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Abstract

The recently discovered conserved quantity associated with Kepler rescaling is generalised by an

extension of Noether’s theorem which involves the classical action integral as an additional term.

For a free particle the familiar Schroedinger-dilations are recovered. A general pattern arises for

homogeneous potentials. The associated conserved quantity allows us to derive the virial theorem.

The relation to the Bargmann framework is explained and illustrated by exact plane gravitational

waves.
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I. INTRODUCTION

A Noether symmetry is a mapping (q, t)→ (q′, t′) which leaves the Lagrangian L invariant

up to a surface term,

L
(
q′,

dq′

dt′
, t′
)dt′
dt
→ L

(
q,
dq

dt
, t
)

+
df(q, t)

dt
. (I.1)

Then the consequences are twofold:

1. The classical Hamiltonian action

∫ t

0

Ldt changes by a path-independent term, implying

that the variational equations remain invariant and thus a symmetry carries a motion

into another motion.

2. Noether’s theorem associates a conserved quantity to each continuous group of sym-

metries.

A classical “counter-example” when one, but not both consequences hold is provided by

the rescaling of position and time in Kepler the problem :

t→ λ3 t , q → λ2 q , λ = const. (I.2a)

δt→ 3(δλ) t , δq → 2(δλ) q , δλ = const. , (I.2b)
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which takes planetary trajectories into planetary trajectories, whereas the Lagrangian

changes by a constant factor,

LKepler =
m

2

(
dq

dt

)2

+
GmM�
|q|

→ λ−2 LKepler . (I.3)

The rescaling (I.2) is therefore not a symmetry for the Keplerian system in the above sense

and therefore no Noetherian conserved quantity is expected to arise ; textbooks call it

a “similarity” [1]. It came therefore as a surprise that the Kepler problem does have a

conserved quantity associated with (I.2) – which is however of a nonconventional form,

involving also the classical Hamiltonian action [2],

QKepler = m
d

dt
(q2)− 3tE − S(t) , S(t) =

∫ t

0

LKepler dτ , (I.4)

where the integration is along the classical trajectory in 3-space.

This novel conserved quantity which seems to have escaped attention until recently was

obtained in [2] in a remarkably indirect way : the Kepler problem was first “E-D” (Eisenhart-

Duval) lifted to a 5-dimensional “Bargmann” manifold [3–5]. See sec.IV for details.

The aim of this paper is to generalise this type of quantity by extending Noether’s theorem

first within the framework of analytical mechanics. Applications include, besides planetary

motion, homogeneous potentials.

The relation to the Bargmann framework is explained in sec. IV. Particular attention is

devoted to exact plane gravitational waves which correspond to time-dependent anisotropic

oscillators [6].

II. A GENERALIZED NOETHER THEOREM

Let us assume that we have a dynamical system with generalized coordinates qi, i =

1, . . . , n and a Lagrangian L = L(q, q̇, t) and consider a 1-parameter family of transforma-

tions q → q′(t′) , t→ t′, obeying

L
(
q′,

dq′

dt′
, t′
)dt′
dt

= ΛL
(
q,
dq

dt
, t
)

+
df(q, t)

dt
(II.1)

where Λ is some constant and f an arbitrary (differentiable) function. Then the associated

Lagrange equations are invariant. Anticipating the terminology of Duval et al [7] discussed

in sec. IV such transformations will be called Chrono-Projective.
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Then, proceeding in the standard way allows us to deduce from (II.1) the identity

d

dt

(
∂L

∂q̇i
δqi −

(∂L
∂q̇i

q̇i − L
)
δt− δf

)
+
(∂L
∂qi
− d

dt

(∂L
∂q̇i

))(
δqi − q̇iδt

)
− (δΛ)L = 0 . (II.2)

This relation is converted into a conservation law as follows. One solves the Lagrange

equations of motion on some interval 0 ≤ τ ≤ t with the “initial” [in fact final] conditions

qi(t) = qi and q̇i(t) = q̇i. Then the Hamiltonian action calculated along the trajectory,

S =

∫ t

0

L(q(τ), q̇(τ), τ) dτ , (II.3)

becomes a function of the end points qi, q̇i and t ; moreover, dS/dt = L . Inserting the

Hamiltonian and using the Lagrange equations, eqn. (II.2) allows us deduce the conserved

charge,

Q =
∂L

∂q̇i
δqi −Hδt− δf − (δΛ)

∫ t

0

Ldτ . (II.4)

Putting here (I.2b) and δf = 0 yields, for example, the Kepler charge (I.4).

More generally, let’s assume that (II.1) is satisfied (with f = 0 for simplicity) and consider

the Kepler-type rescaling

q′i = λaqi ≈ qi + a qi δλ , (II.5a)

t′ = λbt ≈ t+ b t δλ , (II.5b)

Λ = λc ≈ 1 + c δλ . (II.5c)

where a, b, c are to be determined. (≈ means to first order).

Let us assume that the Lagrangian is of the form L = gij q̇iq̇j−V (q), where for simplicity

we took gij a symmetric constant matrix. This Lagrangian(times dt) scales under (II.5a)-

(II.5b) as

Ldt→ λ2a−b
[
gij q̇iq̇j − λ−2a+2bV (λaq)

]
dt . (II.6)

Let us first turn off the potential, V (q) ≡ 0, i.e., L = Lfree = 1
2
q̇2 . Then (II.6) says

that Lfree → λ2a−bLfree . The generalized symmetry condition (II.1) is thus satisfied with

Λ = λc i.e. if c = 2a − b . For any choice of a and b (II.4) associates a conserved charge,

namely

Q = a 2gij q̇
iqj − btH − c

∫ t

0

Ldτ , c = 2a− b. (II.7)
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But Hfree = Lfree and therefore b drops out, and the last two terms combine into a single

one :

Qfree = a(q̇ · q − q̇2t) = aq̇ ·
(
q − q̇t

)
, (II.8)

where we recognise the scalar product of the (separately conserved) momentum with the

center of mass. (II.8) quantity is actually the conserved quantity associated with Schrödinger

dilations [5, 6, 10, 11], Qfree = D = (q̇ · q − 2tHfree) , traditionally obtained when time is

dilated twice as much as space, i.e., b = 2a.

In the free case, this is the end of the story. Let us now restore the potential, V . The

overall scaling Λ is already determined by the kinetic term then (II.1) requires,

λ−2(a−b)V (λa q) = V (q) . (II.9)

For homogeneous potentials, V (µq) = µkV (q), the symmetry condition requires

(−2 + k)a+ 2b = 0 ⇒ c = a
(
1 +

k

2

)
. (II.10)

The integral term contributes whenever k 6= −2 ; the value of (II.7) is Q = 2a gijq
i(0)q̇j(0) .

When a 6= 0 z = b/a is the dynamical exponent [13, 14]) ; then a = 1 can be chosen and

the integral in (II.7) has coefficient c = 2− z.

1. For free motion k = 0, a = b = c, the terms combine, and we get (II.8).

2. For the inverse-square potential V ∝ |q|−2 eqn. (II.10) requires c = 0 i.e. z = 2 and

the Schrödinger scaling [10–12] is recovered.

3. For the Newtonian potential V ∝ |q|−1 we have k = −1 and then get the Kepler

scaling, z = 3/2, cf. (I.2b) ; the integral term does not drop out from the Kepler

charge (I.4) [2].

4. For the constant force k = 1 ; the scaling is

t→ λ t, q → λ2q, S → λ3S . (II.11)

It is amusing to figure that we climb, with Galilei, to the top of the Pisa Leaning

Tower and drop a stone from q(0) = 0. The conserved charge is

QGal = 2 q(t) · q̇(t)− 3

∫ t

0

LGaldτ , LGal =
1

2
q̇2 − q ⇒ QGal = 0 . (II.12)
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5. For a harmonic oscillator k = 2 ; (II.10) implies b = 0, i.e., pure position-rescaling.

Qosc = q(t)·q̇(t)−2

∫ t

0

Loscdτ, Losc =
1

2
q̇2− 1

2
ω2q2 ⇒ Qosc = qi(0)q̇i(0) . (II.13)

Let us study the oscillator case in some detail. After a full period t = T = 2π/ω we are

back where we started from, so the first term in (II.13) vanishes. Therefore

1

T

∫ T

0

1

2
q̇2dt =

1

T

∫ T

0

1

2
ω2q2dt , (II.14)

i.e., the average over a period of the kinetic energy equals to the average of the potential

energy – which is the virial theorem for an oscillator.

The virial theorem can actually be generalized to any k along the same lines. For the

standard Lagrangian/Hamiltonian L = K − V resp. H = K + V the associated conserved

quantity (II.7) can be written as

Q = a qi(t) q̇i(t)− 2a

∫ t

0

Kdτ + 2(a− b)
∫ t

0

V dτ , (II.15)

whose conservation implies for a periodic motion with period T

< K > =
1

T

∫ T

0

Kdτ =
k

2

1

T

∫ T

0

V dτ =
k

2
< V > . (II.16)

We conclude this section by presenting an alternative point of view related to shape invari-

ance. Let us assume that our Lagrangian L̃ depends on an additional parameter µ. Let a

transformation q′ = q′(q, t) and t′ = t′(q, t) be completed by µ′ = µ′(µ) and assume that

we have, instead of (II.1),

L̃
(
q′,

dq′

dt′
, t′, µ′

)dt′
dt

= L̃
(
q,
dq

dt
, t, µ

)
+
df(q, t)

dt
. (II.17)

Proceeding as before, we find the modified identity

d

dt

(
∂L̃

∂q̇i
δqi −

(∂L̃
∂q̇i

q̇i − L̃
)
δt− δf

)
+
(∂L̃
∂qi
− d

dt

(∂L̃
∂q̇i

))(
δqi − q̇iδt

)
+
∂L̃

∂µ
δµ = 0 , (II.18)

which yields a “partial conservation law” for the usual conserved charge Q̃,

Q̃ =
∂L̃

∂q̇i
δqi −Hδt− δf,

dQ̃

dt
+
∂L̃

∂µ
δµ = 0 . (II.19)

Choose in particular L̃ = µL, where L is assumed to satisfy (II.1) with Λ = 1 under the

rescaling (II.5). The Lagrangians L and L̃ yield, for each fixed value of µ, identical equations

of motion. Our clue is that supplementing (II.5) with

µ′ = λ−cµ , (II.20)
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the modified Lagrangian L̃ becomes invariant. Moreover, (∂L̃/∂µ)δµ = cµL̃δλ = d
dt

∫ t

L̃dτ

and therefore, putting µ = 1, (II.19) allows us to recover the modified conserved quantity

(II.4) as Q = Q̃− (∂L̃/∂µ).

III. HAMILTONIAN FRAMEWORK

In the Lagrangian framework, the Noether theorem applies to point transformations

only. However it can also be reformulated in the Hamiltonian framework, leading to con-

served charges generated by canonical symmetry transformations. The usual relation defin-

ing canonical transformations can be generalized in fact to include the scale factor Λ as

follows. The action integral becomes, after a Legendre transformation,∫ [
p′iq̇
′
i −H ′(q′,p′, t)

]
dt =

∫ [
Λ
(
piq̇i −H(q,p, t)

)
− dΦ

dt

]
dt . (III.1)

Putting Ψ(q,p′) = Φ + q′ip
′
i, this can be rewritten as∫ [
− q′iṗ′i −H ′

]
dt =

∫ [
Λ (piq̇i −H)− dΨ

dt

]
dt , (III.2)

which yields

pi =
1

Λ

∂Ψ(q,p′, t)

∂qi
, (III.3a)

q′i =
∂Ψ(q,p′, t)

∂p′i
, (III.3b)

H ′ = ΛH +
∂Ψ(q,p′, t)

∂t
. (III.3c)

The identity transformation is generated by the function Ψ0 = qip
′
i and Λ = 1. Therefore

the infinitesimal transformation is obtained by putting Λ = 1 + δΛ and

Ψ(q,p′, t) = Ψ0(q,p
′) + δG(q,p′, t) = Ψ0(q,p

′) + δG(q,p, t) (III.4)

where in we replaced p′ by p because δG is already infinitesimal. Then our eqns yield

δpi = p′i − pi = δΛ pi −
∂ (δG)

∂qi
, (III.5a)

δqi = q′i − qi =
∂ (δG)

∂pi
, (III.5b)

H ′ = H + δΛH +
∂ (δG)

∂t
. (III.5c)
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A canonical transformation is a symmetry if the Hamiltonian equations are form-invariant,

H ′(q′,p′, t) = H(q′,p′, t) . Expanding to the first order and using (III.5) one finds,

{
δG,H

}
+
∂(δG)

∂t
+ δΛ

(
H − pi

∂H

∂pi

)
= 0 i.e.,

d

dt

(
δG− δΛ

∫ t

0

Ldτ

)
= 0 (III.6)

which is the generalized Noether charge.

For a point transformation we get, for δf = 0,

δ G =
∂L

∂q̇i
δqi −Hδt = piδqi −Hδt . (III.7)

In the Lagrangian framework time and space transformations can be combined. However

time is fixed in the Hamiltonian one, and so in order to include time-variable transformations,

we have to replace δqi, δpi by

δHqk =
{
qk, δG

}
= δqk − q̇kδt

δHpk =
{
pk, δG

}
= −pi

∂(δqi)

∂qk
− ṗkδt

(III.8)

i.e., for point transformations, qk and pk are corrected by a time shift. But in the Hamiltonian

framework Noether’s theorem is more general : δG can have a more complicated form, and

generate canonical transformations which can not be derived from point transformations.

We note that for the scaling transformations (II.5) the generator δG in (III.4)-(III.5)

could be expressed in terms of the initial conditions as δG = aqi(0)q̇i(0)δλ.

IV. CHRONO-PROJECTIVE SYMMETRIES AND GRAVITATIONAL WAVES

A convenient way to study non-relativistic conformal symmetries is to use the

“Bargmann” framework [4, 5] : one lifts the non-relativistic dynamics in (d, 1) dimensions

to a (d + 2) dimensional manifold M endowed with a Lorentz metric gµν and a covariantly

constant null vector ξ, referred to as a Bargmann space [4, 5]. The original non-relativistic

motions are projections of null geodesics lying “upstairs”, i.e., in Bargmann space. For

motion in a potential V (q, t) the appropriate metric resp. “vertical vector” are

gµνdx
µdxν = dq2 + 2dtds− 2V dt2 and ξ = ∂s . (IV.1)
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The vertical vector ξ generates and isometry, whose conserved momentum associated with

the Killing vector ∂s upstairs, Ps is the physical mass “downstairs” i.e., in 2D non-relativistic

spacetime.

The remarkable fact recognized already by Eisenhart [3] is that the null lift of a non-

relativistic motion (we call the Eisenhart-Duval (E-D) lift) is,

(
qi(t), t, s0 − S(t)

)
where S(t) =

∫ t

0

Lcl(q(τ), τ, )dτ (IV.2)

i.e., the “vertical” coordinate, s is essentially i.e. up to a constant minus the classical

Hamiltonian action calculated along the trajectory. It is precisely this rule (IV.2) which

guarantees that the lift is null, as shown by evaluating (IV.1) for a tangent vector.

Conformal transformations of (M, gµν) take null-geodesics into null-geodesics; however

such a transformation generated by a vector field Y projects to a symmetry for the non-

relativistic dynamics “downstairs” only if it satisfies the additional condition

LY ξ = 0. (IV.3)

For the Minkowski metric written in light-cone coordinates, for example, (IV.1) with V = 0,

the conformal algebra is o(d + 1, 2) and those vectorfields which satisfy (IV.3) span the

centrally extended Schrödinger group [4, 5]. Schrödinger dilations are, in particular, identical

to Qfree in (II.8).

The Kepler rescaling (I.2) can be lifted to Bargmann space [with V = −GM�/|q|], as

t→ λ3t, q → λ2, s→ λs infinitesimally Y = 3t∂t + 2q · ∂q + s∂s , (IV.4)

becoming there a conformal transformation; the scaling of the coordinate s is dictated

precisely by this requirement [2, 6, 9].

However (IV.4) does not satisfy (IV.3) : LY ξ = −δλ ξ. Transformations of the Bargmann

space such that LY ξ is parallel to ξ,

LY ξ = ψ ξ (IV.5)

for some (necessarily constant) ψ are in fact the lifts of chrono-projective transformations,

originally introduced in terms of the Newton-Cartan structure “downstairs [7, 8]. These same

condition was also considered, independently, by Hall et al [15] in their study of conformal

transformations for gravitational waves.
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Conformal transformations are symmetries for null geodesics upstairs and generate there,

through Noether’s theorem, conserved quantities – but the associated conserved charge may

not project to ordinary space-time as well-defined quantities. However, when the additional

“Chrono-projective” condition (IV.5) is satisfied, then they fail to project by just a little: it

is enough to subtract a constant term proportional to the initial value s0 to get a perfectly

well-defined conserved quantity for the projected dynamics [2, 6]. This is what happens for

(I.2) : eqn. (IV.2) implies that

QKepler = QKepler −ms0 where QKepler = −3tE + 2mq · q̇ +ms (IV.6)

consistently with (I.4).

1-dim oscillator. An even simpler illustration is provided by a 1-d harmonic oscillator. Its 3d

Bargmann space has the metric is ds2 = dq2− 2dtds− ω2q2dt2 and ξ = ∂s. The space-alone

rescaling lifts to 3d Bargmann space as the homothety,

t→ t, q → λ q, s→ λ2s (IV.7)

and generates there a chrono-projective symmetry for null geodesics [2, 5, 6, 8], as shown

on Fig.1. The associated conserved quantity is (II.13).

Let us consider two motions q1(t) and q2(t) which start from the same initial position

q1(0) = 0 = q2(0) but with different initial velocities, q̇2(0) = λq̇1(0). The space-alone

rescaling q → λ q, t→ t takes q1(t) into q2(t). Both motions return to their initial position

after a half period (since the latter is independent of the initial conditions, as purportedly

observed by Galilei in the Pisa cathedral).

V. GRAVITATIONAL WAVES AND OSCILLATORS

Let us now consider the exact gravitational plane wave studied by Brinkmann [16],

gµνdx
µdxν = dq2 + 2dtds+Kij(t)q

iqjdt2 , (V.1a)

Kij(t)q
iqj =

1

2
A+(t)

(
(q1)2 − (q2)2

)
+A×(t) q1q2 , (V.1b)

where A+ and A× are the + and × polarization-state amplitudes. A simple example is given

by the t-independent linearly polarized gravitational wave [17] with A+ = 2Ω2, Ω = const.
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FIG. 1: The Eisenhart-Duval lifts to 3d Bargmann space of two motions of a 1d harmonic oscillator.

Projected to the (q, t) plane [which is here vertical] we get the familiar sinus curves related by

position-alone scaling by λ. The Hamiltonian actions calculated along the trajectories, shown in

the (S , t) [here horizontal] plane oscillate with double frequency and are scaled by λ2. The E-D lift

of the scaling [in green], (IV.7), the homothety carries the lifted curves into each other.

and A× = 0, i.e.,

gµνdx
µdxν = dq2 + 2dtds− Ω2

(
(q1)2 − (q2)2

)
dt2 . (V.2)

Viewed as a Bargmann space, this metric describes an attractive oscillator in the q1 coor-

dinate combined with a repulsive (inverted) one in the q2 sector ; t corresponds to non-

relativistic time (as anticipated). The motion is governed by the geodesic Lagrangian

1

2

(
(q̇1)2 + (q̇2)2

)
+ ṫV̇ − 1

2
Ω2
(

(q1)2 − (q2)2
)

(V.3)

where the dot denotes derivation w.r.t. an affine parameter. For a particle initially at rest

(e.g. with initial conditions q1(0) = q2(0) = 1 q̇1(0) = q̇2(0) = 0) the trajectory is, q1(t) = cos Ωt

q2(t) = cosh Ωt
s(t) = s0 +

Ω

4

(
sin 2Ωt− sinh 2Ωt

)
, (V.4)
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shown on fig.2. Then the homothety (IV.7) [6, 18, 19] generated by

Yhom = qi∂i + 2s∂s , (V.5)

is a chrono-projective transformation [8] of the metric (V.2),

LYhomg = 2χg, LYhomξ = −2χξ . (V.6)

The associated conserved charge is

FIG. 2: The Brdička metric (V.2) provides us with the Bargmann description of a particle moving in

a saddle potential. The trajectory combines oscillation in the attractive q1 sector with exponentially

escaping motion in the repulsive q2 and s sectors. The trajectories are carried into each other by

the homothety (V.5).

Qhom = Q− 2s0 = q(t) · q̇(t)− 2S(t), (V.7a)

S(t) =

∫ t

0

Losc(q(τ), q̇(τ))dτ , Losc =
1

2
q̇2 − 1

2
Ω2
(
(q1)1 − (q2)2

)
. (V.7b)

Evaluating the integral, Qhom = (q · q̇)(0) = 0.

We remark that changing the relative sign from minus to plus in (V.2),

Kij(t)q
iqj =

1

2
Ω2
(

(q1)2 + (q2)2
)
, Ω = const. (V.8)
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would yield instead the Bargmann description of a time independent isotropic harmonic os-

cillator 1. The familiar elliptic trajectories in the transverse plane lift to 4D Bargmann space

as null geodesics ; the ξ-preserving isometries span the centrally extended Newton-Hooke

group, whose ξ-preserving conformal extension spans a group isomorphic to the Schrödinger

group, etc. Here we just mention that the homothety (V.5) acts as a chrono-projective sym-

metry. The associated Noether charge is still Qhom = qiPi + 2sPs, yielding the projected

conserved quantity (V.7a)

Qosc = qiPi − 2

∫ t

0

Loscdτ = q(0) · q̇(0) (V.9)

with the isotropic oscillator Lagrangian Losc = 1
2
q̇2− 1

2
Ω2q2. Fig.3 should be compared with

the Kepler figure in [2].

FIG. 3: Motion of a 2d oscillator unfolded to 4D Bargmann space [and dropping the non-relativistic

time coordinate]. The homothety (V.5) carries lifted oscillator-ellipses to lifted oscillator-ellipses.

VI. DISCUSSION

In this paper we extended Noether’s theorem to more general symmetry transformations

which include also rescalings. Our results confirm the conserved charge found recently [2]

for the Kepler problem; for a free particle we recover Schrödinger dilations [10, 11]. For

1 (V.8) is only a pp wave, not a vacuum solution of the Einstein equations [5, 16].
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homogeneous potential (which include free fall and a harmonic oscillator) we get a new

charge, whose conservation allows us we rederive the virial theorem. Further applications

(namely to gravitational plane waves) will be presented elsewhere [6].

Compared with the usual Noether theorem, our new charge (II.4) has has an extra term,

in fact the classical action, which can be calculated only after the equations of motion had

been solved. The new conservation law has nevertheless useful applications, as demonstrated

by its use to prove the virial theorem and to derive Kepler’s Third law [2].

Further applications and generalizations are discussed in [6] where it is argued that a

similar conserved quantity arises for exact plane waves, and behaves as a symmetry for null

geodesics motion [20–22]. The extension to massive geodesics is considered in [23].

We just mention that Maxwell’s electromagnetic Lagrangian under duality transforma-

tions would provide a field-theoretical example with helicity as associated conserved quantity.

After our paper was first posted to arXiv, our attention was called to earlier investigations

[24, 25]. The closest to our approach is that van Kampen [24], who uses also a Lagrangian

framework ; his equation # (5) is in fact our eqn. (II.1). He could have [but did not] obtain

our new charge (II.4) by integrating his unnumbered equation after his # (5) on p.237.

Nachtergaele et al. [25] studied canonical transformations in the Hamiltonian framework

in symplectic space, and applied them to Toda chains.

Both of these papers focus on the virial theorem related to the Kepler rescaling ; no

additional conserved quantity was found, though.

We also came across [26] which uses Lie transformations and would also allow to derive our

new charge (II.4). Our approach here is based instead on chrono-projective transformations

[7, 8] in the context of E-D lifts to Bargmann manifolds, which are gravitational wave

spacetimes [3–5]. Also ref. [27] discusses similar issues.

Acknowledgments

We are indebted to Gary Gibbons for advice and Bruno Nachtergaele for correspondance.

ME thanks the Denis Poisson Institute of Orléans - Tours University for a post-doctoral
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