Dr Bilal Haider Abbasi

Nationality
Pakistan
Scientific Field
Period
January, 2018 - September, 2019

LE STUDIUM RESEARCH FELLOW / ARD 2020 - COSMETOSCIENCES Programme / PRESTIGE 

From

Quaid-i-Azam University - PK

In residence at

Biomolecule and Plant Biotechnology (BBV), EA 2106, University of Tours - FRLaboratory of Woody Plants and Crops Biology (LBLGC), EA 1207 / INRA USC 1328, University of Orléans - FR

Host scientist

Prof. Nathalie Guivarc’h (BBV, Tours) in collaboration with Dr Christophe Hano (LBLGC, Orléans)

PROJECT

Strategies to enhance cosmeceuticals in in vitro cultures of herbal plants

Cosmeceuticals are plant derived products intended to improve the health and beauty of the skin by providing a specific result. Most of cosmeceuticals are defined by their biologically active ingredients (BAIs). Phenolic compounds are well established BAIs of these cosmeceuticals. Caffeic acid, quercetin, flavonoids, gallic acid, etc. are common phenolic compounds used in cosmeceuticals. These compounds are extracted from different plant species like Echinacea, Silybum, Linum, Citrus, etc. However, plant derived phenolic compounds are privileged in cosmetic industry due to benefits they offer. Therefore, whole cosmetic industry is looking for efficient and feasible production platforms for cost efficient production of these cosmeceuticals by herbal plants.Use of plant cell culture technology offers an attractive alternative for the production of plant-based cosmeceuticals. Compared to field grown plants, cell cultures can be cultivated in a controlled and contained environment. Production in cell culture also offers possibilities for process optimization, independent of environmental effects, etc. Although plant cell culture technology is very widespread in phytopharmaceutical industry, but it is not yet very common in the cosmetic industry.The problem, usually encountered by plant cell culture is the low production rate and yield of BAIs. Therefore, several strategies have been devised to enhance concentration of these compounds in cell cultures of herbal plants. Elicitation of BAIs is considered as most reliable and feasible strategy. Elicitation not only enhances biosynthesis of BAIs but also influencing their production by stimulating biomass accumulation. Elicitors are the chemical compounds from abiotic and biotic sources that can stimulate stress reponses in plants, leading to enhanced biosynthesis of BAIs. The number of parameters, such as elicitor type, dose, treatment schedule, duration of exposure are major factors influencing biosynthesis of BAIs in plant cell.

Events organised by this fellow

Publications in relation with the research project

Publications

Bilal Haider Abbasi
Muzamil Shah
Syed Salman Hashmi
Munazza Nazir
Sania Naz
Waqar Ahmad
Inam Ullah Khan
Christophe Hano
:
Link to the publication

The purpose of the current study was green synthesis of ZnO-nanoparticles (NPs) from different tissues of Silybum marianum (L.) Gaernt. (i.e., seeds, wild plant, in vitro derived plantlets and callus cultures) followed by extensive characterization and evaluation of their biological potency. ZnO-NPs thus synthesized were subjected to characterization using standard techniques
such as XRD, FTIR and SEM. Thermal stability of synthesized NPs was also evaluated using thermo-gravimetric analysis. Highly stable crystalline NPs with size ranging between 30.8 and 46.0 nm were obtained from different tissues of S. marianum. These NPs have revealed a wide range of biological applications showing antioxidant, moderate α-amylase inhibitor, antibacterial and cytotoxicpotencies. The highest antibacterial activity (20 0.98 mm) was shown by seed extract-mediated ZnO NPs against Staphylococcus aureus (ATCC-6538). Seed extract-mediated ZnO NPs also showed the most potent antioxidant activity (27.7 .9 gAAE/mg, 23.8 0.7 gAAE/mg and 12.7 1.9% total antioxidant capacity (TAC), total reducing power (TRP) and DPPH-free radical scavenging assay (FRSA), respectively). All of the synthesized ZnO NPs also showed cytotoxic activity against
the hepato-cellular carcinoma (HepG2) human cells. Interestingly, these ZnO NPs were also highly biocompatible, as evidenced by the brine shrimp lethality and human red blood cells hemolytic assays. Among all of the NPs synthesized and used, the effect of seed extract-mediated NPs was found to be most promising for future applications.

Muhammad Younas
Christophe Hano
Nathalie Giglioli-Guivarc'h
Bilal Haider Abbasi
:
Link to the publication

Breast cancer is one of the most commonly diagnosed cancers around the globe and accounts for a large proportion of fatalities in women. Despite the advancement in therapeutic and diagnostic procedures, breast cancer still represents a major challenge. Current anti-breast cancer approaches include surgical removal, radiotherapy, hormonal therapy and the use of various chemotherapeutic drugs. However, drug resistance, associated serious adverse effects, metastasis and recurrence complications still need to be resolved which demand safe and alternative strategies. In this scenario, phytochemicals have recently gained huge attention due to their safety profile and cost-effectiveness. These phytochemicals modulate various genes, gene products and signalling pathways, thereby inhibiting breast cancer cell proliferation, invasion, angiogenesis and metastasis and inducing apoptosis. Moreover, they also target breast cancer stem cells and overcome drug resistance problems in breast carcinomas. Phytochemicals as adjuvants with chemotherapeutic drugs have greatly enhanced their therapeutic efficacy. This review focuses on the recently recognized molecular mechanisms underlying breast cancer chemoprevention with the use of phytochemicals such as curcumin, resveratrol, silibinin, genistein, epigallocatechin gallate, secoisolariciresinol, thymoquinone, kaempferol, quercetin, parthenolide, sulforaphane, ginsenosides, naringenin, isoliquiritigenin, luteolin, benzyl isothiocyanate, α-mangostin, 3,3′-diindolylmethane, pterostilbene, vinca alkaloids and apigenin.

Muhammad Nadeem
Bilal Haider Abbasi
Laurine Garros
Samantha Drouet
Adnan Zahir
Waqar Ahmad
Nathalie Giglioli-Guivarc’h
Christophe Hano
:
Link to the publication

Lignans and neolignans are important biologically active ingredients (BAIs) biosynthesized by Linum usitatissimum. These BAIs have multi-dimensional effects against cancer, diabetes and cardio vascular diseases. In this study, yeast extract (YE) was employed as an elicitor to evaluate its effects on dynamics of biomass, BAIs and antioxidant activities in L. usitatissimum cell cultures. During preliminary experiments, flax cultures were grown on different concentrations of YE (0–1000 mg/L), and 200 mg/L YE was found to be optimum to enhance several biochemical parameters in these cell cultures. A two-fold increase in fresh (FW) and dry weight (DW) over the control was observed in cultures grown on MS medium supplemented with 200 mg/L YE. Similarly, total phenolic (TPC; 16 mg/g DW) and flavonoids content (TFC; 5.1 mg/g DW) were also positively affected by YE (200 mg/L). Stimulatory effects of YE on biosynthesis of lignans and neolignans was also noted. Thus, 200 mg/L of YE enhanced biosynthesis of secoisolariciresinol diglucoside (SDG; 3.36-fold or 10.1 mg/g DW), lariciresinol diglucoside (LDG; 1.3-fold or 11.0 mg/g DW) and dehydrodiconiferyl alcohol glucoside (DCG; 4.26-fold or 21.3 mg/g DW) in L. usitatissimum cell cultures with respect to controls. This elicitation strategy could be scaled up for production of commercially feasible levels of these precious metabolites by cell cultures of Linum.

Final reports

Bilal Haider Abbasi
Christophe Hano
Nathalie Giglioli-Guivarc’h
:
Download PDF Link to the publication

Herbal plants accumulate large amounts of phenolics and pentacyclic triterpenes. The present research project deals with the in vitro culture induction from stem and leaf explants of several medicinal plant species of Centre-Val de Loire under various plant growth regulators (PGRs) for the production of antioxidant and anti-ageing compounds. Among all the tested PGRs, auxins and cytokinins used alone or in combination induced callogenesis in stem/leaf-derived explants. Callus culture displayed feasible total phenolic content and antioxidant activity under optimum hormonal combination. HPLC analysis revealed the presence of plectranthoic acid, oleanolic acid, betulinic acid, caffeic acid and rosmarinic acid. Complete antioxidant and anti-aging potential of extracts with very contrasting phytochemical profiles were investigated. Correlation analyses revealed rosmarinic acid as the main contributor for antioxidant activity and anti-aging hyaluronidase, advance glycation end-products inhibition and SIRT1 activation, whereas, pentacyclic triterpenoids were correlated with elastase, collagenase and tyrosinase inhibition. Altogether, these results clearly evidenced the great valorization potential of herbal plants from CVL for the production of antioxidant and anti-aging bioactive extracts for cosmetic applications.