

Using mechanochemistry to explore new sodium conducting glasses and glass-ceramics

Louisiane Verger, Julien Trébosc, Eric Furet, Killian Dénoue, Jiajie Zhang, François Cheviré, David Le

Coq, Laurent Calvez, Olivier Lafon, Olivier Hernandez

French National Center for Scientific Research

Rennes Institute of Chemical Sciences, France

Glasses and ceramics team

New Inorganic Functional Oxides: Synthesis, Characterisation and Simulations

Compositions

Properties

How would you describe glass (the material) ?

~ 100 answers

Context – Non-oxide chalcogenide glasses

Context – Non-oxide chalcogenide glasses

Optical devices – Lens – infrared imaging

Sensors – Thin films – detection of pollutants in water

Fiber optics – Battery diagnostics

Properties

How would you describe glass (the material) ?

Impedance spectroscopy

- \Rightarrow ionic conductivity
- \Rightarrow solid state electrolyte in all solid state batteries

Conventional Li-, Na- ion batteries

 \Rightarrow Liquid electrolyte

All solid-state batteries:

Flammability and limited electrochemical stability

Li or Na conducting materials:

- \Rightarrow high ionic conductivity
- \Rightarrow stability toward the electrodes
- \Rightarrow high electrochemical stability window
- \Rightarrow high ductility

Sulfide glasses

Why sulfide glasses?

• Mechanical properties

20 μm 20 μm Rep. **2013**, 3, 2261

• High conductivity over a wide range of compositions vs crystalline materials

Wang et al., Nat. Mater. 2015, 14, 1026

Glass-ceramics

Precursors for new metastable phases with higher ionic conductivities

 $ex : Li_7P_3S_{11}$ (70 $Li_2S - 30 P_2S_5$)

Hayashi, J Mater Sci, **2008,** 43, 1885

Glass: 10⁻⁴ S.cm⁻¹ at room temperature

 $Li_7P_3S_{11}$: 4 x 10⁻³ S.cm⁻¹ at room temperature

Properties can be modified by the synthesis method

Melt-quenching method

- \Rightarrow sulfur vapors
- \Rightarrow reactivity of Li or Na with silica
- \Rightarrow high temperature

Mechanochemistry

© Emmanuel PERRIN / CNRS Images

- \Rightarrow room temperature
- \Rightarrow large quantity of material

Conductivity properties?

Properties?

• ∇ Na₂S + * Ga₂S₃ milled in ZrO₂ vessels with ZrO₂ balls

X-ray diffraction

Dénoue et al. Mater. Res. Bull. 2021, 142, 111423

• ∇ Na₂S + * Ga₂S₃ milled in ZrO₂ vessels with ZrO₂ balls

X-ray diffraction

Dénoue et al. Mater. Res. Bull. 2021, 142, 111423

• ∇ Na₂S + * Ga₂S₃ milled in ZrO₂ vessels with ZrO₂ balls

X-ray diffraction

ex: 50 $Na_2S - 50 Ga_2S_3$

Dénoue et al. Mater. Res. Bull. 2021, 142, 111423

• ∇ Na₂S + * Ga₂S₃ milled in ZrO₂ vessels with ZrO₂ balls

X-ray diffraction

ex: $50 \text{ Na}_2\text{S} - 50 \text{ Ga}_2\text{S}_3$

 \Rightarrow Amorphous powder for $20 \le x \le 80$

Differential scanning calorimetry

Dénoue et al. Mater. Res. Bull. 2021, 142, 111423

• ∇ Na₂S + * Ga₂S₃ milled in ZrO₂ vessels with ZrO₂ balls

NMR spectroscopy

 \Rightarrow Amorphous powder for $20 \le x \le 80$

 \Rightarrow Broad signal typical of amorphous material

 \Rightarrow Local Structure ?

• ∇ Na₂S + * Ga₂S₃ milled in ZrO₂ vessels with ZrO₂ balls

 \Rightarrow Amorphous powder for $20 \le x \le 80$

Pair-distribution function analysis (PDF)

ex: 50 $Na_2S - 50 Ga_2S_3$

• ∇ Na₂S + * Ga₂S₃ milled in ZrO₂ vessels with ZrO₂ balls

Pair-distribution function analysis (PDF)

ex: 50 Na₂S - 50 Ga₂S₃

- \Rightarrow Ga-S distances detected
- \Rightarrow Wider distribution of Ga-Ga and S-S distances
- [Ga₄S₁₀] unit distorded
- \Rightarrow Na disorder

 \Rightarrow Amorphous powder for $20 \le x \le 80$

- $Na_2S + Ga_2S_3$ milled in ZrO_2 vessels with ZrO_2 balls

 \Rightarrow Amorphous powder for $20 \le x \le 80$

- Powders cold-pressed \Rightarrow highest conductivity for 80 Na₂S 20 Ga₂S₃ : σ = 2 × 10⁻⁶ S.cm⁻¹ at 25°C
 - \Rightarrow how to increase the σ ?

Impedance Spectroscopy

٠

 \Rightarrow aliovalent substitution with Ge

Glasses obtained by mechanochemistry

$x Na_2 S - (100-x) [0.5 Ga_2 S_3 - 0.5 Ge S_2]$

• Difficulty of reactivity/amorphization with Ge using mechanochemistry

 \Rightarrow Glass [0.9 GeS₂ – 0.1 Ga₂S₃] is synthesized by melt quenching

 \Rightarrow Na₂S + Ga₂S₃ + [0.9 GeS₂ - 0.1 Ga₂S₃] milled in ZrO₂ vessels with ZrO₂ balls

 \Rightarrow Amorphous powders for $10 \le x \le 75$

PhD J. Zhang

 $x Na_2 S - (100-x) [0.5 Ga_2 S_3 - 0.5 Ge S_2]$

Impedance Spectroscopy

$x Na_2 S - (100-x) [0.5 Ga_2 S_3 - 0.5 GeS_2]$

Impedance Spectroscopy

Raman spectroscopy

Glasses obtained by mechanochemistry

19

Zhang et al., Under review

- \Rightarrow Amorphous powder for $20 \le x \le 80$
- \Rightarrow highest conductivity for 80 Na₂S 20 Ga₂S₃:

 σ = 2 × 10⁻⁶ S.cm⁻¹ at 25°C

 \Rightarrow not suitable for solid state electrolytes

 $x Na_2 S - (100-x) [0.5 Ga_2 S_3 - 0.5 Ge S_2]$

- \Rightarrow Amorphous powder for $10 \le x \le 75$
- \Rightarrow highest conductivity for 75 Na₂S 25 [0.5 Ga₂S₃-0.5 GeS₂] :

 $\sigma = 1.8 \times 10^{-5} \text{ S.cm}^{-1} \text{ at } 25^{\circ}\text{C}$

Precursors for new crystalline phases ?

 \Rightarrow crystallization tests

L. Verger, et al. Inorg. Chem. 2022, 61, 18476.

L. Verger, et al. Inorg. Chem. 2022, 61, 18476.

9 h

500

L. Verger, et al. Inorg. Chem. 2022, 61, 18476.

Conclusion and perspectives

Chalcogenide glasses:

- optical properties (transparency in the IR)
- electric conductivity properties

⇒ Amorphous domain enlarged by mechanochemistry, Na- and Ga-rich composition

Na₂S-Ga₂S₃-GeS₂

 \Rightarrow Study the conductivity properties as a function of Na content

 \Rightarrow Conductivity increases of one order of magnitude with substitution with Ge

 \Rightarrow New synthesis route for NaGaS₂:

- no silica tube, no solvent
- temperature lowered of 50 %
- large quantity of material
- particule size : 30 nm
- \Rightarrow Selective water adsorption
- \Rightarrow Ion exchange properties
- \Rightarrow Exfoliation: towards new 2D functionals materials ?

Adhikary et al. Chem. Mater 2020, 32, 5589

Glasses and Ceramics Research team

Inorganic theoretical chemistry team (Eric Furet, Xavier Rocquefelte)

Mathieu Allix, Cécile Genevois, Sandra Ory

Glass and energy materials group Prof. Steve W. Martin, Jacob Wheaton

Thank you for your attention

Using mechanochemistry to explore new sodium conducting glasses and glass-ceramics

Louisiane Verger, Julien Trébosc, Eric Furet, Killian Dénoue, Jiajie Zhang, François Cheviré, David Le

Coq, Laurent Calvez, Olivier Lafon, Olivier Hernandez

French National Center for Scientific Research

Rennes Institute of Chemical Sciences, France

Glasses and ceramics team

New Inorganic Functional Oxides: Synthesis, Characterisation and Simulations

