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Main points

1. Wigner transform in compact momentum space

2. Derivative expansion applied to the Wigner transform
of the two - point Green function ==>

J = [top.invariant in momentum space]x[field strength]

3. AQHE in 2+1 D, 3+1 D topological insulators, and in 3+1
D Weyl semimetals

4. equilibrium static bulk CME does not exist because the
corresponding top. Invariant=0



Hall effect is the appearance of electric current in the direction orthogonal to the
external magnetic field and external electric field.

Qauntum Hall effect is the quantized Hall effect

J=N/2pi E

Anomalous Quantum Hall (AQHE) effect is the appearance of quantized current
orthogonal to electric field without any external magnetic field (experimentally
discovered in 2D materials).



AQHE Hall effect is the appearance of electric current in the direction orthogonal to the
external electric field.

selected direction

J=M /4pi*2 E

Weyl semimetals

M = [distance between the Weyl points in momentum space]

Topological insulators

M = const/a = integer x [vector of inverse lattice]



Chiral Magnetic Effect (CME) is the appearance of electric current in the
direction of the external magnetic field in the presence of chiral chemical
potential

J=M/2pi"2H M=mu 5?7

Pre — history: the existence of chiral magnetic effect was proposed in

A. Vilenkin, Equilibrium parity-violating current in a
magnetic field, Phys. Rev. D 22, 3080 (1980).

This proposition was later repeated in

K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Chiral
magnetic effect, Phys. Rev. D 78, 074033 (2008).

and in the sequence of the other papers



Chiral Magnetic Effect (CME) is the appearance of electric current in the direction
of the external magnetic field in the presence of chiral chemical potential

H

T

Later the existance of the equilibrium bulk static CME was questioned.

S.N. Valgushev, M. Puhr, and P. V. Buividovich, Chiral
magnetic effect in finite-size samples of panty-breaking
Weyl semimetals, arXiv:1512.01405.

P. V. Buividovich, M. Puhr, and S.N. Valgushev, Chiral
magnetic conductivity in an interacting lattice model of
parity-breaking Weyl semimetal, Phys. Rev. B 92, 205122
(2015).

P. V. Buividovich, Spontaneous chiral symmetry breaking
and the chiral magnetic effect for interacting Dirac fermions
with chiral imbalance, Phys. Rev. D 90, 125025 (2014).
P. V. Buividovich, Anomalous transport with overlap fer-
mions, Nucl. Phys. A925, 218 (2014).



Chiral Magnetic Effect (CME) is the appearance of electric current in the direction
of the external magnetic field in the presence of chiral chemical potential

H

T

Later the existance of the equilibrium static bulk CME was questioned.

Weyl semimetals M. Vazifeh and M. Franz, Electromagnetic Response of
Weyl Semimetals, Phys. Rev. Lett. 111, 027201 (2013).

Analysis based on the attempt to apply Bloch theorem

N. Yamamoto, Generalized Bloch theorem and chiral trans-
port phenomena, Phys. Rev. D 92, 085011 (2015).



different versions of CME

2) nonequilibrium CME in Dirac semimetals in the presence
of both magnetic and electric fields

the chiral anomaly produces chiral Imbalance

this production requires energy taken from the job
performed by the electic field.

This assumes existence of electric current j

JE = energy created while pumping the pairs from vacuum =>
J~¥BA2E?



different versions of CME

2) nonequilibrium CME in Dirac semimetals in the presence
of emergent magnetic field (say, due to the dislocations)

the chiral anomaly produces chiral Imbalance

this production requires energy taken from the job
performed by the electic field.

This assumes existence of electric current j

JE = energy created while pumping the pairs from vacuum =>
J~7



different versions of CME

H~rotl E~-dl/dt

T

3) CME in He3-A, where mu_5~ | (v_n-v_s)

The applied technique for the calculation of the CME current
does not work here because :

- the problem is not equilibrium

- the gauge field is emergent rather than real
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different forms of CME

4) Quark —gluon plasma : nonequilibrium CME contributions
to the kinetic equations in the presence of the chiral
imbalance?

Chiral imbalance that is described by chiral density rather
than the chiral chemical potential ?



different forms of CME

4) QCD: contribution to electric conductivity in the presence of magnetic field

P. V. Buividovich, M. N. Chernodub, D.E. Kharzeev, T.
Kalaydzhyan, E.V. Luschevskaya, and M.1. Polikarpov,
Magnetic-Field-Induced Insulator-Conductor Transition

SU(2) Quenched Lattice Gauge Theory, Phys. Rev. Lett.
105, 132001 (2010).



We considered lattice models with both massive and massless fermions that describe
lattice regularized quantum field theory or the insulators and Dirac semimetals
whose excitations are described by massive/massless Dirac action (in solid state

physics).
T

J=M_4/2pi*2H M_4=0aslongas mu_5 is nonzero
Chiral imbalance is described by the appearance of the chiral chemical potential

Green function (without external magnetic field) is:

G(p) = ( > Y*ar(p) + iv*y us — im(p)) -
k

There is no equilibrium static bulk CME



We work with the wide class of lattice models

example

Wilson fermions Z = /D@DlIJ e}{p( — Ef(rm)(—mrn,rmﬂ’(rn))
1 | | -

Dyy = D) Z[(l + ) 0xre, gy 4 (1 — 1) 0 e, yeiAx—eiv] + (m®) 4+ 4)6,,

The lattice:

.

Fermions are attached to sites (points).
Gauge field is attached to links that connect sites.



the model defined in momentum space:

:/D@Dkllexp(— N (T/lpq’(l))gl(p)q’(l)))

coordinates are discrete ==> momentum space is compact
(electrons in solids and lattice regularized QFT)

In coordinate space U(r) = / P ipry,
M

W (p)

/D\I'Dllie}{p qu r, [ (—id,) U (r )]r_rn)

Example: Wilson fermions (=simple model of top.insulator)

= (St i p>)‘1

gr(p) =sinpg, m(p) =m® + Z (1 — cospg)
a=1,2,3,4



How to introduce the gauge field

In momentum space: A g .
P O =g '(p—A(id,))
Piy---Pin ==> % Zpermutations(ﬁil o Ah)“'(f}in o A%n)

7 = /D@D@exp(—/ﬁ/{ %‘T’(P)Q(iap,p)@(p))

For Wilson fermions the equivalence is exact. For the other
models it is up to the irrelevant terms ~a*2 x field strength

Gauge field appears as the pseudo — differential operator
INn momentum space.



Wigner transformation in coordinate space

Two point G(rl,rz):%/D'@D'l”i'(rz}'l'(rl}
Green function xexp(_ / d”rliJ(r)Q(r,l’i)llJ(r))

Q(rlv_far,)c(rlvrz) = 8P)(r; —ry)

Wigner transformation:  é®.p) = / dPre P G(R +1/2.R —1/2)
Weyl symbol of operator

=Wigner transform of matrix =~ <®.P)= f it e O R )
element x O(x, —id)8(R + r/2 — x).

F. A. Berezin and M. A. Shubin, in Colloguia Mathematica

Societatis Janos Bolyai (North-Holland, Amsterdam, 1972),
p. 21.

Robert G. Littlejohn, The semiclassical evolution of wave
packets, Phys. Rep. 138, 193 (1986).



Wigner transformation in coordinate space

G(r,,r,) :%/DII'DIIHI'(rZ)lI'(rI)
Two point o
Green function . ‘“P(‘ / d”"‘l'(")Q(‘“ﬁ)‘I'(”)
Q(ry, —id;,)G(ry.1p) = 8P)(r; — 1)

Wigner transformation: G(R.p) / dPre=®G(R + /2R —r/2)
Groenewold equation 1 = Q(R.p)*G(R,p)
Weyl symbol of operator

If Q(r,p) =G "(p—A(idp)) ==>Q(r,p) = G '(p — A(r)) + O([0: 4;]°)

For Wilson fermions the relation is exact



Wigner transformation in momentum space

1 _ _
Two point G(p1,p2) = E/DLDD\D U(p2)¥(p1)
Green function iPp_ .

exp( = | T VP20 p)V ()
Wigner transformation:

% i iPR ;
M|
In coordinate space:  G(R.p)= > ¢ PG(R+r/2.R—r/2)
G(I‘l,rg) = %/D\IJDLP @(rg)lﬂ(rl)
1 -
e};p( ~3 Z [\IJ(rn) [g_l(—ac)r
—AE)U()| o+ (he))



Wigner transformation in momentum space

1 _ _
Two point G(p1,p2) = E/D‘I’D‘I’ U(p2)¥(p1)
Green function dPp A
exp( = | T VP20 p)V ()
Wigner transformation:
~ dDP 1PR
G(R,p) = ™© Clp+ P& p—P[2)
= Q(R.p)«G(R,p)
Groenewold equatlon/' O(R. p)ci! I 72T (R, p)

Weyl symbol of operator
YISy P Q(R.p) / dPKdPPePR5(p —P/2 — K)

Wigner transform of
matrix element

/ d°XdPYF(X.Y)Q(=idy+i0x.X/2+Y/2)h(X.Y)

x Q(iog. K)é(p + P/2 — K).

_ /dDXdDYf(x, Y)Oidy + idy. X/2+Y/2)h(X.Y)



Wigner transformation in momentum space

1 _
Two point G(p1,p2) = E/D‘I’D‘I“P(pz)‘l’(pl)

Green function N (_ (p_p@( (600 )8 ))
. | < p ‘M‘ p Prp p
Wigner transformation:

. d"P pgr
Groenewold equation 1 = Q(R.p)*G(R,p

Weyl symbol of operator
If O(r,p) =G '(p—A(idp)) ==>Q(r,p) =G ' (p — A(r)) + O([0:4;]*)

For Wilson fermions the relation is exact



Solution of Groenewold equation

Weak I = Q(R,p)*xG(R,p)
external gauge field = QO(R, p)eé(gﬁgp_gpgﬁ) Z(R.p)
GR.p) = GOR.p)+GYR,p)+ ..
# d[@(o)}_lﬂ_ a[@(oq— #
GO = —%G(D) 0 G 5 G Ay (R)
with

GOMR,p) =G(p - A(R))

Response of electric current to the gauge field

: 0

dPp ~ ae
*(R) = / TFrC(R. p)— |G R,

\
(2m)P




Response of current to the gauge field strength A - A +4A

D

slog7 =~ [ D¥DVe(~ [ LU0 p¥w) [ TPV 50600 )] ¥ip)

s A
- _/ |MIT Tr [5@(3’6;.111:-1)}@(131?132)

P1=p2=p

A —tPR“
dlogZ = -— Z/ |MITTI 5@(331:—10 . p—I—P/‘))]
—zPRGRp}‘

— = Z /M |M|Tr 5Q(R p+P/9)]

e”"G(R, p)
Response of electric C%genL {0 the gal(J)ge field 1
-k _ (0) N
FR) = /M i1 TERp) 5 [GOR.p)
V\

Slog Z =Y p_p. i*(R)SAL(R)|V| (27)P



Response of electric current to the gauge field

FR) = JOFR)+DFR) + .
= |
700 (R
Pp 9|GO(R.p)]
iOFR) = Tr GO (R,
MR = [ ST EO®Rp)
with
. | (-
J(l)k(R) = PEJkIMﬂAij(R)E
M, = /Trygd4p
3+1D
B 0 [gag—l 0G 86_1]
T 3rgn2 Ikl Op; Op; Opk

To have well — defined expressions we need:
1) Ultraviolet regularization MASSIVE
2) Infrared regularization LATTCE FERMIONS



Response of electric current to the gauge field

Jﬁc(R) — j(o)k(R)—l—j(l)k(R)—l—m
. =
91 (0)
MR = [ ST EO®Rp)
with
2+1D
J(l)k(R) = iftjkM}lij(R)“ M/’I‘I-UdBP
oy 0w oo p] sl ]
B = €ijk [G"{D)(R?p)
3! 472 dpi Ip; Bor



2+1 D Anomalous Quantum Hall effect 2D top. insulator

_ 1 o
We reproduce | ko gNg ki
E = (El,Eg) as Agk = —EE;L
. ~ 1 _ _
G.E.Volovik, Ny = ——Th fg LdG A dGt A dG

JETP 67 (1988), 1804 — 1811

In the particular case of the non — interacting system it is
reduced to

. ' £ 2
G l=iw—H . = = J. /dpfij
k:£5 <0
Berry curvature  F; = 0,4, — 9;A; A; = ik, plo;|k, p)

D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs,
Phys. Rev. Lett. 49, 405 (1982)



2+1 D Anomalous Quantum Hall effect k1o g
Bulk — boundary correspondence THER g P
>
A
Y 1 —1 —1
Ny = — Tr |G dG ANdG ~ N dG
2472
v

The number of boundary gapless fermions = N_3 (G.E.
Volovik, «The Universe in a Helium
Droplet», Clarendon Press, Oxford (2003))



2+1 D Anomalous Quantum Hall effect k1o kg
Bulk — boundary correspondence JHf{{f e L

A E ~ 1/r

L 1 “‘
Usviz. N = gt /g_ldg/\dg_l/\dg - Usvi2

v

\ / .
Nonzero E

The total current is given by N_3/2pi x V = J_left — J_right
and is carried by the boundary gapless fermions

(we use relativistic units)



2+1 D Anomalous Quantum Hall effect k1o kg
Bulk — boundary correspondence JHatt = 5 _/V3 € i
} E = const
~ 1
U=-V/2 N3 = Y 1r /g—ldg AdGH A dG U=\/2
\
E=V/L

In the ideal system the total current is given by N_3/2pi x V
and is carried by the bulk.

The self — check: Loughlin geometry (opposite sides are
indentified, and there are no boundaries that may carry the
current).



Chiral Magnetic Effect (CME) is the appearance of electric current in the direction of the
external magnetic field in the presence of chiral chemical potential

H

T

J=M/2pi*2H M=mu_5?

Pre — history: the existence of chiral magnetic effect was predicted 30 years ago by
Vilenkin. This proposition was later repeated for quark-gluon plasma and for Dirac
semimetals by D.Kharzeev. (The Dirac semimetals are the materials with emergent
relativistic invariance). It was proposed, that magnetic field produces electric current
directed along the magnetic field and proportional to it.

Later the very existance of this effect was questioned. It was demonstrated using
numerical simulations, for example, by P. Buividovich (Regensburg U). that in certain
lattice regularizations the simplest and the most commonly accepted version of this
effect is absent. In condensed matter theory the existence of this effect was
criticised, for example, by N.Yamamoto (his analysis was based on the attempt to
apply Bloch theorem). In a certain model of solids the same conclusion was achieved

by Vasifeh and Franz



We start from the lattice model with massive fermions that describes lattice regularized

quantum field theory or the insulators whose excitations are described by massive
Dirac action (in solid state physics).

\Hs

J=M/2pi*2H M=mu_5?
Chiral imbalance is described by the appearance of the chiral chemical potential

Green function (without external magnetic field) is:

G(p) = ( > Yo or(p) + iy us — im(p)) -
k

Example : Wilson fermions

ge(p) = sinpr, m(p)=m® + ¥ (1—cospa)
a=1,2.3.4



3+1 D Chiral Magnetic Effect 3D Dirac insulator
In lattice models

we obtain for the first time JOkR) = —

gj.MJVI ’11}( )

. . 42
My gl\r/leEsponsmle forthe . _ ]Tm 4
In continuous models N [ 0G—1 G 39‘1]
this follows trivially YT aise2 M Y op; 0p; Opk

from Feinman diagrams .
4x4 Green function  9(p) = (Z’wkgsc(p) + iy Y us — im(p))
k

Let us assume first, that without chiral chemical potential the
fermions are gapped. Poles of the Green function may
appear for the nonzero mu_5 if

95 (p) + (#5 == \/Q%(P) +95(p) + 9§(P))2 +m?*(p) =0



3+1 D Chiral Magnetic Effect 3D Dirac insulator
conventional case
Example:

e
Wilson fermions G(p) = (;7}99‘“( vty “5_””(1)))

With m© >0  gu(p) =sinpr. m(p) = m(® 4 Z (1 — cospg)
a=1,2,3,4

Function m(p) never equals to zero ==> nonzero mu_5

cannot cause the poles of G. (The same is if in general case

g_4(p) and m(p) do not vanish simultaneousely.)

M 4 is top. Invariant => M, = i/dﬁj\@(;ﬁ),

=> we may calculate it ;

formu_5=0. N3(p*) = N / d3-;~(gafg—1)
_ 3\P T ijk4 " ]

(g7g7) (9046 )



3+1 D Chiral Magnetic Effect 3D Dirac insulator
convenﬁonalcase

—1
(Z’w gk (P) + iv'y HS—”T?(P))

IntrOduce % = iv5y% for k = 1,2,3,4, and I'® = ~°
: 1
Calculate Na(p?) = Sioa Cigka T el I i
g = \/Zk:1,2,3,4,5 i / d3p d*j df"( )8 gd
S Q 9° 9
1 :
Then deform smoothly = @eijm(é“béﬂd — 0 gy
G to the form 1-, _ P
with nonzero mu 5 / 3 9ad 95(839"’ — 9ePlogg )8 4
— °p
Q g
1

- = Etjk‘fil (6abécd 5ad(5‘bc=.)

/ 2,08 O gy g0 g4
Q g4

—3!



3+1 D Chiral Magnetic Effect 3D Dirac insulator

conventional case N 5=0 (m.A.Zubkov and G.E. Volovik.Nucl.Phys.B 860,
295 (2012))

-1
Example: g(p) = (Zwkgk( + iy y s — im(p))
Wilson fermions -

With m© >0  ge(p) =sinpr. m(p)=m® + (1 — cospa)
a=1,2,3,4

Function m(p) never equals to zero ==> nonzero mu_5

cannot cause the poles of G. (The same is if in general case

g_4(p) and m(p) do not vanish simultaneousely.)

M 4 =0 we may calculate it M, = —é/dﬁ%(b ).

for mu ~5=0, and then ) i

for nonzero mu_5 Na(p*) = 57— €ijkaTr / d3p(gc‘9ig—1)
2

its value is the same (gafg—l) (gakg—l)



3+1 D Chiral Magnetic Effect N_5=-2 (massless fermions
appear at the phase transition between the two phases with

different N_5) G(p) = (Z"ykgk( + iyt s — Em(p))l
marginal k
example gr(p) = sinpr, m(p) =m? + Z (1 — cospg)
Wilson fermions a=1,2,3,4
with m\%) e (—2,0)
the zeros of m(p) form the curves (p_3=p_4=0)
SV pole of the

AL Green function
closed Fermi lines /
Marginal vacuum g
If p_4 is not pl or 0, s = \/93(p) + 93(p) + 63(p)

NSlp4)= (,ua + \/91 ) + Jg(P))Q +m?*(p) =0



3+1 D Chiral Magnetic Effect 3D Dirac insulator

marginal example with My = _i‘/dpalﬂg(pal)‘
Wilson fermions 2 |
- ]_ B
N3 (p* i Tl/ Ppl(gorg—
If we regularize the e T R g p( )

Integral as (gajg—l) (gakg—l)

Jmen [+

Then M_4 — 0 because N_3(p) = O for p that is not zero or
o]

At finite temperature we use the sum over the Matsubara
frequencies w, =Tr@n+1)#£0
And the answer is the same



3D Dirac semimetal =

lattice regularization of the QFT with

Massless fermions massless fermions appear at the phase transition between the two

phases with different N_5

Example: Wilson fermions

Phase diagram gx(p) = sinpz.

o A
i N_5=0
> N 5=-2
4 -2 ~
. N_5=+6
6 -4 >
4 8 N_5=6
I N _5=2
18
. N_5=0

m(p) = m©® + Z (1 — cospg)
a=1,2,3,4
1
|,u-; (Z}( gff )
gslpl=mlp] §=
- 3

N5= Eabcdefgadgbf\dgcﬂdgdﬂdge

424!



3D Dirac semimetal =

lattice regularization of the QFT with

Massless fermions massless fermions appear at the phase transition between the two

phases with different N_5

Example: Wilson fermions

Phase diagram gx(p) = sinpz.

o A
i N_5=0
> N 5=-2
4 -2 ~
. N_5=+6
6 -4 >
4 8 N_5=6
I N _5=2
18
. N_5=0

m(p) = m©® + Z (1 — cospg)
a=1,2,3,4
1
|,u-; (Z}( gff )
gslpl=mlp] §=
- 3

N5= Eabcdefgadgbf\dgcﬂdgdﬂdge

424!



We deal with the lattice model with massless fermion that describes lattice regularized
quantum field theory or the Dirac semimetal (whose excitations are described by the

massless Dirac action.

H

J=M/2pi*2H M=mu_5?

=
Chiral imbalance G(p) = (Z ’Ykgk(l)) ' i’?‘“4'}’5#5 - im(p))
k
Green function
|
j(l)k(R) _ 7E13kEM£Ai_(R\
471'2 1 i s 4
Ma = =5 [ dptRa?)
We are to calculate M_4 2
. 1 .
4\ _ 3, ai—1
N3(p®) = mfz’jmTf /Qd p(g@ g )

(67g7) (9046 7)



3+1 D Chiral Magnetic Effect 3D Dirac semimetal
non - marginal

example: | _ -1
Wilson fermions G = (Z 7°9k(P) + 7"y 15 — E'm’(p))
k

With m® =0 gr(p) =sinpr, m(p)= m(® + Z (1 — cospg)
a=1,2,3,4

For nonzero mu_5 there are no solutions of

2
(#5 + \/91 ) +92(p) + 9§(p)) +m*(p) =0

Therefore, for nonzero mu_5 there are no poles of G.

We may smoothly make m#*{(0)} positive, and after that
smoothly bring mu_5 to zero. This transformation does not
encounter the poles of G.

This is the proof that M_4 = 0 for Dirac semimetals with
nonzero chiral chemical potential.

The same refers to the lattice discretization of quantum field
theory.




3D Dirac semimetal =

lattice regularization of the QFT with

Massless fermions massless fermions appear at the phase transition between the two

phases with different N_5

Example: Wilson fermions

Phase diagram gx(p) = sinpz.

, A
m N 5=0
> N 5=-2
4 _ ’ ~
. N_5=+6
6 -4 b
4 -6 - N 5=-6
I N _5=2
1T -8
\ - N_5=0

m(p) = m©® + Z (1 — cospg)
a=1,2,3,4
1
|,u-; (Z}( gff )
gslpl=mlp] §=
- 3

N5= Eabcdefgadgbf\dgcﬂdgdﬂdge

424!



3+1 D Chiral Magnetic Effect

nontrivial g(p):(Z’w"“gk( r et B o i_},n(p)) 1
example

Wilson fermions 9x(P) = sinpk, m(p w4 Y7 {1—eospa)
with m© = _2 a=1,2,3,4

the zeros of m(p) form the curves (p_3=p_4=0)

~ pole of the
A Green function
Fermi lines e
Marginal vacuum AN g
If p_ 4 is not pi or 0O, ]
N 3(p 4)=0 sl = /92(p) + 63(p) + 93(p)



3+1 D Chiral Magnetic Effect 3D Dirac semimetal

nontrivial example with My = _i/dpalﬂg(pal)‘_
Wilson fermions 2
: -ATS(p4) s 2‘?13}94T1 / d p(gaig—l)
If we regularize the 241 Q
Integral as (gajg—l) (gakg—l)
/zlimﬁ—m(/_m+/€ )
Then M 4 — 0

At finite temperature we use the sum over the Matsubara
frequencies w. =Tr(@2n+1) #0
And the answer is the same



We considered lattice models with both massive qnd massless fermions that describe
lattice regularized quantum field theory or the insulators and Dirac semimetals
whose excitations are described by massive/massless Dirac action (in solid state

physics).
T

J=M_4/2pi*2H M_4=0aslongas mu_5 is nonzero
Chiral imbalance is described by the appearance of the chiral chemical potential

Green function (without external magnetic field) is:

G(p) = ( > Y*ar(p) + iv*y us — im(p)) -
k

There is no equilibrium static bulk CME



IN WHICH FORM THE CME MAY SURVIVE ?

H E

T

1) nonequilibrium CME in Dirac semimetals in the presence
of external magnetic and electric field the chiral anomaly
produces chiral imbalance

this production requires energy taken from the job
performed by the electic field.

This assumes existence of electric current j

JE = the energy created while pumping pairs from vacuum =>
J=7



IN WHICH FORM THE CME MAY SURVIVE ?

H E

T

2) nonequilibrium CME in Dirac semimetals in the presence
of emergent magnetic field (say, due to the dislocations)

the chiral anomaly produces chiral Imbalance

this production requires energy taken from the job
performed by the electic field.

This assumes existence of electric current j

JE = energy created while pumping the pairs from vacuum =>
J=7



IN WHICH FORM THE CME MAY SURVIVE ?

H~rotl E~-dl/dt

T

3) CME in He3-A, where mu_5~ | (v_n-v_s)

The applied technique for the calculation of the CME current
does not work here because :

- the problem is not equilibrium

- the gauge field is emergent rather than real



IN WHICH FORM THE CME MAY SURVIVE ?

H

T

4) Quark —gluon plasma : nonequilibrium CME contributions
to the kinetic equations in the presence of the chiral
imbalance?

Chiral imbalance that is described by chiral density rather
than the chiral chemical potential ?



3+1 D Anomalous Quantum Hall effect 3D top. insulator

. L | 1 |
We obtain for the first time Jiran = 53 M €M E;
1 9G—1 OG IG1
N
M 342 I / plr|g dp; Op; Opg

In the particular case of the non — interacting system it is
reduced to

) (il ,
G l=—ivw—H M) = e Z /dp]:—a:j

occupied

Berry curvature  Fi; = 9iA; — 9 A, Aj = i(k. ploj|k. p)



3+1 D Anomalous Quantum Hall effect 3D top. insulator

We obtain for the first time et = 4— M, HE;
M) = ﬁﬁjm /d4pﬁ[9 agp_: gi 8;}:]
2x2 Green function - — i (ZJ O p))
Sum over points, where g k=0 (k=1,2,3)
gr = 4 = =3 Z /y; n(ga(yi)) Res (y1)dp;
— \/Zk:1,2,3,4 92 1

Res (y;) = g~ e'7k /E( }ﬁz‘d@j/\d@k
Yi



3+1 D Anomalous Quantum Hall effect 3D top. insulator

Example Gl =iw-— H JchIaH =) M ij:ﬁ

H =sinp; o2 —sinpa ot — (m® — 5 cosps + Z (1 — Cospi)) o’
i=1,2
v < 1, and m(® € (=2 + v, —7)

) (m©® — ycosps + 3, o (1 —cosp;))

J4(P) \/(-;?1(0) — ~yCos p3 + 21:1,2 — cosp;))? + S . i -
ga(p) = 0, peIM (w— +o0)
ulp) = -1, Gp)=0 (k=1,2,3), p=1(0,0,p3,0), p3€ (—m 7
ap) = 1, g(p) =0 (k=1,2,3), p=(0,7ps3,0), pse (-7, m)
wup) = 1. §Gp)=0 (k=1.2.3), p=(m.0,p3.0). p3€ (—m. )
gap) = 1. gip)=0 (E=1.2.3), p=(m.7m.p3.0), p3e(—m7)

o0 2m o o g b s




3+1 D Anomalous Quantum Hall effect 3D top. insulator

We obtain for the first time JHran = 4— M, M E,
1 9G—1 OG IG1
A . Tr[ _ ]
M 31 472 (M / plr|g dp; Op; Opg

—1

4x4 Green function G(p) = (ZT*“kgk(P)+’Y5QS(P)+” 7b(p ))
k

The sum over
two 2x2 systems M = M




3+1 D Anomalous Quantum Hall effect 3D top. insulator

. L | 1 |
We obtain for the first time Jiran = 75 Mi *'E;
1 9G—1 OG IG1
= s un | AT |
M 31 472 (M / plr|g dp; Op; Opg

) —1
4x4 Green function G(p) = (Zk Y91 (P) — ig5(P) +’?‘3’Y55(P))

The sum over
two 2x2 systems M, = M




3+1 D Anomalous Quantum Hall effect 3D top. insulator

Example G l=iw—H tran = 4— M; M E,

—1
= (Zfﬁkg;@(p) +7795(p) + 'tr-*gfr-*%(p)) g > 1, m@ > i 1
k

g1(p) = —sinpy.  ga(p) =sinpy.  g3(p) = g3 + sinps

94(P) =w, gs5(p) = m©) + Z (1 —cospq), b= const
a=1,2

Sl o <

\/(ggj) —1)2 4+ (mO® +2)2> b

: 1.
M, — %‘T_%ﬂ'( 1)_2_;7_1 2m ko E;,-kgEj



3+1 D Anomalous Quantum Hall effect for Weyl semimetal

Example G l=iw—H Jfﬁj’aﬂ — 12 M JME:E

—1

G(p) = (D~ ox(p) +795(p) +7*7b(p))
k

g1(p) = —sinps,  g2(p) =sinpr.  g3(p) = g\ + sin ps

94(P) = w, g5(p) = m©®) 4 Z (1 —cospq), b= const
a=1,2

(D) > /b2 — (m(0))2 1 > () \/ +sin 84)2 + (m(9)2 =

Two Fermi points K. = (0,0, 34,0)

i Br =B jkap the same expression may be
JHalt = g2 € obtained using effective
continous QFT



3+1 D AQH, top. insulator JHall = 4—M;§ M E;
Bulk — boundary correspondence

M is nonzero for [ = 1 only.

= [ dpiN3(p1) /

| I(GO)~1 9GO H(G©))—1
| T (0)
N3 (pl) = 3712 €ijkl /dpgdpgdp4 Tr [G d'pg- 810;,-' apk ]

Index theorem: at each value of p_1 the jump of N_3 is
equal to the number of gapless chiral boundary modes.

We have N_3 Fermi lines on the xy and xz boundaries and
N_3 Fermi points on the yz boundary



3+1 D AQH, Weyl semimetal Jiran = 75 Mi M E;
Bulk — boundary correspondence

~ermi
arc

M is nonzero for [ = 1 only. /'/

= [dp1N3(p1) /

G(D)a(c;'@) L oGO0 9(G0)-1 ]
dp; Op; Ok

1

Nz—a(f}l) = mﬁijm/d}bdmdmﬁ[

Index theorem: at each value of p_1 the jump of N_3 is
equal to the number of gapless chiral boundary modes.

We have N_3 Fermi arcs on the xy and xz boundaries that



Conclusions

1. The formalism of Wigner transformation has been applied to the Green
functions defined in compact momentum space.

2. Using derivative expansions applied to the Wigner transform of the Green
function we derive !
k

: b oo m ! Kl
Jfran = %A@ e'E;  and JHal = 33 M; '™ E;
3. The technique for the calculation of these top. invariants is developed and

applied to AQHE 1n topological insulators and Weyl semimetals.

4. Bulk — boundary correspondence in terms of the Wigner transform of the
Green function allows to explain the existence of the Fermi lines on the
boundaries of the topological insulators with AQHE and Fermi arcs on the

boundaries of the Weyl semimetals. ;
5. We derive for the equilibrium static FJOFR) = Feij “IMA(R)

bulk chiral magnetic effect

This top. invariant vanishes for the Dirac semimetals and for the lattice
regularized QFT both with and without nonzero mass of the fermions.



C Crystal structure Na3Bi Brillouin Zone

[#]
('™ * ™
~" 8 % @©Na
re ' @ Bi
Kx-Ky Kx-Kz
2D Dirac Cone 2D Dirac Cone

K. Liu et al., Science (2014) Vol. 343 no. 6173 pp. 864-867 DOI:
10.1126/science.1245085, arXiv:1310.039



Na3Bi Brillouin Zone

Band structure




Na3Bi

Effective Hamiltonian

5% = 5

PE) =
Py) 7
|S } |P3 » 9
H[*(k) — En(k)—|—
eo(k)

(Na,s) + |Na,s)),

1 . y
—(|Bi,pa) F |B1 ,pa)),

/ M(k) o T
Ak_ —M(k) B*(k)
0  Bk) M)

\ B(k) 0

M(k) = My — Myk2 — My(k2 + k2)

—Ak_
— Ak, —M(k)




Na3Bi

Effective Hamiltonian |S | ) |P ;.—> |Sr—|— —%>, |P%_j—%>)

(MX) Ak, 0  B*k) )
Ak_ —M(k) B*(k) 0

0 Bk Mk —Ak
\Bk) 0 —Aky —M(K)

Hr(k) =— En(k) . B

co(k) = Co + C1kZ + Co(ki + ky), ks = ke £ ik,

E(k) = co(k) + \/M(k)? + A%k k_ + |B(k)[?

Dirac points k=(0, 0, £ = &+ UD)



Brillouin Zone

M. Neupane et al.,Nature Commun. 05, 3786 (2014), DOI:
10.1038/ncomms4786, arXiv:1309.7892

S. Borisenko et al., Phys. Rev. Lett. 113, 027603 (2014), DOI:
10.1103/PhysRevLett.113.027603,arXiv:1309.7978



Energy (eV)

Cd3As2

First principles band

(momk)  (0,0,k) (%,%, k)

k_=01S5(2x/c*)

Brillouin Zone




Brillouin Zone

Cd3As2
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