiological and metabolic processes including acid-base balance, breathing and calcium solubilization from the eggshell that is re-allocated to assist bone and tissue formation in the embryo. Moreover, it is believed to play a pivotal role in innate immunity to protect the embryo, in close interaction with the eggshell and the eggshell membranes. Therefore, weakening of the eggshell during CAM-mediated decalcification is hypothesized to be compensated by upregulation of innate immune mechanisms. In order to characterize this role of the CAM during embryonic development, we performed transcriptomics, proteomics and bioinformatics analyses. This residence was also the opportunity to stimulate a new international dynamic collaboration towards investigating innate immunity in diverse biomineralized structures (shells, bone, corals).
Insects are the most evolutionarily and ecologically successful group of living animals, being present in almost all possible mainland habitats; however, they are virtually absent in the ocean, which constitutes more than 99% of the Earth’s biosphere. Only a few insect species can be found in the sea but they remain at the surface, in salt marshes, estuaries, or shallow waters. Remarkably, a group of 13 species manages to endure long immersion periods in the open sea, as well as deep dives, i.e., seal lice. During the evolutionary transition of pinnipeds from land to the ocean, echinophthiriid seal lice had to manage the gradual change to an amphibian lifestyle along with their hosts, some of which may spend more than 80% of the time submerged and performing extreme dives, some beyond 2000 m under the surface. These obligate and permanent ectoparasites have adapted to cope with hypoxia, high salinity, low temperature, and, in particular, conditions of huge hydrostatic pressures. A major remainig question is whether or not seal lice do breath underwater or, on the contrary they dramatically reduce their metabolism to spare oxygen when submerged. During the reported period, we investigated anatomical adaptations to prolongued immersion and also set up a method for measuring oxigen consumption in two media, air and water in small insects, both using state of the art methods.
Several ex vivo and in vitro skin models are available in the toolbox of dermatological and cosmetic research. Some of them are widely used in drug penetration testing. The excised skins show higher variability, while the in vitro skins provide more reproducible data. The aim of the current study was to compare the chemical composition of different skin models (excised rat skin, human skin and human reconstructed epidermis) by measurement of ceramides, cholesterol, lactate, urea, protein and water at different dephts of the tissues. The second goal was to compile a testing system which includes a skin-on-a-chip diffusion setup and a confocal Raman spectroscopy for testing drug diffusion across the skin barrier and accumulation in the tissue models. A hydrophylic drug caffeine and the P-glycoprotein substrate quinidine were used in the study as a topical cream formulation. The results indicate that although the transdermal diffusion of quinidine is lower, the skin accumulation was similar for the two drugs. The different skin models allowed comparable permeability for both compounds, but chemical composition differed. The human skin was abundant in ceramides and cholesterol, while the reconstructed skin contained less water and more urea and protein. Based on these results it can be concluded that skin-chip and confocal Raman microspectroscopy are suitable for monitoring drug penetration and distribution in different skin layers during and at the end of exposure. Furthermore, the human skin obtained from obese patients is not the most relevant model for skin absorption testing in pharmaceutical research.
While International law is first said to be a distinct profession with institutions and journals in the 1870's, this project has shown that from the Vienna Congress (1815) to the Franco-Prussian Wars (1870-1871), lawyers have initiated professional practices and shaped the making of International Law. They were involved in foreign offices, scientific academies, and universities, wrote textbooks and articles and created professional networks. This project investigates, for the first time, the interaction between foreign offices and international lawyers. This paper puts forward a prosopography of legal advisers employed in the French Ministry of Foreign Affairs and of the members of the Consultative Litigation Committee. Two peer-reviewed publications have been accepted and a conference proceeding is forthcoming.
The free-living nematode Caenorhabditis elegans has been used for many years as an expression system for genes from parasitic species. We wished to further develop and improve this system by using CRISPR/Cas9 to delete specific genes from C. elegans and replace them with single copies of orthologous genes from the parasite, Haemonchus contortus. Initial experiments focussed on glc-3 which encodes a subunit of the glutamate-gated chloride channels, the target of the avermectin/milbemycin family of anthelmintics. We cloned the promoters from the glc-3 genes of both species and compared the expression patterns of mCherry under the control of both promoters. The C. elegans glc-3 promoter drove expression in a subset of head interneurons, as previously reported whereas the H. contortus promoter drove expression in a pharyngeal motoneuron, M4. We were able to generate heterozygous worms in which one copy of glc-3 was deleted, but we could never obtain homozygous knock-outs. Further investigation of the mRNAs encoded by glc-3 revealed a novel transcript, glc-3T, which encodes a severely truncated form of GLC-3. The presence of such truncated transcripts may explain the unexpected difficulties encountered in attempting to knock out ion channel genes in C. elegans.
The collegiate church of Our Lady in Antwerp played an important role in the development of polyphonic music in the Low Countries and Europe during the long 15th century, with first-rank composers such as Johannes Ockeghem, Johannes Pulloys, Jacobus Barbireau and Jacobus Obrecht as central figures. However, this period has received very little attention, perhaps because it stood in the shadow of the enormous economic and cultural sixteenth-century boom. The fact that much of the earliest source material was lost, among other things due to religious wars and the French Revolution, did not facilitate the research. This is particularly unfortunate because the fundement for the flourishing musical life was laid precisely in this earlier period (cf. the papal singer's bull of 1410). By conducting research both in breadth (interdisciplinary) and depth (extensive documentation from the archives, supplemented by that from the secondary literature and by comparative research in other countries), we nevertheless succeeded in creating a better picture of the mechanisms that lay at the basis of this success. Thus, we learned more about when and how music was performed, how it was perceived by both performers and listeners, how environmental sounds were dealt with, how it fitted in with the religious experience, etc. Contacts with the papal chapels of Rome and Avignon, exchanges with courts in Northern Italy, Spain, France, England, Germany, Hungary rich foundations for musical performances, were an ideal breeding ground for the musical flowering. In other words: contextualising music proved to be essential for a better understanding of the functioning and unprecedented success of the local musical life.
This research project originally proposed to analyze and describe the phenomenon of the extermination of peripheral young people in Amazonia, and to discover to what extent this politics of death (thanatopolitics) constitutes a structuring apparatus of the neoliberal governmentality, by operating a calculation of the value of the human in market-oriented terms, in an outermost region of the neoliberal capitalist order. With the Covid-19 pandemic event, this project had to be renewed to understand which are the normative frameworks and governmental dispositives at stake in the global government of life and death in contemporary capitalism. By the articulation of biopolitics, (neo)liberalism, colonialism, racism and security frameworks, this research concludes by proposing a new concept that function as a grid of understanding for nowadays capitalist governmentality: necroliberalism.
Oxidation of SO2 to sulfuric acid impacts acid precipitation and aerosol nucleation in Earth’s atmosphere in remote and polluted environments. This oxidation can take place in both the liquid and gas phase. Only the gas-phase oxidation is expected to lead to new particles because of the clustering reactions of H2SO4. This aerosol nucleation has a major effect upon air quality and Earth’s radiative balance, and is of crucial importance to the chemistry of the atmosphere.
The rate limiting step in this process is the reaction of OH radicals with SO2 to form HSO3. The pressure- and temperature-dependent reaction of OH + SO2 has been studied many times previously – since its importance was first recognized in the 1970s. Notwithstanding, some of the most recent literature has cast doubt on much of this data, especially under conditions that are relevant to atmospheric chemistry.
Here, we present measurements of the rate coefficient using the pulsed laser photolysis–laser induced fluorescence technique as a function of temperature (249–373 K) and of pressure in helium, argon, nitrogen and oxygen bath gases (30–600 Torr). In addition, relative rate measurements using a chamber at 760 Torr (N2, O2 and air) were also performed to corroborate our absolute observations. By utilizing these new data, together with the available literature data, an updated pressure- and temperature-dependent parameterization will be provided. This allows the atmospheric impact of this reaction to be constrained with a new level of certainty.
Reconstructed human epidermis (RHE) is an emerging skin model in pharmaceutical, toxicological and cosmetic sciences, yielding scientific and ethical advantages. RHEs remain costly, however, due to consumables and time required for their culture and a short shelf-life. Storing, i.e., freezing RHE could help reduce costs but little is known on the effects of freezing on the barrier function of RHE. We studied such effects using commercial EpiSkin™ RHE stored at −20, −80 and −150 °C for 1 and 10 weeks. We acquired intrinsic Raman spectra in the stratum corneum (SC) of the RHEs as well as spectra obtained following topical application of resorcinol in an aqueous solution. In parallel, we quantified the effects of freezing on the permeation kinetics of resorcinol from time-dependent permeation experiments. Principal component analyses discriminated the intrinsic SC spectra and the spectra of resorcinol-containing RHEs, in each case on the basis of the freezing conditions. Permeation of resorcinol through the frozen RHE increased 3- to 6-fold compared to fresh RHE, with the strongest effect obtained from freezing at −20 °C for 10 weeks. Due to the extensive optimization and standardization of EpiSkin™ RHE, the effects observed in our work may be expected to be more pronounced with other RHEs.