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Abstract
The study of theWeyl andDirac topologicalmaterials (topological semimetals, insulators, superfluids
and superconductors) opens the route for the investigation of the topological quantumvacua of
relativistic fields. The symmetric phase of the standardmodel (SM), where both electroweak and chiral
symmetry are not broken, represents the topological semimetal. The vacua of the SM (and its
extensions) in the phases with broken electroweak symmetry represent the topological insulators of
different types.We discuss in detail the topological invariants in both thesymmetric and broken
phases and establish their relation to the stability of vacuum.

1. Introduction

Themassless (gapless)Weyl fermions in the symmetric phase of the standardmodel (SM) of fundamental
interactions have common topological properties with theWeyl andDirac fermions in topological semimetals.
The topological stability of theWeyl node in the spectrumof neutrinowas first considered in [1], see also [2].
Later the topological invariant for theWeyl pointswas expressed in terms of the fermionic Greenʼs function [3],
and then the topological approachwas extended byHorǎva to the other types of nodes in the fermionic
spectrum, such asDirac nodal lines and Fermi surfaces [4]; this topological classification of the possible types of
zeroes in the spectrumwas based on theK-theory. Topological classification then has been extended to the other
topological phases ofmatter—the fully gapped states, such as topological insulators, topological
superconductors and the phase B of superfluid 3He, see [5–8].

The systems (vacua)with theWeyl points both in condensedmatter and in particle physics havemany exotic
properties, such as chiral anomaly. For example, the Adler–Bell–Jackiw equation, which describes the
anomalous production of fermions from vacuum [9–11]has been verified in experiments with skyrmions in the
chiral superfluid 3He-A [12], see also [13].Weyl fermions in semimetals have been considered byAbrikosov and
Beneslavskii in 1970 [14]; for the recent reviews onWeyl fermions in semimetals, superconductors and
superfluids see [15–19].

In the topological classification an important role is played by the symmetry of the vacuum. This also
concerns the symmetric phase of the SM,where both electroweak and chiral symmetries vacuumare not
broken. In this phase due to the equal number of the left-handed and the right-handed particles (if the sterile
neutrino is included), and due to Lorentz invariance, the total topological chargein the Fermi point situated at

=p 0 is zero. Therefore, the topology of theWeyl fermions in the SM is to be supported by symmetry7. The
modification of themomentum space topological invariants associatedwith various elements of the SMgauge
group has been suggested in [13].
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Inthis paper we consider the complete set of the topological invariants for the Fermi point of the SM
fermions.We demonstrate that the generating functional for those invariants possesses theZ6 symmetry, which,
relates the elements of the gauge group giving rise to equivalent topological invariants. This is the sameZ6
symmetry of the fermionic representations of the SM,whichwas discussed in [23]. The existence of thisZ6
symmetry explains, in particular, why the topological invariant that protects allmassless SM fermionsmay be
expressed through either the hypercharge generator or through one of the generators of the ( )SU 2 L subgroup of
the SMgauge group (see section 12.3 of [13]).

Next, we discuss the vacua of the SM (and its extensions) in the phases with broken electroweak symmetry.
These phases represent the topological insulators of different types. First we consider the conditions at which the
parity breaking interactionsmay be neglected. This in particular requires that the temperaturebemuch smaller
than themasses of the corresponding fermions.Under this limit the topological classes of the SMvacua are
classified according to the topological invariant associatedwith thematrix of CT symmetry (the combination of
Charge conjugation andTime reversal symmetries), which protects the number ofmassiveDirac fermions.
Notice that if the interactionsare neglected at all, the vacuumof the SM in themassive phases would be
described by the same topology as the fully gapped superfluid 3He-B [24]. In superfluid 3He-B the topological
invariant is protected by the chiral symmetry of the system. TheCT symmetry in the SMplays a similar role.
Presumably, the corresponding topological invariant is relevant for the topological classification of the vacua of
the SMat low enough temperatures (pressure, chemical potential etc).

In addition to the topological invariant protected byCT symmetry there exists the topological invariant
protected by T-symmetry, which is relevant for the consideration of the SM,when the interactions that break CP
(the combination of Charge conjugation and Parity symmetries) are taken into account. This invariant becomes
important when the emphasis ison the consideration of theHiggs sector of the SM. The topologically nontrivial
phase appears, when theMajoranamasses of the left-handed neutrinos are present, the number of which is
protected by this topological invariant.We demonstrate that in the noninteracting case of themassive SMDirac
fermions the value of the symmetry protected topological invariant associatedwithT is equal to zero, =N 0KT

.
At the same time in the extensions of the SMwith the type II neutrino seesaw the value of the topological
invariant NKT

(supported by theT-symmetry) is nonzero. Therefore, the phases with andwithoutMajorana
masses of the left-handed neutrinos cannot be continuously connected and are, indeed, the different phases.
However, we obtain that the type I seesaw is topologically trivial and its vacuummay be transformedwithout the
phase transition to the conventional vacuumof the SMwithDirac neutrinomasses.

Depending on the external conditions (temperature, pressure, chemical potentials of various types, etc) the
SMand its extensionsmay exist in various phases. For example, in addition to the ordinary baryonic phase,
which is realized at the vanishing temperature, pressure and baryonic chemical potential, inQCD there exist
various other phases: several color superconducting phases, the quark–gluon plasma phase, etc [52–55]. The
Weinberg–Salammodel is typically considered in the two phases: the symmetric high temperature phasewith
the restored chiral symmetry and the broken low temperature phasewith the spontaneously broken

Ä( ) ( )SU U2 1 symmetry. The complete SM (containingQuantumChromodynamics and theWeinberg–
Salammodel)may possess newphases, whichhave not been considered yet, at certain external conditions.
Various extensions of the SM like themodels withMajoranamasses of neutrinos,models with several Higgs
bosons,models with compositeHiggs bosonsmay also exist in several exotic phases, whichhave not been
considered so far. Themomentum space topological invariants discussed in this papermay be applied to the
consideration of the phase transitions between the phases of the SM (and its extensions)mentioned above. For
the previous consideration of the topologically nontrivial vacua in relativistic quantum field theories based on
the topological invariants inmomentum space see, for example, [4, 13, 42–48, 50, 51].

The paper is organized as follows. In section 2we consider the symmetric phase of the SMwith unbroken
chiral and electroweak symmetries as the phase of the topological semimetal. The complete set of the topological
invariants protecting theWeyl points is defined, andtheZ6 symmetry of the corresponding generating
functional is established. In sections 3 and 4we discuss the SMat low temperatures, which are smaller than the
mass of the lightest fermion. In section 3we discuss the situation at the sufficiently small values of pressure and
chemical potentials, so that the parity breaking interactions are to be neglected in the consideration of the
questions of the stability of vacuum. In section 4we discuss the topological invariant of the SMand its extensions
that remain at work if the parity breaking interactions are taken into accountwhile the CPbreaking is neglected.
In particular, it is demonstrated that the vacuumwithDirac fermions is topologically trivial (with respect to the
invariant protected by time reversal symmetry). At the same time, the vacuumwithMajoranamassesmay be
topologically nontrivial.
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2. SM in the symmetric phase as the topological semimetal

2.1. Topological invariant formassless fermions
In its gapless (massless) phase the SMbelongs to the class of the 3+1 dimensional vacua, which are characterized
by theWeyl points inmomentum space. TheWeyl point is characterized by themomentum space topological
invariantN3, which protects themasslessness of the fermionic spectrum. The topological invariant for the
isolatedWeyl point is expressed as the integral of the three-form in terms of the two-point Greenʼs function 
determined in the 4Dmomentum-frequency space [3, 13]:

       òp
= = ¶ ¶ ¶mnlg

s

g - - -
m n l

( )N e Str ,
1

24
d . 1p p p3 2

1 1 1

TheGreenʼs function is an n×nmatrix. For a single species of Weyl fermions one has n=2, and theGreenʼs
function is expressed in terms of the Paulimatrices. For general topological condensedmatter system the n×n
matrix contains Paulimatrices for spin and for the Bogoliubov spin, and also the crystal band indices of
fermions. In particle physics, the n×nmatrix includesWeyl orDiracmatrices and indices of different
fermionic species (quarks and leptons of different generations). In SMwith 16 species in one generation has
=n g32 , where g is the number of generations. If expressed in terms ofMajorana fermions, thematrix has
=n g64 . The definition of theGreen’s function in terms of the functional integral over the fields is given in

appendix A. The integral in equation (1) is over the S3 surfaceσ embracing the point in the 4D space
= =pp 0, 04 , where p4 is the frequency along the imaginary axis; tr is the trace over the fermionic indices. For

a single species of right-handedWeyl fermions one has =N 13 , and = -N 13 for the left-handedWeyl
fermions.

It is worthmentioning that the symmetric phase of the SMappears atfinite temperatures, while the
topological classification and topological invariants are formally applicable only to the ground state (vacuum) of
the system. Actually the consideration is valid if the temperatureT ismuch smaller than the characteristic high
energy scale of the system T Tuv. HereTuv is the scale, at which the SMof fundamental interactions already
does notwork, and new fields and interactions appear. In this limit all the properties of the systems related to
topology, such as chiral anomaly, are determined by these topological invariants. Thus in spite of the fact that the
topological invariantN3 is defined typically for the zero temperature, in the SM this invariant appears to bewell-
defined at the temperatures above the electroweak transition if those temperatures are smaller than the scale of
the ultraviolet completion of the SM,which is at least one order ofmagnitude higher than the electroweak scale
∼100 GeV.

Ifsterile right-handed neutrinos are present in the SM, the number of the left- and the right-handed
fermions is equal, = =n n g8left right , where g is the number of generations. This is required, for example, if we
assume that the lattice regularization is used, where the numbers of the left-handed and the right-handed
fermions are equal due to theNielsen–Ninomiya theorem. Then the trace in equation (1) over all the fermionic
species gives the trivial value for the topological invariant, = - =N n n 03 right left . Nevertheless, the vacuumof
the SM is topologically nontrivial, because its topology is supported by the symmetry of the SM in the symmetric
phase. The Ä Ä( ) ( ) ( )SU SU U3 2 1 symmetry allows oneto introduce the generating function of topological
invariants, which contains the powers of the hyperchargeY, the generators of ( )SU 2 L and ( )SU 3 c:

  q q q = q q q( ) [ ] ( )N tr, , e e e 2Y W
a

c
i i i iW

a
a Y c

i
i

(Herea, =a 1, 2, 3 are the generators of ( )SU 2 L while i, = ¼i 1, , 8 are the generators of ( )SU 3 c .

2.2.Z6 symmetry of the fermionic representations in the SM
Notice that equation (2) obeys theZ6 invariance (see also [25]):

   q q p +  ´  ´q q p q q p ( )N2 , e e e , e e e 3Y Y
N Ni i i i iW

a
a W

a
a c

i
i c

i
i

2 i
3

whereN is theinteger. This invariancemight actuallymean that the gauge group of the SM is
Ä Ä( ) ( ) ( )SU SU U Z3 2 1 6 rather than Ä Ä( ) ( ) ( )SU SU U3 2 1 [23]. The givenZ6 symmetry follows from

the assignment of the hypercharges, weak charges and electric charges = +Q Y W of the fermions given by
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+

- -

- -

+ -

- - -

- -
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( )
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u

u

d

d

e

e
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3

3 0

3
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0

0 0 0

1
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L

R

L

R

L

R

L

R

1

2

1

6

2

3
2

3

2

3
1

2

1

6

1

3
1

3

1

3
1

2

1

2

1

2

1

2

According to this table in the SM including strong interactions the group ´ ´( ) ( ) ( )U SU SU1 2 3 has the
global = ´Z Z Z6 2 3-subgroup of elements which act on the SM fermions as an identity element (see equations
(61)–(64) in [2] and [23, 25]). This group consists of the following elements g k:

  = = ¼p p p[ ] ( )g ke e e , 1, , 6. 5k ki2 2 i 2 i8 3

where 8 will be specified below in equation (9). Notice that theZ6 symmetry of the fermionic representations of
the SM takes place in any phases, not only in the symmetric phase. Its elements of equation (5) being applied to
any fermion of the SMgive 1. In the other words, all SM fermions represent the eigenvectors of the elements of
Z6 corresponding to the eigenvalues equal to unity.

2.3.Maximal number ofDiracmassless fermions protected by the topological invariants
The generatorsa, i,  commutewith the fermionGreen’s functions taken in the Landau gauge. Therefore,
there is the following global Ä( ) ( )SU SU2 3 invariance:

     G Gq q q q+ + ( )U Ue e , e e 6i i i iW
a

a W
a

a c
i

i c
i

i

where Î ( )U SU 2 while G Î ( )SU 3 . As a result we can represent equation (2) in the form:

   q q q q¢ = q q q q+ ¢( ) [ ] ( )N tr, , , e e e 7Y W c c
i i i iW Y c c3 8 3

where for the left-handed doublets of fermions

 =
-( ) ( )1

2
1 0
0 1

83

while for the colored quarks

 =
-

= -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )1

3

1 0 0
0 1 0
0 0 2

,
1

2

1 0 0
0 1 0
0 0 0

98 3

The direct calculation gives

q q q q
q q¢ = - + + +q q+ - - -

q q q q q¢ ¢
⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠( )( ) ( )N g, , , 2 cos

2
cos

2
e e e e e 10Y W c c

Y W i 6 i i i 2Y
c c c c c

Y
i
3 2

i
3 2

2i
3

The particular case of this expressionwith q q= ¢ = 0c c was considered, for example, in [13, 26]. On the level of
the angles q q q q¢, , ,Y W c c theZ6 symmetry has the form:

q q p q q p q q p q q +  +  + ¢  ¢ ( )N N N2 , 2 , 2 , 11Y Y W W c c c c

(Notice that qW is defined asmodulo p4 , qc is defined asmodulo p6 , while qY is defined asmodulo p12 .)The
generating function is robust to the deformations of theGreenʼs function, if those deformations obey the SM
symmetry.

The choice of parameters (q = 0Y , q p= 2W , q q= ¢ = 0c c ) and any other choice related to it by theZ6
transformation of equation (11) gives themaximally possible value of the generating function:

q q p q q= = = = ¢ = =( ) ( )N N g0, 2 , 0, 0 16 . 12Y W c cmax

This value guarantees that all 16g fermions of the SMaremassless in the symmetric phase. Thosemaximal values
(12) are formed by the discrete subgroup of the SM symmetry group [27] (that is related by theZ6 transformation
to the centers of ( )SU 3 c and ( )SU 2 L):

= =[ ] ( )N K gtr 16 , 13Ymax

4
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wherewemay take

  = p p p+ p p p ( )[ ( )] [ ] [ ]K e e e 14Y
N N Ni 2 1 i 2 i 2mod 4 3 mod 12 mod 6 8

with any integerN. In particular, forN=3we get = pK eY
Y6 i while forN=0we have = pK eY

i2 3. Various
operators in equation (14) are relatedto theZ6 transformation.

3. SMat low temperatures as the topological insulatorwithC, P, andT symmetries

The topology of the SMvacuum in themassive phase looks similar to that of the ground state of superfluid 3He-
B,which in the noninteracting case is described by the integer valued topological invariant [24]

   òp
= ¶ ¶ ¶mnl

- - -
m n l

⎡
⎣⎢

⎤
⎦⎥ ( )N e K ptr

1

24
d . 15K p p p2

3 1 1 1

Here = =-( ) ( )pp 01
4 (while  is theGreen’s function); the integral is over 3-momentum space; andK is

the proper symmetry operation (it should either commute or anti-commutewith). For the superfluid 3He-B
one has =N 2K for t=K 2 (the combination of time reversal and particle-hole symmetries [24]). The larger
values of this invariantmay be obtained by the extension of themodel of 3He-B to themulti-component
fermionicmodels [28].

The expression for equation (15) is formally defined at zero temperature,T=0.However the effects of the
nontrivial topology on the physical properties of the systems can bemeasured at finite temperatures. For some
effects the temperaturesmust bemuch smaller than themasses of the fermions existing in the given system,
T m, while for the others the limit t ( )T m1 is enough, where t ( )T is the characteristic relaxation time.

In the latter case it is not excluded that the topological invariant can be applicable even for >T m. Possibly, the
definition of the topological invariantmay be extended even further, butwe do not discuss this possibility here.

The smallest Diracmass in the SM is themass of electron. The leading term in the temperature corrections to
the corresponding self energy is the one loop expression proportional to the fine structure constantα. This term
gives rise to the shift of the dispersion of the quasiparticles by the amount of the order of eT [60]. Therefore, the
requirement eT me gives T 1 MeV. An even greater restriction comes from the neutrino sector, where the
thermal contribution tomassmay be roughly given by the expression gT [61], where g is the SU(2) or ( )U 1 Y

coupling constant. Assuming that the neutrinomass is about 1 eV, we arrive at the restriction T 1 eV. This
condition is satisfied, for example, by the present state of the universe with the temperature of the order
of -10 4 eV.

The question arises, whether the vacuumof the SM in themassive phase is topologically trivial or not. If yes,
what is the correspondingmatrixK for the SMandwhat is the effect of interactions. The situation here is
completely unclear. First of all, wemay consider the approximation to the SM, inwhich the exchange by theW
andZbosons aswell as theHiggs boson are neglected. Roughly, thismay correspond to the description of
processes at the energiesmuch smaller than the electroweak scale∼100 GeV. Then in the SMat zero
temperatureT=0 or at nonzeroTwith the proper restrictions such as T m, wherem is the smallest fermion
mass in the phasewith the spontaneously broken electroweak symmetry, theGreenʼs function has the form


g

= -
- -m

m

( ) ( )
( )

( )p Z p
p M p

1
, 162

2

where w= - +p p2 2 2, whileZ andM arematrices. The fermionmassmatrixm is given by the solution of
equation

- =( )M m m2

while theDiracmatricesmay be chosen according to section 5.4 in [29]:

g t t s g g g g g t= g = = - = ( )i i, , . 170
1 2 5

0 1 2 3
3

This approximation is reasonable due to the smallness of the fine structure constant and large enoughmasses of
W, Z, and the SMHiggs boson.Here it is thematrix g g t= - =K i 5 0

2, which commutes with theGreenʼs
function at w = 0. This is thematrix of the combination of CPT and P transformations8 that is at the same time
the combination of C andT. As a result equation (15) determines the topological invariant. Itmay be calculated
for the simplest system connectedwith the given one by a continuous transformation. Assuming that such a
connection exists with the systemof noninteractingmassiveDirac fermions (that represent the constituents of
the SM), we obtain

8
The unessential phase factor of this symmetrymatrix is chosen in such away that the expression of equation (15) gives the real value for the

case of the noninteractingDirac fermions.
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= ( )N g8 , 18K

where g is the number of generations of the SM fermions9. In the notationsin [30, 31] the invariant
is n = N 2K .

Presentlythe role of the interactions between the fermions is not completely clear. For example, even at zero
temperature the strong SU(3) interactions give rise to the transition between the systemof the noninteracting
quarks and the confiningQCD. Thismay (but alsomay not) give rise to the value of the topological invariant
associatedwith theCT symmetry that differs from the value calculated above. The answer depends on the
possibility of continuously transforming the two-point fermionGreen’s function for the noninteractingmassive
fermions to the two-point Green’s function ofQCDwith the strong interactions taken into account. Various
approximations toQCDmayprovide different answers to this question. For example, theNambu–Jona–
Lasinio (NJL) approximation allows oneto continuously connectthe interacting andnoninteractingGreen’s
functions. The spectrumof the lightest resonances is described by theNJLmodel reasonably well. This allows us
to suppose that in the low energy effective theory equation (18) gives the correct answer for the hadronic phase of
the SM.

Formally the parity breaking interactions destroy the consideration of the topological stability based on the
invariant NKCT

. In practice, this invariant remains operative because of the smallness of the corrections. But the
topological classification groupmay be reduced fromZ to the smaller group. For example, the electroweak SU
(2) interactions assume that the vacuawith the values of NKCT

of opposite signs (that correspond to the opposite
values of themasses of all fermions) represent the same physical vacuum. This occurs because during the
electroweak symmetry breaking the opposite values ofmasses appear as different versions of unitary gauge. In
the complete theory with the SU(2) interactions taken into account those states are related by global gauge
transformation, and therefore, not only are continuously connected but represent the same physical vacuum.
This reduces the topological classification to Z Z2. The reductionmay bemore significant if the SMappears as a
low energy approximation to a certain theory with the larger gauge group. For the recent discussion of the
similarmodification of the topological stability pattern in topological superconductors due to interactions see
[30–38]. In practice the reduction of the topological classificationmeans that various defects lose their
topological stability. For example, let us consider theQCD sector of the SMwith the two quarks (u and d). Let us
also neglect the currentmasses of the quarks, There is the chiral SU(2) symmetry which is broken spontaneously
in the hadronic phase. As a result the constituent quarkmasses appear. The positive and negative values of
themassesmay appear in this way.Onemay naively suppose that this should lead to the formation of the
topologically stable domainwalls separating the regionswith the opposite values of the constituentmasses. But
this is actually not so. The opposite values of themasses appear as the arbitrary choice of the sign of the
condensate. Those choices are related to the element of the global chiral symmetry SU(2).Wemay consider the
version of the theorywith the 2×2 complex-valued condensate field, and in this theory the statewith positive
mass is continuously connected by the symmetry transformationwith the state with negativemass. (At the
intermediate states themass is undefined.)Thismeans the reduction Z Z Z2 of the symmetry classification
and thismeans that the topologically stable domainwalls in the hadronic phase ofQCDdonot exist. In practice
if such domainwalls appear dynamically in the formof bubbles, then they decaywith the emission of the

´( ) ( )SU U2 1 gauge bosons.

4. Topological invariant protected byT-symmetry

4.1. Version of the SMwithmajoranamasses of left-handed neutrinos
In section 3we considered the approximation to the SMwhenparity remains unbroken. The question of the
stability of vacuumwas related to the topological invariant protected byCT. Interactionswith the SMHiggs
boson andwith theWandZ bosons destroy the vacuum stability criteria based on the consideration of this
invariant. At least, the interactions in theHiggs sector are strong. Althoughwemay neglect this effect in some
approximation, this is necessary to consider the other topological invariants. In order to consider such invariants
we use the representation of the SM in terms of theNambu–Gorkov spinors. This allows us to treat the particle–
antiparticle transformation as amatrix.We assume in this section thatweakCPbreaking interactions do not
affect the stability of vacuum. Therefore, wewill use the topological invariant protected by T-symmetry.

In this subsectionwe consider the version of the SMwith the left-handedmassive neutrinos. First of all, let us
discuss the situation, when the right-handed neutrinos remainmassless, theDiracmasses of neutrinos are
absent, and only the observed left-handed neutrinos aremassive. For example, the type II neutrino seesawmay
lead to such a pattern. Then the followingmass term appears:

9
For the systemof the nonintreractingDirac fermions withmassesMa the given topological invariant is given by = åN MsignK a a.
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n n= - +n ( ) ( )L M h.c. 19L
A

L
B

AB

(summation over the generations is implied).
Let us consider the situation, when the interacting systemmay be continuously deformed to the system

without interactions in the lepton sector andwith theMajoranamasses of the left-handed neutrinos. Let us
introduce the conventional definition of theNambu–Gorkov spinor:  n n= ( ),L L

c
L

T (where n s n= ¯iL
c

L
2 ). In

terms of this spinor the Lagrangian for onemassive noninteracting left-handed neutrinomay bewritten as
follows:

 g= +m
m

¯ ( ) ( )L p M 20L L L

where

  g g=¯ ( )i 21T 2 0

The time reversal transformation reads as:

 g g ( )22L L
0 5

Wechoose the unessential phase factor in such away that in this representation thematrix of the time reversal
transformation is given by

g g= - ( )iK 23T
0 5

(The corresponding topological invariant receives the form:

òp
= ¶ ¶ ¶

w=

- - -⎡
⎣⎢

⎤
⎦⎥ ( )N

e
p G G G G G Gtr K

48
d . 24K

ijk
T p p p2 0

3 1 1 1
T i j k

with

g= +m
m

- ( )G p M 251

Weobtain:

òp
g g g g g=

+
+

= ´ ´ =

w=


⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

( )
( )

( )

N i
e p

p M
Mtr

48

d

1

8
2 4

1

2
1 2 26

K
ijk i j k

2 0

3

2 2 2
0 5

T

If we have g generations of the left-handed neutrinos, the result is to bemultiplied by g. Aswewill see below the
quark sector withDiracmasses does not give the nonzero contribution to NKT

. Therefore, assuming that the SM
vacuum in the given phase is continuously connectedwith the vacuumof the version of the SMwithout
interactions between leptons, we obtain the overall value of the invariant

= ( )N g 2 27KT

We suppose that this property takes place for the SMat vanishing temperature, pressure and chemical potentials.

4.2. Version of the SMwith a type I neutrino seesaw
Let us remind the reader of the basics of the classical type I seesaw [41]. On the basis of  n n= ( ),LR L

c
R

T (where
n s n= ¯iL

c
L

2 ) there is themassmatrix

=n ( ) ( )m
m M

M 0 28

The overallmass term is   +n ( )M h.c.LR LR
1

2
, where ( )h.c. meansHermitian conjugationwhichimplies

n n ¯R L R L, , and vice versa. The product of the two-component spinors is defined as:

   ºLR LR LR
A

LR
B

AB

For simplicity we assume that gDiracmasses m are equal to each other and gMajoranamasses M are also equal.
The diagonalization gives g heavy neutrinos withMajoranamasses » +M Mheavy and g light neutrinos with
Majoranamasses

- » - ( )M m
m

M
29light

Notice that the signs ofMheavy and –Mlight are opposite. If we rewrite themass term through the spinor nL rather
than nL

c , then the sign of themass becomes positive because
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n s n n s n

n s n n s n

=- - -

= - +
n [ ] ( ) [ ¯ ] ( ) ¯

[ ¯ ] ( ) ¯ [ ] ( ) ( )
L M i M i

M i M i 30

L
c T

L
c

L
c T

L
c

L
T

L L
T

L

light
2

light
2

light
2

light
2

This results in the trivial value of the correspondingmomentum space topological invariant (see below). The
assumptions that themass of the right-handed neutrinos M is not smaller, than 1 TeV, and that theDirac
neutrinomass m is of the order of the electronmassme allow us to estimate M 0.25light eV.

The topological invariant for the left-handed neutrinowas calculated above and is given by equation (27).
Now let us consider the right-handed neutrino.We define  n n= ( ),R R R

c T (where n s n= ¯iR
c

R
2 ). In terms of this

spinor the lagrangian for themassive right-handed neutrinomay bewritten as:

 g= +m
m

¯ ( ) ( )L p M 31R R R

Now the time reversal transformation reads as:

 g g - ( )32R R
0 5

whichmeans that in this representation

g g= ( )iK 33T
0 5

The topological invariant is given by the same expression of equation (24). It gives:

òp
g g g g g= -

+
+ = -

w=


⎡
⎣⎢

⎤
⎦⎥( )

( ) ( )N ig
e p

p M
M gtr

48

d
2 34K

ijk i j k
2 0

3

2 2 2
0 5

T

where g is the number of generations. One can see that the systemwith the equal number ofleft-handed and
right-handed neutrinos withMajoranamasses of the same sign has the vanishing value of topological invariant.

4.3. Version of the SMwithDiracmasses of neutrinos
In this subsectionwe discuss the case, whereMajoranamasses are absent, and follow the alternative definition of
theNambu–Gorkov spinors introduced in [39]. In appendix Bwe represent the corresponding definition. In
terms of the correspondingGreen’s functions the topological invariant for the SMmay bewritten as

òp
= ¶ ¶ ¶

w=

- - -⎡
⎣⎢

⎤
⎦⎥ ( )N

e
p G G G G G Gtr K

48
d . 35K

ijk
p p p2 0

3 1 1 1
i j k

where K is the appropriate symmetry of the systemwhileG is theGreen’s function being the vacuumaverage of
the product of spinorsΨ of equation (43) of appendix B. For the definition of the two sets of gamma-matrices gm
and Ga also see the appendix B. First of all let us consider again the case of the P-invariant approximation to the
SM, inwhich case wemay usematrix of CT

g= = G GiK KCT
4 5 0

then if theGreen’s function of the systemmay be adiabatically deformed to that of the systemwith freemassive
Dirac fermionswith the samemassM, thenwe can substitute into equation (35) theGreen’s function of the
form:

g g g g g= G G G + G Gm
m

- ( ) [ ] ( )G p i p M 361 2 5 0 4 2 5 5 5 4

This gives

òp
g g g g g g= +

+
G G - G G = +

w=


⎡
⎣⎢

⎤
⎦⎥( )

( )
( ) ( ) ( )N ig N

e p

p M
p M g Ntr1

48

d
2 1 37K c

ijk i j k
c2 0

3

2 2 2
4 5 0

0
4 5 5

CT

(where =N 3c is the number of colors) in accordancewith the calculation of section 3.
If we take into account interactions that break parity, but neglect the complexness of the elements of

thefermionmixingmatrix, then the SM is CP-invariant. In this situation the topological invariantmay be
composed using thematrix

g= - G G GiKT
4 2 5 0

Let us again suppose that thetwo-point fermionGreen’s function of the SM is continuously connectedto that
of the noninteracting theorywith all Diracmasses of the fermions equal to each other. In this case our topological
invariant has the form

òp
g g g g g g= - +

+
G G G - G G ~ G º

w=


⎡
⎣⎢

⎤
⎦⎥( )

( )
( ) ( )N ig N

e p

p M
p Mtr tr1

48

d
0 38K c

ijk i j k
2 0

3

2 2 2
4 2 5 0

0
4 5 5 2

T

Thus, one can see that the parity breaking interactionsmake the SMvacuumwithDiracmasses of all fermions
trivial.
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5. Conclusions

In this paper we look at various phases of the SMof fundamental interactions (or its extensions) as at the systems
similar to the topologicalmaterials. The symmetric phase (the temperature is above the temperature of the
electroweak transition) represents the topological semimetal with the Fermi point, which is protected by the
topological invariants generated by the functional equation (7). This functional equation depends on the angles
q q q, ,Y W

a
c
i . It has been demonstrated that theZ6 symmetry of the fermionic representations of the SM [25]

manifests itself as the symmetry of this functional equation under the corresponding transformation of the
mentioned angles in equation (3). Due to theZ6 symmetry themaximal value of the topological invariant
protecting the Fermi pointmay be constructed either of the hypercharge or of the generator3 of ( )SU 2 L. It is
given by equation (14). Thismaximal value is equal to the number ofmassless SM fermions. This is peculiar,
although the formal definition of these topological invariants was given at zero temperature, this is the phase
with high temperature, where theymay be applied. This occurs because in this phase themass scale disappears,
and the relevant scale parameter is given by thetemperature itself. It should be compared to the scaleΛ, at which
the SM transfers to its ultraviolet completion.We suppose that the topological invariants considered here
protecting the Fermi point remain at work at least as long as LT . Notice that such a scalemay not be smaller
than 1 TeV.

At the temperatures below the electroweak phase transition the SM (and its extensions)may exist in several
phases, where the fermions aremassive. Those phases resemble various phases of topological insulators and are
characterized by the corresponding topological invariants inmomentum space. At small enough temperature,
pressure and chemical potentials the parity breaking interactionsmay be neglected, and the vacuum is
topologically nontrivial being protected by the topological invariant of equation (35)with K given by thematrix
of CT transformation. Our definition of this invariant remains valid at least up to the temperaturesmuch smaller
than the neutrinomasses, which are assumed to be of the order of eV. Although the strong interactions of the SM
provide the transition between the systemof noninteracting quarks and the quarks confined by the quark–gluon
strings, wemay suppose that the two-point quarkGreen’s function is continuously connectedto that of the
noninteracting quarks. At least this occurs in theNJL approximation to theQCD [56], which describes the light
mesons reasonably well. See also the recent lattice data on the quark propagator in [59] and references therein,
which indicate that the functions -( )Z p2 and -( )M p2 in equation (16) tend tofinite nonzero values10 at
p 0. Assuming the possibility of such continuous transformation, we come to the value of the topological

invariant that protects the number ofmassiveDirac fermions.
If we take into account the parity broken interactions, then the topological classification based on the

invariant protected byCT is reduced at least to Z Z2. The further reduction is possible if the BSMunifiedmodel
has the appropriate extended gauge symmetry.We deal with the topological insulatorwith T-symmetry if we
neglect weakCPbreaking interactions originated from the imaginary parts of the elements of the quarkmixing
matrix. Therefore, the stability of vacuum is protected also by the topological invariant of equation (35)with K
given by thematrix of the time reversal transformation. This expression remains operative at least for the
temperatures T 1 eV.We do not exclude the existence of the extension of its definition to the essentially
higher temperatures. But this is beyond the scope of this paper. It appears that the value of this invariant for the
SMwithmassiveDirac neutrinos is zero.

At the same time, the version of the SMwithMajoranamasses of left-handed neutrinos belongs to the
topological class different from that of the SMwithDiracmasses of the neutrinos. Thismeans that the
corresponding two systems cannot be connected continuously (at least, if we neglect the CP breaking
interactions). For example, theMajoranamasses of the left-handed neutrinosmay appear as a result of the type
II seesaw [49]. Considering the case of the type I seesaw, we come to the conclusion that the corresponding
vacuum is topologically equivalent to theDirac vacuumwithoutMajoranamasses, which follows from the
existence of theMajoranamasses of the right-handed neutrinos.
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Though one cannot exclude considering these data that the quark function -( )Z p2 tends to zero at p 0, in which case the singularity

is encountered in the expression for the topological invariants.How to regularize such singularities if they do appear is a difficult questions,
andwe omit this question in this paper.
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AppendixA. Green’s functions

Weconsider the two-point Greenʼs function  defined in a certain gauge corresponding to the gaugefixing
condition [ ]O A min.

 ò y y y

l y y

= -

- + D

( ) ¯ { [ ]}

{ [ ] [ ]} ¯ ( ) ( ) ( )

x y D D DA S A

O A A x y

, exp ,

exp log , 39

J
I

FP J
I

Here the integral is over the fermionic fields of the SMwhile indices I J, enumerate the components ofψ.
y[ [S A, is the action of the SM,A is the gaugefield, the Faddeev–Popov determinant has the form:

ò lD = -- [ ] { [ ]} ( )A g O Ad exp 40FP
g1

Here g is the gauge transformation andAg is the transformed gaugefield; it is implied that l  ¥ at the end. In
our case the elementsP of the gauge groupG are unitarymatrices. That is why  =[ ], P 0means that
 =+P P .

 ò

ò

y y y

l y y

y y

l y y

= -

- + D

= -

- + D

+ +

+

[ ] ( ) ¯ { [ ]}

{ [ ] [ ]} ¯ ( ) ( )

{ [ ]}

{ [ ] [ ]} ¯ ( ) ( ) ( )

x y D D DA S A

O A A x y

D DA S A

O A A x y

P , P exp , P

exp log

exp ,

exp P P log , 41

L
J

J
I

I
K

FP L
K

FP L
K

From the last equationwe obtain that  =[ ], P 0 for P from the center ofG for any given gauge. At the same
timewhen the functional [ ]O A is invariant under the global gauge transformations, we also have  =[ ], P 0 for
any Î GP . The particular case of such a gauge is the Landau gauge: ò=[ ]O A A xTr d2 4 . In this gauge any Î GP
commutes with theGreen function. In the followingwe assume that this gauge is chosen.

Appendix B. Representation of the SM in terms ofNambu–Gorkov spinors

Weadopt the notations proposed in [39]. Left-handed doublets and the right-handed doublets of quarks are
denoted by LK

a and RK
a , where a is the generation indexwhileK is the color index. The left-handed doublets and

the right-handed doublets of leptons are a anda, respectively. It will be useful to identify the lepton of each
generation as the fourth component of colored quark. Then =La a

a a
,4 and =Ra a

a a
,4 . So, later we consider the

lepton number as the fourth color in the symmetric expressions.We define the analog of theNambu–Gorkov
spinor as:

 

 
= =

¢ ¢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟¯

¯L

L

R

R
L R, ,aiU

A ai
A

c i
B

c a
BA aiU

A bi
B

ba
BA

a i
A

a
a

a
a

a

a
,

whereA is the usual spin index,U is theNambu–Gorkov spin index ( =U 1, 2 and =A 1, 2), i is the SU(4)
Pati–Salam color index (the lepton number is the fourth color), a is the generation index, and a b, are the

( ) ( )SU SU2 , 2L R indices. Both RaiU
Aa and LaiU

Aa for thefixed values of a, i, and a compose the four-component
Dirac spinors Rai

a and Lai
a . These spinors for thefixed value of a have + ´ =( )N N1 12c g components. Both R

and L belong to the fundamental representation of + ´(( ) )U N N1c g , where =N 3c is the number of colors,
=N 3g is the number of generations. Notice that L and L̄ (R and R̄) are not independent:

 g g g g g g= =¯ ( ) ¯ ( )i iL L R R,ai ab bi
T

ai ab bi
Ta a a a2 5 0 2 5 0

Here the gamma-matrices act on the spinor space-time indices and are defined in chiral representation

g g s
s

g= =
-

= =
-

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )i0 1

1 0
, 0

0
, 1, 2, 3, 1 0

0 1
42i

i

i
0 5

where si is the space-time Paulimatrix.
Next, we arrange theDirac spinors L R,ai ai

a a in the SO(4) spinorΨ:

Y =
⎛
⎝⎜

⎞
⎠⎟ ( )

L

R
43i

ai

ai

a
a

a

We introduce the Euclidean SO(4) gamma-matrices Ga (in chiral representation). The action of the SMgauge

fields Î Ìq ( ) ( )U SUe 1 2Y R
i , Î ( )( )U SU 2L

L, = Î
q

q-

⎛
⎝⎜

⎞
⎠⎟ ( )( )U SUe 0

0 e
2R

R

i

i
and
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= Î Ì
q

q-

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )–V

Qe
SU U

0

0 e
4 12

i 3

i
Pati Salam (where Î ( )Q SU 3 ) on the givenMajorana spinor is:

g g
Y 

+ G
+

- G
Y

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟¯ ( )

( )V V U
U

1

2

1

2
0

0
i ij ij

L

R j
a a

5 5 5 5

Thus ( ) ( )U U,L R realize the representation of Ä( ) ( ) ( )O SU SU4 2 2L R whileV realizes the representation of
the subgroup SU(4) ofU(12). The action of the element Î ( )R U 12 of the latter group on the spinor Yi

a

is Y  + Yg g+ G - G( )¯R Ri ij ij j
a ab ab b1

2

1

2

5 5 5 5

.

Again,Ψ and Ȳ are not independent:

g g gY = Y G G G¯ ( ) ii i
Ta a 2 5 0 4 2 5

The gamma-matrices act on the internal ( )SU 2 L and ( )SU 2 R spinor indices rather than on the space-time
indices, and are defined in chiral representation

t
t

G = G =
-

= G =
-

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )i

i
i0 1

1 0
, 0

0
, 1, 2, 3, 1 0

0 1
44i

i

i
4 5

Here t i are the basis elements of ( )SU 2 L R, algebra. It is worthmentioning thatmatrix G5 distinguishes the left-
handed spinors from the right-handed spinors: G =L L5 , and G = -R R5 . In appendix Cwe list various
symmetry operations that act on the spinors in terms of theNambu–Gorkov spinorΨ.

The partition function for the SM fermions in the presence of the SMgaugefields and the SMHiggs boson
written in terms of spinorΨ has the form: ò= YZ D e Si . The action = +S S SK H contains two terms. Thefirst
one is the kinetic term

ò g= Y  Ym
m( ¯ ) ( )S

i
x

2
d 45K i i

a a4

One can check that this termbeingwritten in terms of the original SM fermions is reduced to the conventional
SM fermion action (withoutmass term). Here m is the covariant derivative that includes the gaugefield of the
model. The term SH contains the interactions with the SMHiggsfield. It appears in the form

å= G
=

H h
K

K
K

1,2,3,4

where ÎhK . Thus, theHiggs boson appears as the four-component real vector that is transformed under the
action of Ä( ) ( ) ( )O SU SU4 2 2L R. The following termwould give equalmasses to all fermions of the SM:

ò g= Y G Y( ¯ ) ( )S x H
1

2
d 46H i i

a a4 5 5

Using local Ì » Ä( ) ( ) ( ) ( )SU O SU SU2 4 2 2L transformation  [ ]L U Lai
A

ab bi
Aa

h
a wemayfix the unitary

gauge, inwhich

= G = + Î ( )H H v hH , , 474

(where h is the real-valued field of the 125 GeVHiggs bosonwhile v is the condensate.
In order to obtain differentmasses for the fermionswe need to introduce thematrix of the couplings

between theHiggsfield and the fermions. The corresponding term in the Lagrangianmay be easily written in
terms of the spinorΨ, but wedo not need this expression in our present consideration.

Belowwe represent the symmetries of space-time spinors in terms of theNambu–Gorkov spinors
introduced above.

1. CP transformation.
For the usual Dirac spinorsψ theCP transformation is:

y g y -
 ( ) ¯ ( )t r i t r, ,T2

In the left-right components we have:

y s y -
 ( ) ¯ ( )t r i t r, ,L L

T2

and

y s y - -
 ( ) ¯ ( )t r i t r, ,R R

T2

In terms of the spinors introduced abovewehave

 g g - -  -
   ( ) ( ) ( ) ( )t r t r t r t rL L R R, , , , ,ai ab bi ai ab bi

a a a a0 0

and
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gY  G G Y -
 ( ) ( )t r t r, ,i i

a a4 2 0

2. Time reversal transformation.
In this paper we follow the definition of the time reversal transformation accepted in [40]. The time reversal
transformation contains complex conjugation, which transforms the spinorψ to its conjugate *g y y=¯ T0

similar to theC transformation. At the same time theCPT transformation does not contain this
conjugation, and being applied to usual spinors is composed of themultiplication by g5 and the inversion of
time and space coordinates. According to theCPT theorem the T-transformation is equal toCP up to the
overall inversion and the change in sign of the right-handed fermions. Therefore, the time reversal
transformation results in

gY  G G G Y -
 ( ) ( )t r t r, ,i i

a a4 2 5 0

3. P transformation parity

gY  G Y -
 ( ) ( )t r t r, ,i i

a a4 0

4. Charge conjugation
Charge conjugation = ´C CP P :

Y  G Y
 ( ) ( )t r t r, ,i i

a a2

5. CT transformation

gY  G G Y -
 ( ) ( )t r t r, ,i i

a a4 5 0
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