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Abstract

In this paper, an effective numerical algorithm is proposed for the first time
to solve the fractional visco-elastic rotating beam in the time domain. On the
basis of fractional derivative Kelvin-Voigt and fractional derivative element con-
stitutive models, the two governing equations of fractional visco-elastic rotating
beams are established. According to the approximation technique of shifted
Chebyshev polynomials, the integer and fractional differential operator matri-
ces of polynomials are derived. By means of the collocation method and matrix
technique, the operator matrices of governing equations can be transformed into
the algebraic equations. In addition, the convergence analysis is performed. In
particular, unlike the existing results, we can get the displacement and the
stress numerical solution of the governing equation directly in the time domain.
Finally, the sensitivity of the algorithm is verified by numerical examples.

Keywords: Fractional visco-elastic rotating beam, Fractional governing
equation, Shifted Chebyshev polynomials, Approximation technique, Operator
matrix, Numerical solution

1. Introduction

Fractional calculus and fractional differential equations have been widely
used in physics, engineering, economics and other research fields [1–5], since
fractional derivative has better memory [6] than integer order one, especially in
the application of visco-elastic polymer materials. The fractional order consti-
tutive model [7–12] can describe material properties more accurately with fewer
parameters, so it is considered to be a good mathematical model to describe the
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dynamic mechanical behavior of visco-elastic materials. There are also many
researches on fractional order visco-elastic beams [13–18].

The complexity of the fractional derivative determines that the numerical
solution of the beam governing equation became more difficult to deal with.
Scholars have used Laplace or Fourier transform to transform the time domain
problem into a frequency domain problem to study the fractional order govern-
ing equation in the frequency domain. For example, Lewandowski et al. [14, 19]
used fractional four-parameter model and fractional Zener model to describe
visco-elastic materials. The virtual work principle and Laplace transform have
been used to derive the motion equations of the considered system in the fre-
quency domain, and then the dynamic characteristics of the visco-elastic beam
have been studied. Kiasat et al. [20] used the Fourier transform to calculate
the unknown coefficient of the dynamic response function to research the free
vibration of isotropic visco-elastic beams and plates on visco-elastic media. The
process of solving the fractional visco-elastic governing equations in the variable
domain was complicated. This has led scholars to solve the analysis in the time
domain.

Methods for solving fractional visco-elastic beams in the time domain include
the finite element method [21, 22], multi-scale method [23], Galerkin method
[24] and the variational iteration method [25] which have been found in the
literature. But so far, the numerical solutions of the displacement and the
stress of fractional visco-elastic rotating beams in time domain has not been
studied.

As an important tool for the in-depth research and development of math-
ematics, function approximation theory has been successfully applied in the
fields of control science and engineering, mechanical engineering, system sci-
ence and so on [26–30]. It is well known that the study of numerical solutions
of fractional visco-elastic beams can be attributed to the problem of solving
fractional differential equations. The solutions of fractional differential equa-
tions mainly include analytical methods, polynomial approximation methods
and other methods. Due to the complex form of fractional derivative, the so-
lution of the fractional order differential equation is intractable to obtain. The
analytical method has tedious numerical calculation and limited to solving some
simple problems. Compared with the former, the polynomial approximation
method of fractional differential equations is particularly significant because
of its fast speed, high efficiency and high precision. Polynomial approxima-
tion methods include Legendre polynomial method [31, 32], Chebyshev wavelet
method [33, 34], Bernoulli wavelet method [35], Bernstein polynomial method
[36, 37] and shifted Chebyshev polynomials (SCPs) method [38]. The SCPs
method can be used to approximate the unknown function on the extended in-
terval, which makes it easier to solve the fractional differential equations with
different physical mechanisms governing and historical background [39–42].

Rotating beams has been widely used in helicopter rotors, wind turbine
blades, propellers and various rotating mechanical structures. The study of the
vibration characteristics of the rotating beams [43–46] has been an important
basis for the design of the rotating beam machinery. Based on this, in this paper,
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we use the fractional derivative element (FDE) and the fractional derivative
Kelvin-Voigt (FDKV) constitutive models. Polymers Poly(ether ether ketone)
(PEEK) rotating beam and High-density polyethylene (HDPE) [47] rotating
beam are studied by SCPs method. The SCPs algorithm is solved directly
in the time domain, the process is simple, and the numerical solutions of the
displacement and the stress of the fractional visco-elastic rotating beam can be
obtained.

This paper is structured as follows, in Section 2, some preliminaries including
the basic definition of fractional differential operators, the fractional visco-elastic
constitutive models and the properties of SCPs are described. In Section 3, the
SCPs solving algorithm is described. In Section 4, FDE model and FDKV model
are used to establish two governing equations of visco-elastic rotating beam.
The convergence analysis is performed in Section 5. In Section 6, the numerical
results of the displacement and the stress of the visco-elastic rotating beams are
obtained and discussed to show the advantages of the proposed approach. The
research work in this paper is concluded in Section 7.

2. Preliminaries and notations

Some basic definitions and properties of the fractional order calculus are
provided in this section.

2.1. The basic definition of fractional differential operator

Definition 1. [48] The Caputo definition of fractional differential operator

(cDαf) of order α is given by�

(cDαf)(t) =

 1
Γ(m−α)

∫ t

0
f(m)(τ)

(t−τ)α−m+1 dτ, α > 0,m− 1 ≤ α < m,

dmf(t)
dtm , α = m.

(1)

for the Caputo derivative, we have�

cDαtχ =

{
0, for χ ∈ N0 and χ < α,

Γ(χ+1)
Γ(χ+1−α)

tχ−α, for χ ∈ N0 and χ ≥ α or χ /∈ N0 and χ > α.
(2)

It has following two basic properities for m− 1 ≤ α < m and f ∈ L1[a, b]:

(cDαcIαf)(t) = f(t) (3)

and

(cIαcDαf)(t) = f(t)−
∑m−1

k=0
f (k)(0+)

(t− a)
k

k!
, t > 0 (4)
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2.2. Properties of the SCPs
SCPs are considered as useful tools to solve the fractional equation in the

physical problems. The well-known Chebyshev polynomials satisfy the following
term recurrence relation:

Ti+1(t) = 2tTi(t)− Ti−1(t), i = 1, 2, ... (5)

where T0(t) = 1, T1(t) = t. t is defined on the interval [−1, 1] and i = 1, 2, · · ·.
On the interval [0, L], where L is a non-negative real number, the SCPs are

defined by the change of variable t = 2x
L − 1. Let the SCPs Ti(

2x
L − 1) denote

by Gi(x), which can be obtained as follows:

Gi+1(x) = 2(
2x

L
− 1)Gi(x)−Gi−1(x), i = 1, 2, ... (6)

where G0(x) = 1, G1(x) = 2x
L − 1. The analytic form of Gi(x) of i-degree is

given by:

Gi(x) = i

i∑
k=0

(−1)
i−k (i+ k − 1)!22k

(i− k)!(2k)!Lk
xk, i = 1, 2, ... (7)

where Gi(0) = (−1)i and Gi(L) = 1. The orthogonally condition is∫ L

0

Gj(x)Gk(x)ωL(x)dx = hk, (8)

where ωL(x) =
1√

Lx−x2
and hk =

{
bk
2 π, k = j,
0, k ̸= j,

b0 = 2, bk = 1, k ≥ 1.

The operational matrix is defined by:

Φn(x) = [G0(x), G1(x), · · · , Gn(x)]
T (9)

The following equation can be obtained:

Φn(x) = AnZn(x) (10)

where Zn(x) =
[
1, x, x2, · · · , xn

]T
, and An is the SCPs coefficient matrix given

as follows:

An =


P0,0 0 · · · 0
P1,0 P1,1 · · · 0

...
... . . . ...

Pn,0 Pn,1 · · · Pn,n

 , (11)

where  P0,0 = 1,
Pi,j = 2( 2

LPi−1,j−1 − Pi−1,j)− Pi−2,j ,
Pi,j = 0, for i < j or i < 0 or j < 0.
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Obviously, An is full rank and reversible.

2.3. Visco-elastic constitutive and fractional derivative models
The general form of a one-dimensional generalized fractional constitutive

equation describing the stress-strain relationship of a visco-elastic material is:
n∑

κ=0

µκ
dpκσ(t)

dtpκ
=

n∑
κ=0

ηκ
dqκε(t)

dtqκ
(12)

where dκ/dtκ uses the Caputo type fractional differential definition, σ is the
stress, ε is the strain, µκ, ηκ are the material constants. κ is a positive inte-
ger. And pκ, qκ are real numbers corresponding to fractional order of the time
derivative.

When pκ, qκ = 0, the constitutive equation becomes ideal elastic behaviour
law or Hooke’s law. When pκ = 0, qκ = 1, the constitutive equation becomes
ideal viscous behaviour law or Newton’s law. When 0 < qκ < 1, the constitutive
equation could be used to describe the physical behaviour of a visco-elastic
material. In the current visco-elastic constitutive fractional derivative models,
the first order derivatives d/dt are replaced by the fractional derivatives dqκ/dtqκ
with 0 < qκ < 1.

(a) (b)

Fig. 1. Schematic representation of visco-elastic model: (a) the FDE model; (b) the FDKV
model.

The simplest fractional model of visco-elastic media is the FDE model [47]
as shown in Fig. 1(a), which has the following form of stress-strain relationship�

σ(t) = η
dαε(t)

dtα
(13)

By replacing the elastic and viscous elements of the classical linear viscoelas-
tic model with fractional elements, two fractional elements arranged in parallel
can obtained as shown in Fig. 1(b), which is the FDKV model [47]. And its
constitutive equation as follows:

σ(t) = η1
dβε(t)

dtβ
+ η2

dγε(t)

dtγ
(14)

where η1, η2 are the material dependent constants, and 0 < β, γ < 1.
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3. Numerical algorithm

3.1. Approximation of function
For arbitrary continuous function ω(x, t) ∈ L2([0, L] × [0, T ]), it can be

expanded as the following formula:

ω(x, t) =

∞∑
i=0

∞∑
j=0

ωijGi(x)Gj(t) (15)

where ωij =
1

hihj

∫ L

0

∫ T

0
ω(x, t)Gi(x)Gj(t)ωL(x)ωT (t)dtdx, i, j = 0, 1, 2, · · ·.

If we consider truncated series in Eq. (15), then it can rewritten as:

ω(x, t) ≈
n∑

i=0

n∑
j=0

ωijGi(x)Gj(t) = ΦT
n (x)UΦn(t) (16)

where Φn(x) = [G0(x), G1(x), · · · , Gn(x)]
T , Φn(t) = [G0(t), G1(t), · · · , Gn(t)]

T ,
U = {uij}n,ni,j=0.

3.2. SCPs differential operator matrix
3.2.1. First order differential operator matrix of SCPs

Definition 2. If there is matrix P
(1)
x , satisfying d

dxΦn(x) = P
(1)
x Φn(x), then

P
(1)
x is called the first order differential operator matrix of SCPs.

By calculating the first order derivative of Φn(x), d
dxΦn(x) can expressed as:

d

dx
Φn(x) = (AXZn(x))

′
= AXZ ′

n(x)

= AX


1′

x′

...
(xn)

′

 = AX


0
1
...

nxn−1

 = AXV(n+1)×nZ
∗
n(x)

(17)

and

V(n+1)×n =


0 0 · · · 0
1 0 · · · 0
0 2 · · · 0
...

... . . . 0
0 0 · · · n

 , Z∗
n(x) =


1
x
...

xn−2

xn−1

 (18)

By using Eq. (10), Z∗
n(x) is obtained as:

Z∗
n(x) = B∗

XΦn(x) (19)
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where B∗
X =

[
A−1

X, [1], A−1
X, [2], · · · , A−1

X, [n]

]T
.

According to Eq. (16), Eq. (19) can rewritten as:

d

dx
Φn(x) = AXV(n+1)×nB

∗
XΦn(x) (20)

where P
(1)
x = AXV(n+1)×nB

∗
X is a first order differential operator matrix of the

SCPs. Substituting Eq. (11), Eq. (17) and matrix B∗
X into P

(1)
x :

P (1)
x = [λ0, λ1, · · · , λi, · · · , λn]

T , i = 0, 1, · · · , n (21)

where λi =
i∑

j=1

jPijA
−1
x, [j].

Now, using Eq. (16) and Eq. (20), we get:

∂ω(x, t)

∂x
≈ ∂(ΦT

n (x)UΦn(t))

∂x

= ΦT
n (x)(P

(1)
x )TUΦn(t)

= ΦT
n (x)(AXV(n+1)×nB

∗
X)TUΦn(t)

(22)

Furthermore, the higher-order differential operator matrices derived from
SCPs by mathematical induction have the following form:

dn

dxn
Φn(x) =

(
P (1)
x

)n
Φn(x) (23)

3.2.2. Fractional order differential operator matrix of the SCPs

Definition 3. If there is matrix P β
t (t), satisfying cDβ

t Φn(t) = P β
t (t)Φn(t), then

P β
t (t) is called fractional order differential operator matrix of SCPs.

By taking the fractional derivative of Φn(t), we obtain:

cDβ
t ω(x, t) ≈

cDβ
t

(
ΦT

n (x)UΦn(t)
)

= ΦT
n (x)UcDβ

t Φn(t)

= ΦT
n (x)U

[
0, · · · ,

Γ (β + 1)

Γ (β + 1− β)
tβ−β , · · · ,

Γ (i+ 1)

Γ (i+ 1− β)
ti−β , · · ·

]T
= ΦT

n (x)UATV β
(n+1)×(n+1)

A−1
T Φn(t)

(24)
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where i = β, β + 1, · · · , n, P β
t (t) = ATV

β
(n+1)×(n+1)A

−1
T , and

V β
(n+1)×(n+1) =



0 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · Γ(β+1)t−β

Γ(β+1−β)
· · · 0 · · · 0

...
...

...
. . .

...
...

...
0 · · · 0 · · · Γ(i+1)t−β

Γ(i+1−β)
· · · 0

...
...

...
...

...
. . .

...
0 · · · 0 · · · 0 · · · Γ(m+1)t−β

Γ(m+1−β)


(25)

The fractional order differential operator matrix P β
t (t) is

P β
t (t) =



0 · · · 0 · · · 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 · · · 0 · · · 0
Sβ (β, 0) · · · Sβ (β, β) · · · 0 · · · 0

...
...

...
. . .

...
...

...
Sβ (i, 0) · · · Sβ (i, β) · · · Sβ (i, i) · · · 0

...
...

...
...

...
. . .

...
Sβ (n, 0) · · · Sβ (n, β) · · · Sβ (n, i) · · · Sβ (n, n)


(26)

4. Establishment and solution of government equations for visco-
elastic rotating beam

4.1. Beam governing equation under the FDKV model
A visco-elastic rotating beam is considered in this study. A distributed load

is applied on the vertical direction of the beam. The beam is made of a visco-
elastic material. The bending deformation occurs on the beam in the vertical
direction, as shown in Fig. 2, in which ω(x, t) is the beam deflection, f(x, t) is
the distributed load, Ω is the speed and l is the length of the beam.

For visco-elastic beams, the stress and strain satisfy the two-dimensional
FDKV model can be expressed as:

σ(x, t) = η1
cDβ

t ε(x, t) + η2
cDγ

t ε(x, t) (27)

where ε(x, t) is the transverse strain, η1, η2, β, γ are parameters of visco-elastic
material, cDβ

t ,
cDγ

t use the Caputo type fractional differential definition.
The relation between the strain and the displacement can be expressed as:

ε(x, t) = z
∂2ω(x, t)

∂x2
(28)

where x and z represent the axial and transverse coordinates.
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Fig. 2. The bending deformation of the visco-elastic rotating beam under distributed load.

The bending moment M(x, t) of the beam is written as:

M(x, t) =

∫
A

zσ(x, t)dz (29)

where σ(x, t) is the normal stress on the cross-section.
Using Eq. (27), the beam bending moment M(x, t) is equal to:

M(x, t) = η1I
cDβ

t

∂2ω(x, t)

∂x2
+ η2I

cDγ
t

∂2ω(x, t)

∂x2
(30)

where I is the moment of inertia of the section given by
∫
A
z2dA.

The potential energy of the rotating beam is

U =
1

2

∫ L

0

M(x, t)
∂2ω(x, t)

∂x2
dx+

1

2

∫ L

0

Tx
∂2ω(x, t)

∂x2
dx (31)

Rotating centrifugal force Tx can be expressed as:

Tx = ρAΩ2x (32)

Kinetic energy is

T =
1

2

∫ L

0

ρA
∂2ω(x, t)

∂t2
dx (33)

The beam is subjected to a load of f(x, t), according to the Hamiltonian
principle, we obtain that

δ

∫ t2

t1

(T − U)dt+

∫ t2

t1

δWdt = 0 (34)

where the work done by the external load W = 1
2
∫ l

0
f(x, t)ω(x, t)dx.
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The governing equation of the visco-elastic rotating beam under the FDKV
constitutive model is obtained:

ρA
∂2ω(x, t)

∂t2
+η1I

CDβ
t

∂4ω(x, t)

∂x4
+η2I

CDγ
t

∂4ω(x, t)

∂x4
−ρAΩ2x

∂2ω(x, t)

∂x2
= f(x, t) (35)

4.2. Beam governing equation under the FDE model
The stress and strain satisfy the FDE constitutive model is proposed:

σ(x, t) = ηcDα
t ε(x, t) (36)

According to Eq. (36), the beam bending moment M(x, t) can be rewritten
as:

M(x, t) = ηIcDα
t

∂2ω(x, t)

∂x2
(37)

where I is the moment of inertia of the section given by
∫
A
z2dA.

The governing equation of the visco-elastic rotating beam under the FDKV
constitutive model is obtained as follows:

ρA
∂2ω(x, t)

∂t2
+ ηIcDα

t

∂4ω(x, t)

∂x4
− ρAΩ2x

∂2ω(x, t)

∂x2
= f(x, t) (38)

4.3. The solution of governing equation based on SCPs
Based on integer order differential operator matrix of SCPs in the Section

3.2.1, the following equations can be obtained:

∂2ω(x, t)

∂x2
≈ ∂2(ΦT

n (x)UΦn(t))

∂x2

= ΦT
n (x)((P

(1)
x )T )2UΦn(t)

= ΦT
n (x)((AXV(n+1)×nB

∗
X)T )2UΦn(t)

(39)

∂4ω(x, t)

∂x4
≈ ∂4(ΦT

n (x)UΦn(t))

∂x4

= ΦT
n (x)((P

(1)
x )T )4UΦn(t)

= ΦT
n (x)((AXV(n+1)×nB

∗
X)T )4UΦn(t)

(40)

∂2ω(x, t)

∂t2
≈ ∂2(ΦT

n (x)UΦn(t))

∂t2

= ΦT
n (x)U(P

(1)
t )2Φn(t)

= ΦT
n (x)U(ATV(n+1)×nB

∗
T )

2Φn(t)

(41)

By the fractional order differential operator matrix of SCPs in the Section
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3.2.2, the following equations can be obtained:

cDβ
t

∂4ω(x, t)

∂x4
≈ cDβ

t Φ
T
n (x)

(
(AXV(n+1)×nB

∗
X)

T
)4

UΦn(t)

= ΦT
n (x)

(
(AXV(n+1)×nB

∗
X)

T
)4

U cDβ
t Φn(t)

= ΦT
n (x)

(
(AXV(n+1)×nB

∗
X)

T
)4

UATP
β
t (t)A

−1
T Φn(t)

(42)

Similarly,

cDγ
t

∂4ω(x, t)

∂x4
≈ cDγ

t Φ
T
n (x)

(
(AXV(n+1)×nB

∗
X)

T
)4

UΦn(t)

= ΦT
n (x)

(
(AXV(n+1)×nB

∗
X)

T
)4

U cDγ
t Φn(t)

= ΦT
n (x)

(
(AXV(n+1)×nB

∗
X)

T
)4

UATP
γ
t (t)A

−1
T Φn(t)

(43)

where P γ
t (t) is obtained by replacing β with γ in Eq. (26).

The gverning equation Eq. (35) can be rewritten into the operator matrix
form as follows:

ρAΦT
n (x)U

(
P

(1)
t

)2
Φn(t) + η1IΦ

T
n (x)

(
(P

(1)
x )

T
)4

UPβ
t (t)Φn(t)

+η2IΦ
T
n (x)

(
(P

(1)
x )

T
)4

UP γ
t (t)Φn(t)− ρAΩ2xΦT

n (x)

(
(P

(1)
x )

T
)2

UΦn(t) = f(x, t)

(44)

Specifically, Eq. (44) can be written as:

ρAΦT
n (x)U

(
ATV(n+1)×nB

∗
T

)2
Φn(t) + η1IΦ

T
n (x)

(
(AXV(n+1)×nB

∗
X)T

)4
UAT×

V β
(n+1)×(n+1)

A−1
T Φn(t) + η2IΦ

T
n (x)

(
(AXV(n+1)×nB

∗
X)T

)4
UAT×

V γ
(n+1)×(n+1)

A−1
T Φn(t)− ρAΩ2x

(
(AXV(n+1)×nB

∗
X)T

)2
UΦn(t) = f(x, t)

(45)

Similarly, the governing equation Eq. (38) can be rewritten into the operator
matrix form as follows:

ρAΦT
n (x)U

(
P

(1)
t

)2
Φn(t) + ηIΦT

n (x)

(
(P

(1)
t )

T
)4

UPα
t (t)Φn(t)

−ρAΩ2xΦT
n (x)

(
(P

(1)
x )

T
)2

UΦn(t) = f(x, t)

(46)

The Eq. (46) can be written as:

ρAΦT
n (x)U

(
ATV(n+1)×nB

∗
T

)2
Φn(t) + ηIΦT

n (x)
(
(AXV(n+1)×nB

∗
X)T

)4
UAT×

V α
(n+1)×(n+1)A

−1
T Φn(t) − ρAΩ2x

(
(AXV(n+1)×nB

∗
X)T

)2
UΦn(t) = f(x, t)

(47)
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where Pα
t (t) is obtained by replacing β with α in Eq. (26).

Based on the collocation method, the reasonable match points xi =
2i−1

2(n+1)L,

i = 0, 1, 2, · · · , n, ti =
2j−1

2(n+1)T, j = 0, 1, 2, · · · , n have been used to dis-
cretize the variable (x, t) to (xi, tj). Eq. (35) and Eq. (38) are transformed into
a set of algebraic equations. The coefficient ωi,j (i = 1, 2, · · · , n; j = 1, 2, · · · , n)
is determinate by using Matlab platform and least square method. The numer-
ical solution of the fractional derivative equations can be obtained.

5. Convergence analysis

In this section, for any function, the norm is defined as

∥ω (x, t)∥ = sup
(x,t)∈Λ

|ω (x, t)| (48)

Theorem 1. Suppose ω (x, t) ∈ C3 (Λ), ω (x, t) is the exact solution of the

fractional governing equation, ωn (x, t) is the numerical solution. Then the

error bound is

∥en (x, t)∥ = ∥ω (x, t)− ωn (x, t)∥ ≤ Nh3 = O
(
h3
)

(49)

Proof 1. Let

en,ij (x, t) =

 ω (x, t)− ωn (x, t)

0

(x, t) ∈ Λn

(x, t) ∈ Λ− Λn

(50)

where Λn = { (x, t)| ih ≤ x < (i+ 2)h, jh ≤ t < (j + 2)h, i, j = 0, 2, · · · , n− 2}.

ωn(x, t) is the quadratic polynomial interpolation function on ω(x, t) on Λn.

Then,

en,ij (x, t) =
1

6

∂3ω (ξ1,i, t)

∂x3

i+2∏
i′=i

(x− xi′) +
1

6

∂3ω (x, ζ1,j)

∂t3

j+2∏
j′=j

(t− tj′)

− 1

36

∂6ω (ξ2,i, ζ2,j)

∂x3∂t3

i+2∏
i′=i

(x− xi′)

j+2∏
j′=j

(t− tj′)

(51)

where x, ξ1,i, ξ2,i ∈ [xi, xi+2), and t, ζ1,j , ζ2,j ∈ [tj , tj+2), i, j = 0, 2, · · · , n− 2.
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So,

∥en,ij (x, t)∥ =
1

6

∥∥∥∥∂3ω (ξ1,i, t)

∂x3

∥∥∥∥
∥∥∥∥∥
i+2∏
i′=i

(x− xi′)

∥∥∥∥∥
+

1

6

∥∥∥∥∂3ω (x, ζ1,j)

∂t3

∥∥∥∥
∥∥∥∥∥∥
j+2∏
j′=j

(t− tj′)

∥∥∥∥∥∥
+

1

36

∥∥∥∥∂6ω (ξ2,i, ζ2,j)

∂x3∂t3

∥∥∥∥
∥∥∥∥∥
i+2∏
i′=i

(x− xi′)

∥∥∥∥∥
∥∥∥∥∥∥
j+2∏
j′=j

(t− tj′)

∥∥∥∥∥∥

(52)

where
∥∥∥∥i+2∏
i′=i

(x− xi′)

∥∥∥∥ = sup
x∈[xi,xi+2)

∣∣∣∣i+2∏
i′=i

(x− xi′)

∣∣∣∣.
According to |

i+2∏
i′=i

(x− xi′)| is the maximum value of x = (i+ 1−
√
3
3 )h, we

can get:

∥∥∥∥∥
i+2∏
i′=i

(x− xi′)

∥∥∥∥∥ ≤ 2
√
3h3

9
,∀x ∈ [xi, xi+2) (53)

∥∥∥∥∥∥
j+2∏
j′=j

(t− tj′)

∥∥∥∥∥∥ ≤ 2
√
3h3

9
,∀t ∈ [tj , tj+2) (54)

Substituting Eq. (53) and Eq. (54) into Eq. (52), we can get:

∥en (x, t)∥ ≤
√
3h3

27

(∥∥∥∥∂3ω (x, t)

∂x3

∥∥∥∥+ ∥∥∥∥∂3ω (x, t)

∂t3

∥∥∥∥+ √
3h3

27

∥∥∥∥∂6ω (x, t)

∂x3∂t3

∥∥∥∥
)

= Nh3 = O
(
h3
) (55)

In summary, the theorem is proved.

6. Numerical analysis

Based on HDPE, PEEK and rock creep experimental data, Xu et al. [47]
used the interior point method to solve the corresponding nonlinear optimization
constraint problem. The best simulation parameters of FDE model, fractional
Maxwell model, FDKV model and fractional Poynting-Thomson model were

13



obtained. This paper uses HDPE and PEEK to have the best simulation pa-
rameters [47] of the FDE model and the parameters of HDPE in the FDKV
model as Tab. 1 and Tab. 2.

Table 1 The best simulation parameters of HDPE and PEEK under FDE constitutive model.

Material β γ η1 η2

HDPE 0.3320 0.1088 2.874 × 105Pa 1.558 × 105Pa

Table 2 The best simulation parameters of HDPE under FDKV constitutive model.

Material α η

HDPE 0.1603 3.341 × 105Pa
PEEK 0.2341 5.50 × 106Pa

Let the beam length l = 2.5m and the cross-section area A = 0.04m2.
Moment of inertia I = (0.2)4

12 . Based on SCPs method, the numerical solutions
of the displacement of the visco-elastic rotating beams under the FDE model
and the FDKV model are solved. Assuming that the visco-elastic beam is a
cantilever beam, the boundary conditions and initial conditions are

ω(0, t) = ∂ω(0,t)
∂x = 0

∂2ω(l,t)
∂x2 = ∂3ω(l,t)

∂x3 = 0

ω(x, 0) = 0, ∂ω(x,0)
∂t = 0

(56)

6.1. Numerical solutions of HDPE beam under FDKV model
In this section, the displacements of HDPE rotating beam under different

loads under FDKV model are discussed. When Ω = 0, there is no rotational
force. Fig. 3 shows the displacements of the non-rotating beam under different
uniform loads, simple harmonic loads and linear loads when t = 0.5s. Fig. 4
shows the displacements of HDPE rotating beam under different uniform loads,
simple harmonic loads and linear loads when rotating speed Ω = π/2.
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Fig. 3. Displacements of HDPE non-rotating beams under different external loads: (a)
Uniform loads; (b) Simple harmonic loads; (c) Linear loads.
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Fig. 4. Displacements of HDPE rotating beam at Ω = π
2

under different external loads: (a)
Uniform loads; (b) Simple harmonic loads; (c) Linear loads.

From Fig. 3, we can get that the displacements of the HDPE non-rotating
beam gradually increases with time under the loads. At the same position, as the
load increases, the displacement gradually increases. And the same conclusions
can also be obtained by means of Fig. 4. In [49], a Fourier series is constructed
and supplemented by a boundary smoothing term to express the displacement
of the rotating beam. The governing equation of Ref.[49] can be considered as
the governing Eq. (38) when α is fraction. Fig. 3 and Fig. 4 are similar to
the results of Ref.[49]. Compared with Ref.[49], the numerical result is verified
to be correct. In addition, we can clearly see that the displacements of HDPE
beam changes with the rotation speed.
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Fig. 5. Displacements of HDPE rotating beam under external load f(x, t) = 10Heaviside(t)
at different rotational speeds: (a) Ω = π

2
; (b) Ω = π.

Fig. 5 shows the numerical solutions of the displacement of the HDPE
rotating beam at rotating speeds of Ω = π

2 , Ω = π under the external load
f(x, t) = 10Heaviside(t). It can be seen from the image that the proposed
algorithm has a good simulation effect to solve such problems, and the feasibility
of the algorithm is verified.

However, in the case of slight deformation, the transverse strain of the neu-
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tral surface can be expressed as:

ε =
∂2ω(x, t)

∂x2
(57)

According to Eq. (27), the stress can be obtained:

σ(x, t) = η1
cDβ

t

∂2ω(x, t)

∂x2
+ η2

cDγ
t

∂2ω(x, t)

∂x2
(58)
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Fig. 6. The stress of HDPE rotating beam at Ω = π
2

under different external loads: (a)
Uniform load f(x, t) = 10Heaviside(t); (b) Simple harmonic load f(x, t) = 10πsin(t); (c)
Linear load f(x, t) = 10 + 2x.

Fig. 6 shows the stress of the HDPE rotating beam at the different external
loads when the rotational speed Ω = π

2 . Through the images, we can clearly see
that the closer to the fixed end of the beam, the greater the stress. Therefore,
the stronger the resistance to external force deformation near x = 0, the smaller
the displacement. This is consistent with the change in the displacement map
above. The accuracy and feasibility of the algorithm are further verified.

6.2. Comparison HDPE beams and PEEK beams
The displacement solutions of HDPE beam and PEEK beam under different

loads of the FDE constitutive model are discussed and compared in this section.

0 0.5 1 1.5 2 2.5
x/m

-0.05

0

0.05

0.1

0.15

0.2

D
ef

le
ct

io
n 
ω

(x
)/

m

t=0.4 HDPE
t=0.4 PEEK
t=0.7 HDPE
t=0.7 PEEK
t=0.9 HDPE
t=0.9 PEEK

(a)

0 0.5 1 1.5 2 2.5
x/m

-0.05

0

0.05

0.1

0.15

D
ef

le
ct

io
n 
ω

(x
)/

m

t=0.4 HDPE
t=0.4 PEEK
t=0.7 HDPE
t=0.7 PEEK
t=0.9 HDPE
t=0.9 PEEK

(b)

0 0.5 1 1.5 2 2.5
x/m

-0.05

0

0.05

0.1

0.15

0.2

0.25

D
ef

le
ct

io
n 
ω

(x
)/

m

t=0.4 HDPE
t=0.4 PEEK
t=0.7 HDPE
t=0.7 PEEK
t=0.9 HDPE
t=0.9 PEEK

(c)

Fig. 7. Comparison of displacements between HDPE non-rotating beam and PEEK non-
rotating beam under different external loads: (a) Uniform load f(x, t) = 10Heaviside(t); (b)
Simple harmonic load f(x, t) = 10πsin(t); (c) Linear load f(x, t) = 10 + 2x.
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Fig. 8. Comparison of displacements between HDPE rotating beam and PEEK rotating
beam at Ω = π

2
under different external loads: (a) Uniform load f(x, t) = 10Heaviside(t);

(b) Simple harmonic load f(x, t) = 10πsin(t); (c) Linear load f(x, t) = 10 + 2x.

Obviously, as can be seen from Fig. 7 and Fig. 8, the displacement of the
PEEK beam is less than the displacement of the HDPE beam when the rota-
tional speed and the external load are constant. The smaller the displacement,
the greater the damping of the corresponding visco-elastic material and the
better the bending resistance. Therefore, the PEEK beam have better bending
resistance than the HDPE beam. The results obtained are consistent with the
actual material properties. The proposed algorithm calculates the displacement
solution well and has high precision. Thus, this method can provide a theoreti-
cal basis for the research, development and performance prediction of damping
materials.

7. Conclusion

In this paper, an effective numerical algorithm for solving fractional visco-
elastic rotating beam based on SCPs is proposed for the first time in the time do-
main. The displacements of visco-elastic beam can reflect the positional changes
of beam at different times. The fractional derivative model is used to analyze
the inherent laws of the dynamic performance of visco-elastic damping mate-
rials, which can provide a theoretical basis for the research, development and
performance prediction of damping materials.

1. Two governing equations of fractional visco-elastic rotating beam are es-
tablished by FDE and FDKV constitutive models, the dynamic equation
of beam and strain-displacement relationship.

2. According to the properties of SCPs, the integer and fractional differential
operator matrices of polynomials are derived. Using the polynomial to ap-
proximate the unknown function, the fractional order governing equation
is rewritten into the form of matrix product. The variables are discretized
based on the collocation method, and the original problem is transformed
into an algebraic equation system. The numerical solutions of the govern-
ing equations can be obtained directly in the time domain.

3. Numerical examples show the displacement and stress changes of HDPE
rotating beam under uniform load, harmonic load and linear load un-
der FDKV constitutive model, and further verify the effectiveness and
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feasibility of the algorithm. By comparing the displacement of different
viscoelastic beams, HDPE rotating beam and PEEK rotating beam, the
properties of materials are analyzed theoretically.
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