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Abstract

The study of the Weyl and Dirac topological materials (topological semimetals, insulators, superfluids
and superconductors) opens the route for the investigation of the topological quantum vacua of
relativistic fields. The symmetric phase of the standard model (SM), where both electroweak and chiral
symmetry are not broken, represents the topological semimetal. The vacua of the SM (and its
extensions) in the phases with broken electroweak symmetry represent the topological insulators of
different types. We discuss in detail the topological invariants in both the symmetric and broken
phases and establish their relation to the stability of vacuum.

1. Introduction

The massless (gapless) Weyl fermions in the symmetric phase of the standard model (SM) of fundamental
interactions have common topological properties with the Weyl and Dirac fermions in topological semimetals.
The topological stability of the Weyl node in the spectrum of neutrino was first considered in [ 1], see also [2].
Later the topological invariant for the Weyl points was expressed in terms of the fermionic Green’s function [3],
and then the topological approach was extended by Horava to the other types of nodes in the fermionic
spectrum, such as Dirac nodal lines and Fermi surfaces [4]; this topological classification of the possible types of
zeroes in the spectrum was based on the K-theory. Topological classification then has been extended to the other
topological phases of matter—the fully gapped states, such as topological insulators, topological
superconductors and the phase B of superfluid *He, see [5-8].

The systems (vacua) with the Weyl points both in condensed matter and in particle physics have many exotic
properties, such as chiral anomaly. For example, the Adler—Bell-Jackiw equation, which describes the
anomalous production of fermions from vacuum [9—11] has been verified in experiments with skyrmions in the
chiral superfluid *He-A [12], see also [13]. Weyl fermions in semimetals have been considered by Abrikosov and
Beneslavskii in 1970 [14]; for the recent reviews on Weyl fermions in semimetals, superconductors and
superfluids see [15-19].

In the topological classification an important role is played by the symmetry of the vacuum. This also
concerns the symmetric phase of the SM, where both electroweak and chiral symmetries vacuum are not
broken. In this phase due to the equal number of the left-handed and the right-handed particles (if the sterile
neutrino is included), and due to Lorentz invariance, the total topological charge in the Fermi point situated at
p = Oiszero. Therefore, the topology of the Weyl fermions in the SM is to be supported by symmetry’. The
modification of the momentum space topological invariants associated with various elements of the SM gauge
group has been suggested in [13].

7 1tis possible that the Weyl points of the SM originate from the nontrivial topology of the underlying vacuum with Majorana fermions
[20=22].

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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In this paper we consider the complete set of the topological invariants for the Fermi point of the SM
fermions. We demonstrate that the generating functional for those invariants possesses the Zs symmetry, which,
relates the elements of the gauge group giving rise to equivalent topological invariants. This is the same Z
symmetry of the fermionic representations of the SM, which was discussed in [23]. The existence of this Z4
symmetry explains, in particular, why the topological invariant that protects all massless SM fermions may be
expressed through either the hypercharge generator or through one of the generators of the SU (2); subgroup of
the SM gauge group (see section 12.3 of [13]).

Next, we discuss the vacua of the SM (and its extensions) in the phases with broken electroweak symmetry.
These phases represent the topological insulators of different types. First we consider the conditions at which the
parity breaking interactions may be neglected. This in particular requires that the temperature be much smaller
than the masses of the corresponding fermions. Under this limit the topological classes of the SM vacua are
classified according to the topological invariant associated with the matrix of CT symmetry (the combination of
Charge conjugation and Time reversal symmetries), which protects the number of massive Dirac fermions.
Notice that if the interactions are neglected at all, the vacuum of the SM in the massive phases would be
described by the same topology as the fully gapped superfluid *He-B [24]. In superfluid *He-B the topological
invariant is protected by the chiral symmetry of the system. The CT symmetry in the SM plays a similar role.
Presumably, the corresponding topological invariant is relevant for the topological classification of the vacua of
the SM at low enough temperatures (pressure, chemical potential etc).

In addition to the topological invariant protected by CT symmetry there exists the topological invariant
protected by T-symmetry, which is relevant for the consideration of the SM, when the interactions that break CP
(the combination of Charge conjugation and Parity symmetries) are taken into account. This invariant becomes
important when the emphasis is on the consideration of the Higgs sector of the SM. The topologically nontrivial
phase appears, when the Majorana masses of the left-handed neutrinos are present, the number of which is
protected by this topological invariant. We demonstrate that in the noninteracting case of the massive SM Dirac
fermions the value of the symmetry protected topological invariant associated with T'is equal to zero, N, = 0.
Atthe same time in the extensions of the SM with the type I neutrino seesaw the value of the topological
invariant N, (supported by the T-symmetry) is nonzero. Therefore, the phases with and without Majorana
masses of the left-handed neutrinos cannot be continuously connected and are, indeed, the different phases.
However, we obtain that the type I seesaw is topologically trivial and its vacuum may be transformed without the
phase transition to the conventional vacuum of the SM with Dirac neutrino masses.

Depending on the external conditions (temperature, pressure, chemical potentials of various types, etc) the
SM and its extensions may exist in various phases. For example, in addition to the ordinary baryonic phase,
which is realized at the vanishing temperature, pressure and baryonic chemical potential, in QCD there exist
various other phases: several color superconducting phases, the quark—gluon plasma phase, etc [52—55]. The
Weinberg—Salam model is typically considered in the two phases: the symmetric high temperature phase with
the restored chiral symmetry and the broken low temperature phase with the spontaneously broken
SU (2) ® U (1) symmetry. The complete SM (containing Quantum Chromodynamics and the Weinberg—
Salam model) may possess new phases, which have not been considered yet, at certain external conditions.
Various extensions of the SM like the models with Majorana masses of neutrinos, models with several Higgs
bosons, models with composite Higgs bosons may also exist in several exotic phases, which have not been
considered so far. The momentum space topological invariants discussed in this paper may be applied to the
consideration of the phase transitions between the phases of the SM (and its extensions) mentioned above. For
the previous consideration of the topologically nontrivial vacua in relativistic quantum field theories based on
the topological invariants in momentum space see, for example, [4, 13,42-48, 50, 51].

The paper is organized as follows. In section 2 we consider the symmetric phase of the SM with unbroken
chiral and electroweak symmetries as the phase of the topological semimetal. The complete set of the topological
invariants protecting the Weyl points is defined, and the Zs symmetry of the corresponding generating
functional is established. In sections 3 and 4 we discuss the SM at low temperatures, which are smaller than the
mass of the lightest fermion. In section 3 we discuss the situation at the sufficiently small values of pressure and
chemical potentials, so that the parity breaking interactions are to be neglected in the consideration of the
questions of the stability of vacuum. In section 4 we discuss the topological invariant of the SM and its extensions
that remain at work if the parity breaking interactions are taken into account while the CP breaking is neglected.
In particular, it is demonstrated that the vacuum with Dirac fermions is topologically trivial (with respect to the
invariant protected by time reversal symmetry). At the same time, the vacuum with Majorana masses may be
topologically nontrivial.
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2.SM in the symmetric phase as the topological semimetal

2.1. Topological invariant for massless fermions

In its gapless (massless) phase the SM belongs to the class of the 341 dimensional vacua, which are characterized
by the Weyl points in momentum space. The Weyl point is characterized by the momentum space topological
invariant N3, which protects the masslessness of the fermionic spectrum. The topological invariant for the
isolated Weyl point is expressed as the integral of the three-form in terms of the two-point Green’s function G
determined in the 4D momentum-frequency space 3, 13]:

1
No=tr NoN = — e, [ dST G0,67160,G7'G0,,G" )

The Green’s functionisann x nmatrix. For a single species of Weyl fermions one has#n = 2, and the Green’s
function is expressed in terms of the Pauli matrices. For general topological condensed matter system then x n
matrix contains Pauli matrices for spin and for the Bogoliubov spin, and also the crystal band indices of
fermions. In particle physics, the n x nmatrix includes Weyl or Dirac matrices and indices of different
fermionic species (quarks and leptons of different generations). In SM with 16 species in one generation has

n = 32g ,where gis the number of generations. If expressed in terms of Majorana fermions, the matrix has

n = 64g. The definition of the Green’s function in terms of the functional integral over the fields is given in
appendix A. The integral in equation (1) is over the S® surface o embracing the point in the 4D space

p = 0, p, = 0, where p,is the frequency along the imaginary axis; tr is the trace over the fermionic indices. For
asingle species of right-handed Weyl fermions one has N; = 1,and N; = —1 for the left-handed Weyl
fermions.

Itis worth mentioning that the symmetric phase of the SM appears at finite temperatures, while the
topological classification and topological invariants are formally applicable only to the ground state (vacuum) of
the system. Actually the consideration is valid if the temperature T'is much smaller than the characteristic high
energy scale of the system T < T,. Here T, is the scale, at which the SM of fundamental interactions already
does not work, and new fields and interactions appear. In this limit all the properties of the systems related to
topology, such as chiral anomaly, are determined by these topological invariants. Thus in spite of the fact that the
topological invariant Nj is defined typically for the zero temperature, in the SM this invariant appears to be well-
defined at the temperatures above the electroweak transition if those temperatures are smaller than the scale of
the ultraviolet completion of the SM, which is at least one order of magnitude higher than the electroweak scale
~100 GeV.

If sterile right-handed neutrinos are present in the SM, the number of the left- and the right-handed
fermions is equal, nef = n14igne = 8g, where gis the number of generations. This is required, for example, if we
assume that the lattice regularization is used, where the numbers of the left-handed and the right-handed
fermions are equal due to the Nielsen—Ninomiya theorem. Then the trace in equation (1) over all the fermionic
species gives the trivial value for the topological invariant, N3 = ngpe — n1ee = 0. Nevertheless, the vacuum of
the SM is topologically nontrivial, because its topology is supported by the symmetry of the SM in the symmetric
phase. The SU (3) ® SU (2) ® U (1) symmetry allows one to introduce the generating function of topological
invariants, which contains the powers of the hypercharge Y, the generators of SU (2); and SU (3),:

N (By, Oy, 07) = tr [eliMoeilrVeil:Ci] @

(Here W), a = 1, 2, 3 are the generators of SU (2); while C;, i = 1,...,8 are the generators of SU (3),.

2.2. Zs symmetry of the fermionic representations in the SM
Notice that equation (2) obeys the Z4 invariance (see also [25]):

GY N 9Y + 27N, 610"”1/\/” N eu‘)?v)/\/a X el?TN, elé)’CC, N el&’CC, N N (3)

where Nis the integer. This invariance might actually mean that the gauge group of the SM is
SU@3) ® SU(2) ® U(1)/Zgrather than SU (3) ® SU (2) ® U (1) [23]. The given Zs symmetry follows from
the assignment of the hypercharges, weak charges and electric charges Q = Y + W of the fermions given by
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Fermion W Y Q
w@ +1L 2
ur(3) 0 § §
w31 -t
dr(3) 0 —3—<
v +%f% 0
VR 0 0 O
er, f%f%fl
er 0 —1-1 4)

According to this table in the SM including strong interactions the group U (1) x SU (2) x SU (3) has the
global Zg = Z, x Z;-subgroup of elements which act on the SM fermions as an identity element (see equations
(61)—(64) in[2] and [23, 25]). This group consists of the following elements gk:

gk — [eiZTFCBCZﬂ'iyeZ’)TiWﬂk’ k=1,...,6. (5)

where Cg will be specified below in equation (9). Notice that the Zs symmetry of the fermionic representations of
the SM takes place in any phases, not only in the symmetric phase. Its elements of equation (5) being applied to
any fermion of the SM give 1. In the other words, all SM fermions represent the eigenvectors of the elements of
Ze corresponding to the eigenvalues equal to unity.

2.3. Maximal number of Dirac massless fermions protected by the topological invariants
The generators W, C;, Y commute with the fermion Green’s functions taken in the Landau gauge. Therefore,
there is the following global SU (2) ® SU (3) invariance:

el W, UellW W+, e0iCi _, TeibiC+ (6)

where U € SU (2) while I € SU (3). As aresult we can represent equation (2) in the form:

N 8y, Ow, 6., 92) — tr [ei9WW;eieyyei(f;Cs+i(f£C3M %)
where for the left-handed doublets of fermions
_1/1 0
w306 ") ©
while for the colored quarks
1 10 O 1 1 0 O
Cs=—=]01 0] Ci=—|0—-10 ©)
Moo -2 2o o o
The direct calculation gives
N @y, Oy, G, 01) = Zg(“’s%y - C°507W)(ew”6(£“? bty e) + ei‘g"/z) (10)

The particular case of this expression with 6, = 6. = 0 was considered, for example, in [13, 26]. On the level of
the angles Oy, Oy, 0, 0. the Zg symmetry has the form:

Oy — Oy + 27N, Oy — Oy + 27N, 6. — 6. + 27N, 0. — 0. (11)

(Notice that 6y is defined as modulo 4, 6. is defined as modulo 67, while fy is defined as modulo 127.) The
generating function is robust to the deformations of the Green’s function, if those deformations obey the SM
symmetry.

The choice of parameters (fy = 0, yy = 2, 6. = §. = 0) and any other choice related to it by the Zg
transformation of equation (11) gives the maximally possible value of the generating function:

Nuax = N(@y =0, Oy = 27, 0, = 0, 0. = 0) = 16 g. (12)

This value guarantees that all 16¢ fermions of the SM are massless in the symmetric phase. Those maximal values
(12) are formed by the discrete subgroup of the SM symmetry group [27] (that is related by the Z transformation
to the centers of SU (3). and SU (2);):

Nmax =tr [KYA/] = 16g: (13)
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where we may take

Ky = ei[2m (N4 Dlimod 4r W3 1[27N]mod 127V @1[27N Iimod 67 Cs (14)

with any integer N. In particular, for N = 3 we get Ky = e®™¥ while for N = 0 we have Ky = e2™"> Various
operators in equation (14) are related to the Zy transformation.

3.SM atlow temperatures as the topological insulator with C, P, and T symmetries

The topology of the SM vacuum in the massive phase looks similar to that of the ground state of superfluid *He-
B, which in the noninteracting case is described by the integer valued topological invariant [24]

1 _ _ _
Ne= et [k [@p 10,0000, 1010, 1] (15)

Here H(p) = G '(p, = 0) (while G is the Green’s function); the integral is over 3-momentum space; and K is
the proper symmetry operation (it should either commute or anti-commute with 7). For the superfluid *He-B
one has Ny = 2 for K = 7, (the combination of time reversal and particle-hole symmetries [24]). The larger
values of this invariant may be obtained by the extension of the model of *He-B to the multi-component
fermionic models [28].

The expression for equation (15) is formally defined at zero temperature, T = 0. However the effects of the
nontrivial topology on the physical properties of the systems can be measured at finite temperatures. For some
effects the temperatures must be much smaller than the masses of the fermions existing in the given system,

T < m, while for the others the limit 1 /7 (T) < m is enough, where 7 (T) is the characteristic relaxation time.
In the latter case it is not excluded that the topological invariant can be applicable even for T > m. Possibly, the
definition of the topological invariant may be extended even further, but we do not discuss this possibility here.

The smallest Dirac mass in the SM is the mass of electron. The leading term in the temperature corrections to
the corresponding self energy is the one loop expression proportional to the fine structure constant cv. This term
gives rise to the shift of the dispersion of the quasiparticles by the amount of the order of eT [60]. Therefore, the
requirement el < m, gives T < 1 MeV. An even greater restriction comes from the neutrino sector, where the
thermal contribution to mass may be roughly given by the expression ¢gT [61], where gis the SU(2) or U (1)y
coupling constant. Assuming that the neutrino mass is about 1 eV, we arrive at the restriction T < 1 eV. This
condition is satisfied, for example, by the present state of the universe with the temperature of the order
of 107% eV.

The question arises, whether the vacuum of the SM in the massive phase is topologically trivial or not. If yes,
what is the corresponding matrix K for the SM and what is the effect of interactions. The situation here is
completely unclear. First of all, we may consider the approximation to the SM, in which the exchange by the W
and Z bosons as well as the Higgs boson are neglected. Roughly, this may correspond to the description of
processes at the energies much smaller than the electroweak scale ~100 GeV. Then in the SM at zero
temperature T = 0 or at nonzero T'with the proper restrictions such as T < m, where m is the smallest fermion
mass in the phase with the spontaneously broken electroweak symmetry, the Green’s function has the form

1
g(p) = Z(_pZ)—’y"p# my YT (16)
where p? = —p? 4+ w?, while Zand M are matrices. The fermion mass matrix m is given by the solution of
equation
M(—m?) =m
while the Dirac matrices may be chosen according to section 5.4 in [29]:
V=7 N=ino, y=-iYYY=mn (17)

This approximation is reasonable due to the smallness of the fine structure constant and large enough masses of
W, Z, and the SM Higgs boson. Here it is the matrix K = —iy>y? = 7, which commutes with the Green’s
function at w = 0. This is the matrix of the combination of CPT and P transformations® that is at the same time
the combination of Cand T. As a result equation (15) determines the topological invariant. It may be calculated
for the simplest system connected with the given one by a continuous transformation. Assuming that such a
connection exists with the system of noninteracting massive Dirac fermions (that represent the constituents of
the SM), we obtain

The unessential phase factor of this symmetry matrix is chosen in such a way that the expression of equation (15) gives the real value for the
case of the noninteracting Dirac fermions.
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Nx=8g, (18)

where gis the number of generations of the SM fermions. In the notations in [30, 31] the invariant
isv = Ng/2.

Presently the role of the interactions between the fermions is not completely clear. For example, even at zero
temperature the strong SU(3) interactions give rise to the transition between the system of the noninteracting
quarks and the confining QCD. This may (but also may not) give rise to the value of the topological invariant
associated with the CT symmetry that differs from the value calculated above. The answer depends on the
possibility of continuously transforming the two-point fermion Green’s function for the noninteracting massive
fermions to the two-point Green’s function of QCD with the strong interactions taken into account. Various
approximations to QCD may provide different answers to this question. For example, the Nambu—Jona—
Lasinio (NJL) approximation allows one to continuously connect the interacting and noninteracting Green’s
functions. The spectrum of the lightest resonances is described by the NJL model reasonably well. This allows us
to suppose that in the low energy effective theory equation (18) gives the correct answer for the hadronic phase of
the SM.

Formally the parity breaking interactions destroy the consideration of the topological stability based on the
invariant Nk_... In practice, this invariant remains operative because of the smallness of the corrections. But the
topological classification group may be reduced from Z to the smaller group. For example, the electroweak SU
(2) interactions assume that the vacua with the values of Nk, of opposite signs (that correspond to the opposite
values of the masses of all fermions) represent the same physical vacuum. This occurs because during the
electroweak symmetry breaking the opposite values of masses appear as different versions of unitary gauge. In
the complete theory with the SU(2) interactions taken into account those states are related by global gauge
transformation, and therefore, not only are continuously connected but represent the same physical vacuum.
This reduces the topological classification to Z /Z,. The reduction may be more significant if the SM appears as a
low energy approximation to a certain theory with the larger gauge group. For the recent discussion of the
similar modification of the topological stability pattern in topological superconductors due to interactions see
[30-38]. In practice the reduction of the topological classification means that various defects lose their
topological stability. For example, let us consider the QCD sector of the SM with the two quarks (uand d). Let us
also neglect the current masses of the quarks, There is the chiral SU(2) symmetry which is broken spontaneously
in the hadronic phase. As a result the constituent quark masses appear. The positive and negative values of
the masses may appear in this way. One may naively suppose that this should lead to the formation of the
topologically stable domain walls separating the regions with the opposite values of the constituent masses. But
this is actually not so. The opposite values of the masses appear as the arbitrary choice of the sign of the
condensate. Those choices are related to the element of the global chiral symmetry SU(2). We may consider the
version of the theory with the2 x 2 complex-valued condensate field, and in this theory the state with positive
mass is continuously connected by the symmetry transformation with the state with negative mass. (At the
intermediate states the mass is undefined.) This means the reduction Z — Z/Z, of the symmetry classification
and this means that the topologically stable domain walls in the hadronic phase of QCD do not exist. In practice
if such domain walls appear dynamically in the form of bubbles, then they decay with the emission of the
SU(2) x U (1) gauge bosons.

4. Topological invariant protected by T-symmetry

4.1. Version of the SM with majorana masses of left-handed neutrinos

In section 3 we considered the approximation to the SM when parity remains unbroken. The question of the
stability of vacuum was related to the topological invariant protected by CT. Interactions with the SM Higgs
boson and with the W and Z bosons destroy the vacuum stability criteria based on the consideration of this
invariant. Atleast, the interactions in the Higgs sector are strong. Although we may neglect this effect in some
approximation, this is necessary to consider the other topological invariants. In order to consider such invariants
we use the representation of the SM in terms of the Nambu—Gorkov spinors. This allows us to treat the particle—
antiparticle transformation as a matrix. We assume in this section that weak CP breaking interactions do not
affect the stability of vacuum. Therefore, we will use the topological invariant protected by T-symmetry.

In this subsection we consider the version of the SM with the left-handed massive neutrinos. First of all, let us
discuss the situation, when the right-handed neutrinos remain massless, the Dirac masses of neutrinos are
absent, and only the observed left-handed neutrinos are massive. For example, the type Il neutrino seesaw may
lead to such a pattern. Then the following mass term appears:

For the system of the nonintreracting Dirac fermions with masses M, the given topological invariant is given by Ny = >_, signM,.
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L, = —MuvivBep + (he) (19)

(summation over the generations is implied).

Let us consider the situation, when the interacting system may be continuously deformed to the system
without interactions in the lepton sector and with the Majorana masses of the left-handed neutrinos. Let us
introduce the conventional definition of the Nambu—Gorkov spinor: A} = (v, v)" (where 1§ = io%p;).In
terms of this spinor the Lagrangian for one massive noninteracting left-handed neutrino may be written as
follows:

L = Ni(y'p, + MM, (20)
where
N = NTip2y0 (21)
The time reversal transformation reads as:
Ny = M (22)

We choose the unessential phase factor in such a way that in this representation the matrix of the time reversal
transformation is given by

Kr = —in%y° (23)

(The corresponding topological invariant receives the form:

_ Gk 3 -1 -1 -1
Ni = 2 tr[ [ @ K 60,6760, 67160, G ] (24)
with
Gl= g, + M (25)
We obtain:
. €ijk &p o
N:z’trf—05+M11k
Kr 4877'2 [ w=0 (f)z + M2)2 e ( )7’77
1 1
=—|2x4x—=|=1/2 26
sexax3)=v )

If we have g generations of the left-handed neutrinos, the result is to be multiplied by g. As we will see below the
quark sector with Dirac masses does not give the nonzero contribution to Ng,. Therefore, assuming that the SM
vacuum in the given phase is continuously connected with the vacuum of the version of the SM without
interactions between leptons, we obtain the overall value of the invariant

We suppose that this property takes place for the SM at vanishing temperature, pressure and chemical potentials.

4.2. Version of the SM with a type I neutrino seesaw
Let us remind the reader of the basics of the classical type I seesaw [41]. On the basis of Nz = v/, vg)! (where
V5 = io?py) there is the mass matrix

M, = (:1 ]’(}) (28)

The overall mass term is %N 1RM, N1 + (h.c.), where (h.c.) means Hermitian conjugation which implies
Vg, — g and vice versa. The product of the two-component spinors is defined as:

— A B
-/\[LR-/\[LR = NLRNLRfAB

For simplicity we assume that g Dirac masses 1 are equal to each other and ¢ Majorana masses M are also equal.
The diagonalization gives g heavy neutrinos with Majorana masses Mycayy ~ +M and glight neutrinos with
Majorana masses

m
—Miighe & —m i (29)

Notice that the signs of My,,vy and —Mi;gh, are opposite. If we rewrite the mass term through the spinor vy rather
than v/{ , then the sign of the mass becomes positive because

7
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L, = — Miigne [V1 1" (i0?) 1§, — Miighe [Pf 1T (—io?) Df
= Mighe [ 1" (—io?) Dy 4+ Mg [V ] (i0?) v (30)

This results in the trivial value of the corresponding momentum space topological invariant (see below). The
assumptions that the mass of the right-handed neutrinos M is not smaller, than 1 TeV, and that the Dirac
neutrino mass m is of the order of the electron mass 71, allow us to estimate Mg < 0.25 eV.

The topological invariant for the left-handed neutrino was calculated above and is given by equation (27).
Now let us consider the right-handed neutrino. We define Ny = (g, v%)" (where v% = io?7y). In terms of this
spinor the lagrangian for the massive right-handed neutrino may be written as:

L = Ne(y'"p, + M)Nk (31)
Now the time reversal transformation reads as:
Ne — =77’ Nr (32)
which means that in this representation
Kr = iy’ (33)
The topological invariant is given by the same expression of equation (24). It gives:
Ng = —ig 4:?2 tf[ j; i @zi#z)z 7 (+M )WW"] = —g/2 (34)

where gis the number of generations. One can see that the system with the equal number of left-handed and
right-handed neutrinos with Majorana masses of the same sign has the vanishing value of topological invariant.

4.3. Version of the SM with Dirac masses of neutrinos

In this subsection we discuss the case, where Majorana masses are absent, and follow the alternative definition of
the Nambu—Gorkov spinors introduced in [39]. In appendix B we represent the corresponding definition. In
terms of the corresponding Green’s functions the topological invariant for the SM may be written as

€ijk
N =
K7 4sr?

tr[ [ a@px Gapx_G*Gaij*Gaka*]. (35)
w=0

where K is the appropriate symmetry of the system while G is the Green’s function being the vacuum average of
the product of spinors W of equation (43) of appendix B. For the definition of the two sets of gamma-matrices *
and I'? also see the appendix B. First of all let us consider again the case of the P-invariant approximation to the
SM, in which case we may use matrix of CT

K = KCT = iF4F5’yO

then if the Green’s function of the system may be adiabatically deformed to that of the system with free massive
Dirac fermions with the same mass M, then we can substitute into equation (35) the Green’s function of the
form:

G™(p) = iy’ TT?I°[y!p, + My T°T] (36)
This gives
.. 3
Niew = ig N+ D=2 1| [ 9P papsy0p - My )y = g N+ ) ()
4872 w=0 (p* + M?)?

(where N, = 3 is the number of colors) in accordance with the calculation of section 3.

If we take into account interactions that break parity, but neglect the complexness of the elements of
the fermion mixing matrix, then the SM is CP-invariant. In this situation the topological invariant may be
composed using the matrix

Ky = —ilMT20%,0
Let us again suppose that the two-point fermion Green’s function of the SM is continuously connected to that

of the noninteracting theory with all Dirac masses of the fermions equal to each other. In this case our topological
invariant has the form

; €ijk d3p ) N
Ng. = —1g(N: + 1 ! trf — T TARNOFP — M ikl o trT2 =0 (38
" 8 )487r2 [ w=0 (Pp* + M?)? ¥ (p 0 Yy (38)

Thus, one can see that the parity breaking interactions make the SM vacuum with Dirac masses of all fermions
trivial.
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5. Conclusions

In this paper we look at various phases of the SM of fundamental interactions (or its extensions) as at the systems
similar to the topological materials. The symmetric phase (the temperature is above the temperature of the
electroweak transition) represents the topological semimetal with the Fermi point, which is protected by the
topological invariants generated by the functional equation (7). This functional equation depends on the angles
Oy, 0%, 6. Tt hasbeen demonstrated that the Zs symmetry of the fermionic representations of the SM [25]
manifests itself as the symmetry of this functional equation under the corresponding transformation of the
mentioned angles in equation (3). Due to the Zs symmetry the maximal value of the topological invariant
protecting the Fermi point may be constructed either of the hypercharge or of the generator Wi of SU (2);. Itis
given by equation (14). This maximal value is equal to the number of massless SM fermions. This is peculiar,
although the formal definition of these topological invariants was given at zero temperature, this is the phase
with high temperature, where they may be applied. This occurs because in this phase the mass scale disappears,
and the relevant scale parameter is given by the temperature itself. It should be compared to the scale A, at which
the SM transfers to its ultraviolet completion. We suppose that the topological invariants considered here
protecting the Fermi point remain at work at least aslongas T' < A. Notice that such a scale may not be smaller
than 1 TeV.

At the temperatures below the electroweak phase transition the SM (and its extensions) may exist in several
phases, where the fermions are massive. Those phases resemble various phases of topological insulators and are
characterized by the corresponding topological invariants in momentum space. At small enough temperature,
pressure and chemical potentials the parity breaking interactions may be neglected, and the vacuum is
topologically nontrivial being protected by the topological invariant of equation (35) with K given by the matrix
of CT transformation. Our definition of this invariant remains valid at least up to the temperatures much smaller
than the neutrino masses, which are assumed to be of the order of eV. Although the strong interactions of the SM
provide the transition between the system of noninteracting quarks and the quarks confined by the quark—gluon
strings, we may suppose that the two-point quark Green’s function is continuously connected to that of the
noninteracting quarks. At least this occurs in the NJL approximation to the QCD [56], which describes the light
mesons reasonably well. See also the recent lattice data on the quark propagator in [59] and references therein,
which indicate that the functions Z (—p?) and M (—p?) in equation (16) tend to finite nonzero values'’ at
p — 0. Assuming the possibility of such continuous transformation, we come to the value of the topological
invariant that protects the number of massive Dirac fermions.

If we take into account the parity broken interactions, then the topological classification based on the
invariant protected by CT is reduced atleast to Z/Z,. The further reduction is possible if the BSM unified model
has the appropriate extended gauge symmetry. We deal with the topological insulator with T-symmetry if we
neglect weak CP breaking interactions originated from the imaginary parts of the elements of the quark mixing
matrix. Therefore, the stability of vacuum is protected also by the topological invariant of equation (35) with K
given by the matrix of the time reversal transformation. This expression remains operative at least for the
temperatures T < 1 eV. We do not exclude the existence of the extension of its definition to the essentially
higher temperatures. But this is beyond the scope of this paper. It appears that the value of this invariant for the
SM with massive Dirac neutrinos is zero.

At the same time, the version of the SM with Majorana masses of left-handed neutrinos belongs to the
topological class different from that of the SM with Dirac masses of the neutrinos. This means that the
corresponding two systems cannot be connected continuously (at least, if we neglect the CP breaking
interactions). For example, the Majorana masses of the left-handed neutrinos may appear as a result of the type
II seesaw [49]. Considering the case of the type I seesaw, we come to the conclusion that the corresponding
vacuum is topologically equivalent to the Dirac vacuum without Majorana masses, which follows from the
existence of the Majorana masses of the right-handed neutrinos.
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Though one cannot exclude considering these data that the quark function Z (—p?) tends to zeroat p — 0, in which case the singularity
is encountered in the expression for the topological invariants. How to regularize such singularities if they do appear is a difficult questions,
and we omit this question in this paper.
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Appendix A. Green’s functions

We consider the two-point Green’s function G defined in a certain gauge corresponding to the gauge fixing
condition O[A] — min.
Gi(x, ) = [ DIDUDA exp (=S[4, ¥1)
exp { —AO[A] + log App[A]} 0y ()Y (1), (39)

Here the integral is over the fermionic fields of the SM while indices I, ] enumerate the components of 9.
S[A, v [ istheaction of the SM, A is the gauge field, the Faddeev—Popov determinant has the form:

AzIAl = [dgexp{-A0[Ac]) (40)

Here gis the gauge transformation and A ¢ is the transformed gauge field; it is implied that A\ — oo attheend. In
our case the elements P of the gauge group G are unitary matrices. Thatis why [G, P] = 0 means that

PGP = G.
[P*1Gjx )P = [ DIDYDAexp (=S[A, Py}
exp { —AO[A] + log App[A]} Y1 ()X ()
~ [ DubDAexp (~S14, ¥1)
exp {—AO[PFAP] + log App[A]} 1 ()5 (1), (41)
From thelast equation we obtain that [G, P] = 0 for P from the center of G for any given gauge. At the same
time when the functional O [A]is invariant under the global gauge transformations, we also have [G, P] = 0 for

any P € G. The particular case of such a gauge is the Landau gauge: O [A] = f TrA?d*x. In this gaugeany P € G
commutes with the Green function. In the following we assume that this gauge is chosen.

Appendix B. Representation of the SM in terms of Nambu—Gorkov spinors

We adopt the notations proposed in [39]. Left-handed doublets and the right-handed doublets of quarks are
denoted by L and Rg, where a is the generation index while K is the color index. The left-handed doublets and
the right-handed doublets of leptons are £2 and R?, respectively. It will be useful to identify the lepton of each
generation as the fourth component of colored quark. Then L}, = £ and R?, = Rj. So, later we consider the
lepton number as the fourth color in the symmetric expressions. We define the analog of the Nambu—Gorkov

spinor as:
aA 5 aB BA
L4 L R — Ry €pace
ail — | 7 > Raill — >
L ecpe™ 2!

where A is the usual spin index, Uis the Nambu—Gorkov spinindex (U = 1, 2and A = 1, 2),iisthe SU(4)
Pati—Salam color index (the lepton number is the fourth color), a is the generation index, and a, b are the

SU (2);, SU (2)g indices. Both RZ?U and LZ?U for the fixed values of 4, i, and a compose the four-component

Dirac spinors Rf; and L;. These spinors for the fixed value of a have (N 4 1) x N, = 12 components. Both R
and L belong to the fundamental representation of U ((N; + 1) x N,), where N; = 3 is the number of colors,
N, = 3 is the number of generations. Notice that L and L (R and R) are not independent:

Lo = e (L) iv* 7", RY; = €ap (RE)!iy>y™°

Here the gamma-matrices act on the spinor space-time indices and are defined in chiral representation

o_ (01 ;[ 0 o . s (1 0
77(1 0), 7(_01, 0), i=1,2,3, ”*(0—1> (42)

where ¢ is the space-time Pauli matrix.

Next, we arrange the Dirac spinors L3;, R%; in the SO(4) spinor W:

L?;
v = ( ) (43)
Rui

We introduce the Euclidean SO(4) gamma-matrices ['* (in chiral representation). The action of the SM gauge

. i0
fields e’ € U(1)y C SU Q) U® € SU(2), UR = (eo Oie) € SU(2)rand
€
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—if

i0/3
(Qe 0 ) € SU (4)pati-salam C U (12) (where Q € SU (3)) on the given Majorana spinor is:

€
N (V»l e G FS’VS)(U(D 0 )\If“

: 2 T o uw)i

Thus U®), UM realize the representation of O (4) ~ SU (2); ® SU (2)g while Vrealizes the representation of
the subgroup SU(4) of U(12). The action of the element R € U (12) of the latter group on the spinor ¥#

e ab1+1%° 5abl I’ \ ob
1S \Iji i (Rz_] =+ Rl] 2 \I/]

2
Again, ¥and U are not independent:

U7 = (I iy T

The gamma-matrices act on the internal SU (2); and SU (2) spinor indices rather than on the space-time
indices, and are defined in chiral representation

G () e ()

Here 7' are the basis elements of SU (2); r algebra. It is worth mentioning that matrix I'* distinguishes the left-
handed spinors from the right-handed spinors: I'°L = L,and IR = —R. Inappendix C we list various
symmetry operations that act on the spinors in terms of the Nambu—Gorkov spinor W.

The partition function for the SM fermions in the presence of the SM gauge fields and the SM Higgs boson
written in terms of spinor W has the form: Z = f DWelS, Theaction S = S + Sy contains two terms. The first
one is the kinetic term

i =3 a
S == f e (T2 V, T2 (45)

One can check that this term being written in terms of the original SM fermions is reduced to the conventional
SM fermion action (without mass term). Here V, is the covariant derivative that includes the gauge field of the
model. The term Sy contains the interactions with the SM Higgs field. It appears in the form

H= > ¥

K=1,2,3,4

where hX € R. Thus, the Higgs boson appears as the four-component real vector that is transformed under the
actionof O (4) ~ SU (2); ® SU (2)g. The following term would give equal masses to all fermions of the SM:

Sy = % f dix (I STSH?) (46)
Usinglocal SU (2); C O(4) = SU (2) ® SU (2) transformation L;iA — [Uh]abL;,-A we may fix the unitary
gauge, in which
H=HI*% H=v+heR, (47)

(where h is the real-valued field of the 125 GeV Higgs boson while v is the condensate.

In order to obtain different masses for the fermions we need to introduce the matrix of the couplings
between the Higgs field and the fermions. The corresponding term in the Lagrangian may be easily written in
terms of the spinor ¥, but we do not need this expression in our present consideration.

Below we represent the symmetries of space-time spinors in terms of the Nambu—Gorkov spinors
introduced above.

1. CP transformation.
For the usual Dirac spinors 1) the CP transformation is:

Vit 7) — iyt —7)
In the left-right components we have:
= . 5T =
Ui (t, 7) — io%y (t, —7)
and
- . 55T >
wR(t) 7') - _1021/)12 (t) —7’)
In terms of the spinors introduced above we have
L3i(t, ) — —eapy'Lii(t, —7), RGi(t, ) — ey "Ryt —7)

and

11
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Ta(t, 7) — TH02002 (1, —F)

2. Time reversal transformation.
In this paper we follow the definition of the time reversal transformation accepted in [40]. The time reversal
transformation contains complex conjugation, which transforms the spinor ¢/ to its conjugate AT = o*
similar to the C transformation. At the same time the CPT transformation does not contain this
conjugation, and being applied to usual spinors is composed of the multiplication by v° and the inversion of
time and space coordinates. According to the CPT theorem the T-transformation is equal to CP up to the
overall inversion and the change in sign of the right-handed fermions. Therefore, the time reversal
transformation results in

Vi(t, 7) — D500 (—1, 7)

3. P transformation parity
(L, 7) — IO03(t, —7)

4. Charge conjugation
Charge conjugation C = CP x P:

Ui, 7) — D20, 7)

5. CT transformation
U(t, 7) — D008 (—t, 7)
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