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Main points
 

1. Wigner transform in compact momentum space
2. Derivative expansion applied to the Wigner transform 
of the two - point Green function ==> 
J = [top.invariant in momentum space]x[field strength]
3. AQHE in 2+1 D, 3+1 D topological insulators, and in 3+1 
D Weyl semimetals
4. equilibrium static bulk CME does not exist because the 
corresponding top. Invariant = 0 



Hall effect is the appearance of electric current in the direction orthogonal to the 
external magnetic field and external electric field.

J E

                       H

Qauntum Hall effect is the quantized Hall effect

J = N/2pi E

Anomalous Quantum Hall (AQHE) effect is the appearance of quantized current 
orthogonal to electric field without any external magnetic field (experimentally 
discovered in 2D materials). 



AQHE Hall effect is the appearance of electric current in the direction orthogonal to the 
external electric field.

J

E                selected direction

J = M /4pi^2 E

Weyl semimetals

M = [distance between the Weyl points in momentum space]

Topological insulators

M = const/a = integer x [vector of inverse lattice]



Chiral Magnetic Effect (CME) is the appearance of electric current in the 
direction of the external magnetic field in the presence of chiral chemical 
potential

H

J

               

J = M /2pi^2 H    M = mu_5 ? 

Pre – history: the existence of chiral magnetic effect was proposed in

This proposition was later repeated in 

and in the sequence of the other papers 



Chiral Magnetic Effect (CME) is the appearance of electric current in the direction 
of the external magnetic field in the presence of chiral chemical potential

H

J

               

Later the existance of the equilibrium bulk static CME was questioned. 



Chiral Magnetic Effect (CME) is the appearance of electric current in the direction 
of the external magnetic field in the presence of chiral chemical potential

H

J

               

Later the existance of the equilibrium static bulk CME was questioned. 

Weyl semimetals 

Analysis based on the attempt to apply Bloch theorem

.



different versions of CME
                                                                                                    

                                                                              H                E

J

               

2)  nonequilibrium CME in Dirac semimetals in the presence 
of both magnetic and electric fields

the chiral anomaly produces chiral Imbalance 

this production requires energy taken from the job 
performed by the electic field.  

This assumes existence of electric current j

JE = energy created while pumping the pairs from vacuum => 
J ~ B^2 E ?



different versions of CME
                                                                                                    

                                                                              H                E

J

               

2)  nonequilibrium CME in Dirac semimetals in the presence 
of emergent magnetic field (say, due to the dislocations) 

the chiral anomaly produces chiral Imbalance 

this production requires energy taken from the job 
performed by the electic field.  

This assumes existence of electric current j

JE = energy created while pumping the pairs from vacuum => 
J ~ ?



different versions of CME
                                                                                                    

                              H ~ rot l               E ~ -d l/dt

J

               

3)  CME in He3-A, where mu_5 ~ l (v_n-v_s)

The applied technique for the calculation of the CME current 
does not work here because :

   - the problem is not equilibrium

   - the gauge field is emergent rather than real 



different versions of CME
                                                                                                    

                                                              H ~ rot l               E ~ -d l/dt

J

               

3)  CME in He3-A, where mu_5 ~ l (v_n-v_s)

The applied technique for the calculation of the CME current 
does not work here because :

   - the problem is not equilibrium

   - the gauge field is emergent rather than real 



different forms of CME
                                                                                                    

                                                                       H                

J

               

4)  Quark – gluon plasma : nonequilibrium CME contributions 
to the kinetic equations in the presence of the chiral 
imbalance?

    Chiral imbalance that is described by chiral density rather 
than the chiral chemical potential ?



different forms of CME
                                                                                                            

                                                                                  H                

J

               

4)  QCD: contribution to electric conductivity in the presence of magnetic field 



We considered lattice models with both massive and massless fermions that describe 
lattice regularized quantum field theory or the insulators and Dirac semimetals 
whose excitations are described by massive/massless Dirac action (in solid state 
physics).

                                                                  H

J

               

J = M_4 /2pi^2 H    M_4 = 0 as long as mu_5 is nonzero 

Chiral imbalance is described by the appearance of the chiral chemical potential

Green function (without external magnetic field) is:

There is no equilibrium static bulk CME



We work with the wide class of lattice models
example
Wilson fermions

The lattice: 

Fermions are attached to sites (points).
Gauge field is attached to links that connect sites.



the model defined in momentum space:

coordinates are discrete ==> momentum space is compact
(electrons in solids and lattice regularized QFT)
In coordinate space

Example: Wilson fermions (=simple model of top.insulator)



How to introduce the gauge field

Wilson fermions

In momentum space:

                               ==>

For Wilson fermions the equivalence is exact. For the other 
models it is up to the irrelevant terms ~a^2 x field strength

Gauge field appears as the pseudo — differential operator 
in momentum space.



Wigner transformation in coordinate space

Two point 
Green function

Wigner transformation:
Weyl symbol of operator
=Wigner transform of matrix 
element 



Wigner transformation in coordinate space

Two point 
Green function

Wigner transformation:

Groenewold equation

Weyl symbol of operator

If                                       ==>

For Wilson fermions the relation is exact



Wigner transformation in momentum space

Two point 
Green function

Wigner transformation:

In coordinate space: 



Wigner transformation in momentum space

Two point 
Green function

Wigner transformation:

Groenewold equation
Weyl symbol of operator

Wigner transform of 
matrix element 



Wigner transformation in momentum space

Two point 
Green function

Wigner transformation:

Groenewold equation

Weyl symbol of operator

If                                       ==>

For Wilson fermions the relation is exact



Solution of Groenewold equation

Weak
external gauge field 

with

                           
Response of electric current to the gauge field  



Response of current to the gauge field strength

                           
Response of electric current to the gauge field  



Response of electric current to the gauge field

with
 

3+1 D

To have well — defined expressions we need: 
1) Ultraviolet regularization         MASSIVE 
2) Infrared regularization             LATTCE FERMIONS



Response of electric current to the gauge field

with
 

2+1 D



2+1 D Anomalous Quantum Hall effect  2D top. insulator 

We reproduce 

G.E.Volovik, 
JETP 67 (1988), 1804 — 1811

In the particular case of the non — interacting system it is 
reduced to

Berry curvature

D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs,
Phys. Rev. Lett. 49, 405 (1982)



2+1 D Anomalous Quantum Hall effect  
Bulk — boundary correspondence 

 

The number of boundary gapless fermions = N_3 (G.E. 
Volovik, «The Universe in a Helium
Droplet», Clarendon Press,  Oxford (2003))



2+1 D Anomalous Quantum Hall effect  
Bulk — boundary correspondence 

 
                                    E ~ 1/r

U=-V/2                                                                           U=V/2

                                Nonzero E

The total current is given by N_3/2pi x V = J_left — J_right
and is carried by the boundary gapless fermions

(we use relativistic units) 



2+1 D Anomalous Quantum Hall effect  
Bulk — boundary correspondence 

 
                                    E = const

U=-V/2                                                                           U=V/2

                                E = V/L

In the ideal system the total current is given by N_3/2pi x V 
and is carried by the bulk. 
The self — check: Loughlin geometry  (opposite sides are 
indentified, and there are no boundaries that may carry the 
current).  



Chiral Magnetic Effect (CME) is the appearance of electric current in the direction of the 
external magnetic field in the presence of chiral chemical potential

H

J

               

J = M /2pi^2 H    M = mu_5 ? 

Pre – history: the existence of chiral magnetic effect was predicted 30 years ago by 
Vilenkin. This proposition was later repeated  for quark-gluon plasma and for Dirac 
semimetals by D.Kharzeev. (The Dirac semimetals are the materials with emergent 
relativistic invariance). It was proposed, that magnetic field produces electric current 
directed along the magnetic field and proportional to it. 

Later the very existance of this effect was questioned. It was demonstrated using 
numerical simulations, for example, by P. Buividovich (Regensburg U). that in certain 
lattice regularizations the simplest and the most commonly accepted version of this 
effect is absent. In condensed matter theory the existence of this effect was 
criticised, for example, by N.Yamamoto (his analysis was based on the attempt to 
apply Bloch theorem). In a certain model of solids the same conclusion was achieved 
by Vasifeh and Franz



We start from the lattice model with massive fermions that describes lattice regularized 
quantum field theory or the insulators whose excitations are described by massive 
Dirac action (in solid state physics).

H

J

               

J = M /2pi^2 H    M = mu_5 ? 

Chiral imbalance is described by the appearance of the chiral chemical potential

Green function (without external magnetic field) is:

Example : Wilson fermions



3+1 D Chiral Magnetic Effect  3D Dirac insulator 
In lattice models
we obtain for the first time 
       is responsible for the
       CME
In continuous models
this follows trivially
from Feinman diagrams
4x4 Green function

Let us assume first, that without chiral chemical potential the 
fermions are gapped. Poles of the Green function may 
appear for the nonzero mu_5 if 



3+1 D Chiral Magnetic Effect  3D Dirac insulator 
conventional case
Example:
Wilson fermions

With 

Function m(p) never equals to zero ==> nonzero mu_5
cannot cause the poles of G. (The same is if in general case 
g_4(p) and m(p) do not vanish simultaneousely.)

M_4 is top. Invariant => 
=> we may calculate it 
for mu_5 = 0.



3+1 D Chiral Magnetic Effect  3D Dirac insulator 
conventional case

Introduce

Calculate

Then deform smoothly
G to the form 
with nonzero mu_5 



3+1 D Chiral Magnetic Effect  3D Dirac insulator 
conventional case N_5=0 (M.A.Zubkov and G.E.Volovik.Nucl.Phys.B 860, 
295 (2012))

Example:
Wilson fermions

With 

Function m(p) never equals to zero ==> nonzero mu_5
cannot cause the poles of G. (The same is if in general case 
g_4(p) and m(p) do not vanish simultaneousely.)

M_4  = 0 we may calculate it 
for mu_5 = 0, and then 
for nonzero mu_5
its value is the same



3+1 D Chiral Magnetic Effect   N_5=-2 (massless fermions 
appear at the phase transition between the two phases with 
different N_5)
marginal
example
Wilson fermions 
with
the zeros of m(p) form the curves (p_3=p_4=0)

pole of the 
Green function

closed Fermi lines
Marginal vacuum

If p_4 is not pi or 0,
N_3(p_4) = 0   



3+1 D Chiral Magnetic Effect  3D Dirac insulator 

marginal example with
 Wilson fermions

If we regularize the 
Integral as 

Then M_4 → 0 because N_3(p) = 0 for p that is not zero or 
pi

At finite temperature we use the sum over the Matsubara 
frequencies   
And the answer is the same



3D Dirac semimetal = lattice regularization of the QFT with
Massless fermions massless fermions appear at the phase transition between the two 
phases with different N_5
 

  Example:   Wilson fermions

Phase diagram

                           N_5=0
   1      0              gauge coupling

                           N_5=-2     
    4    -2
                           N_5=+6     
    6   -4
    4   -6               N_5=-6
                           N_5=2
    1   -8
                           N_5=0



3D Dirac semimetal = lattice regularization of the QFT with
Massless fermions massless fermions appear at the phase transition between the two 
phases with different N_5
 

  Example:   Wilson fermions

Phase diagram

                           N_5=0
   1      0              gauge coupling

                           N_5=-2     
    4    -2
                           N_5=+6     
    6   -4
    4   -6               N_5=-6
                           N_5=2
    1   -8
                           N_5=0



We deal with the lattice model with massless fermion that describes lattice regularized 
quantum field theory or the Dirac semimetal (whose excitations are described by the 
massless Dirac action.

      H

J

               

J = M /2pi^2 H    M = mu_5 ? 

Chiral imbalance 

Green function

We are to calculate M_4



3+1 D Chiral Magnetic Effect  3D Dirac semimetal 
non - marginal
example:
Wilson fermions

With 

For nonzero mu_5 there are no solutions of

Therefore, for nonzero mu_5 there are no poles of G. 
We may smoothly make m^{(0)} positive, and after that 
smoothly bring mu_5 to zero.  This transformation does not 
encounter the poles of G. 
This is the proof that M_4 = 0 for Dirac semimetals with 
nonzero chiral chemical potential.
The same refers to the lattice discretization of quantum field 
theory.



3D Dirac semimetal = lattice regularization of the QFT with
Massless fermions massless fermions appear at the phase transition between the two 
phases with different N_5
 

  Example:   Wilson fermions

Phase diagram

                           N_5=0
   1      0              gauge coupling

                           N_5=-2     
    4    -2
                           N_5=+6     
    6   -4
    4   -6               N_5=-6
                           N_5=2
    1   -8
                           N_5=0



3+1 D Chiral Magnetic Effect   

nontrivial
example
Wilson fermions 
with

the zeros of m(p) form the curves (p_3=p_4=0)

pole of the 
Green function

Fermi lines
Marginal vacuum

If p_4 is not pi or 0,
N_3(p_4) = 0   



3+1 D Chiral Magnetic Effect  3D Dirac semimetal 

nontrivial example with
 Wilson fermions

If we regularize the 
Integral as 

Then M_4 → 0

At finite temperature we use the sum over the Matsubara 
frequencies   
And the answer is the same



We considered lattice models with both massive qnd massless fermions that describe 
lattice regularized quantum field theory or the insulators and Dirac semimetals 
whose excitations are described by massive/massless Dirac action (in solid state 
physics).

                                                                  H

J

               

J = M_4 /2pi^2 H    M_4 = 0 as long as mu_5 is nonzero 

Chiral imbalance is described by the appearance of the chiral chemical potential

Green function (without external magnetic field) is:

There is no equilibrium static bulk CME



IN WHICH FORM THE CME MAY SURVIVE ?
                                                         

                                                                         H                E

J

               

1)  nonequilibrium CME in Dirac semimetals in the presence 
of external magnetic and electric field the chiral anomaly 
produces chiral imbalance 

    this production requires energy taken from the job 
performed by the electic field.  

    This assumes existence of electric current j

JE = the energy created while pumping pairs from vacuum => 
J = ?



IN WHICH FORM THE CME MAY SURVIVE ?
                                                         

                                                                         H                E

J

               

2)  nonequilibrium CME in Dirac semimetals in the presence 
of emergent magnetic field (say, due to the dislocations) 

the chiral anomaly produces chiral Imbalance 

this production requires energy taken from the job 
performed by the electic field.  

This assumes existence of electric current j

JE = energy created while pumping the pairs from vacuum => 
J = ?



IN WHICH FORM THE CME MAY SURVIVE ?
                                                         

                                                                         H ~ rot l               E ~ -d l/dt

J

               

3)  CME in He3-A, where mu_5 ~ l (v_n-v_s)

The applied technique for the calculation of the CME current 
does not work here because :

   - the problem is not equilibrium

   - the gauge field is emergent rather than real 



IN WHICH FORM THE CME MAY SURVIVE ?
                                                         

                                                                         H                

J

               

4)  Quark – gluon plasma : nonequilibrium CME contributions 
to the kinetic equations in the presence of the chiral 
imbalance?

    Chiral imbalance that is described by chiral density rather 
than the chiral chemical potential ?



3+1 D Anomalous Quantum Hall effect  3D top. insulator 

We obtain for the first time 

In the particular case of the non — interacting system it is 
reduced to

Berry curvature



3+1 D Anomalous Quantum Hall effect  3D top. insulator 

We obtain for the first time 

2x2 Green function

Sum over points, where g_k=0 (k=1,2,3)   



3+1 D Anomalous Quantum Hall effect  3D top. insulator 

Example



3+1 D Anomalous Quantum Hall effect  3D top. insulator 

We obtain for the first time 

4x4 Green function

The sum over 
two 2x2 systems 



3+1 D Anomalous Quantum Hall effect  3D top. insulator 

We obtain for the first time 

4x4 Green function

The sum over 
two 2x2 systems 



3+1 D Anomalous Quantum Hall effect  3D top. insulator 

Example



3+1 D Anomalous Quantum Hall effect for Weyl semimetal 

Example

Two Fermi points
                                                  

the same expression may be 
obtained using effective

continous QFT    



3+1 D AQH, top. insulator  
Bulk — boundary correspondence 

 

 

Index theorem: at each value of p_1 the jump of N_3 is 
equal to the number of gapless chiral boundary modes. 

We have N_3 Fermi lines on the xy and xz boundaries and 
N_3 Fermi points on the yz boundary   



3+1 D AQH, Weyl semimetal   
Bulk — boundary correspondence

Fermi
arc 

 

 

Index theorem: at each value of p_1 the jump of N_3 is 
equal to the number of gapless chiral boundary modes. 

We have N_3 Fermi arcs on the xy and xz boundaries that 
connect the bulk Fermi points, and N_3 Fermi points on the 
yz boundary   



Conclusions

1. The formalism of  Wigner transformation has been applied to the Green 
functions defined in compact momentum space. 

2. Using derivative expansions applied to the Wigner transform of the Green 
function we derive 

and

3. The technique for the calculation of these top. invariants is developed and 
applied to AQHE in topological insulators and Weyl semimetals. 

 4. Bulk – boundary correspondence in terms of the Wigner transform of the 
Green function allows to explain the existence of the Fermi lines on the 
boundaries of the topological insulators with AQHE and Fermi arcs on the 
boundaries of the Weyl semimetals.

5. We derive for the equilibrium static

 bulk  chiral magnetic effect 

This top. invariant vanishes for the Dirac semimetals and for the lattice 
regularized QFT both with and without nonzero mass of the fermions.

  



K. Liu et al., Science (2014) Vol. 343 no. 6173 pp. 864-867 DOI: 
10.1126/science.1245085, arXiv:1310.0391 Hybridization A=0 

Crystal structure                     Na3Bi              Brillouin Zone
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Band structure

 



                    Na3Bi                             
Effective Hamiltonian 

 



                    Na3Bi                             
Effective Hamiltonian

Dirac points 

 



M. Neupane et al.,Nature Commun. 05, 3786 (2014), DOI: 
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S. Borisenko et al., Phys. Rev. Lett. 113, 027603 (2014), DOI: 
10.1103/PhysRevLett.113.027603,arXiv:1309.7978

Crystal structure                     Cd3As2              Brillouin Zone
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