LE STUDIUM CONFERENCES ORLÉANS | 2023

Oxide Ion-Conducting Materials Containing Tetrahedral Moieties: Crystal Structures and Conduction Mechanisms

Alberto J. Fernández-Carrión¹

¹Department of Inorganic Chemistry. University of Seville, 41012 Seville, Spain ¹College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China October 4th, 2023

Li river

Royal Palace of Seville

Moon & sun tower

Oxide Ion-Conducting Materials Containing Tetrahedral Moieties: Crystal Structures and Conduction Mechanisms

Outline

- **1. Introduction**
- 2. Oxide ion migration in $La_{1+x}Sr_{1-x}Ga_3O_{7+0.5x}$ melilite
- 3. Oxide ion migration in Bi_{1-x}Sr_xVO_{4-0.5x} Scheelite
- 4. Oxide ion migration in $La_{1-x}Sr_{2+x}GaO_{4-0.5x}$ oxogallate
- **5.** Conclusions

1. Introduction: Discovery oxide ion conductors (1899)

W. Nernst

1. Solid-state oxide ion conductors: Main technological applications

 O^{2-} \rightarrow large radius (~ 1.4 Å) and two negative charges!!!!!

1. Oxide ion conductors: Main structures

1. Main oxide ion conductors based on tetrahedral moieties

No.	Structural prototype	Typical example	Defect (Polyhedra	(Year)
1	Mayenite	$Ca_{12}Al_{14}O_{33}$	Interstitial (caged extra O)	(1988)
2	Cubic perovskite	Mg, Sr-LaGaO ₃	Vacancy $(MO_4/MO_{6-\delta})$	(1990)
3	Apatite	$La_{9.33+x}Si_6O_{26+1.5x}$	Interstitial (MO ₄ Oint/MO ₅)	(1995)
4	β -SnWO ₄	$La_2Mo_2O_9$	Interstitial (MO ₅ /MO ₆)	(2000)
5	Cuspidine	La ₄ GaTiO _{9.5}	Vacancy (MO_4/MO_5)	(2005)
6	LaBaGaO ₄	La _{0.8} Ba _{1.2} GaO _{3.9}	Vacancy (M_2O_7)	(2007)
7	Melilite	La _{1.54} Sr _{0.46} Ga ₃ O _{7.27}	Interstitial (MO ₅)	(2008)
8	Fluorite	$\operatorname{Bi}_{1-x}V_{x}O_{1.5+x}$	Vacancy (MO _n)	(2012)
9	Scheelite	Sr-doped BiVO ₄	Vacancy (M ₂ O ₇)	(2014)
		LaNb _{0.92} W _{0.08} O _{4.04}	Interstitial (MO ₅ /MO ₆)	(2018)
10	Hexagonal perovskite	Ba ₃ MoNbO _{8.5}	Vacancy $(MO_4/MO_{6-\delta})$	(2016)
11	Molten substance	$Na_2W_2O_7$	/	(2018)
12	YBO ₃	Zn-doped YBO ₃	Vacancy (MO ₃)	(2022)
13	LaSr ₂ GaO ₅	Oxogallate	$Vacancy (M_2O_7)$	(2022)

1. Main oxide ion conductors based on tetrahedral moieties

No.	Structural prototype	Typical example	Defect (Polyhedra	(Year)
1	Mayenite	$Ca_{12}Al_{14}O_{33}$	Interstitial (caged extra O)	(1988)
2	Cubic perovskite	Mg, Sr-LaGaO ₃	Vacancy $(MO_4/MO_{6-\delta})$	(1990)
3	Apatite	$La_{9.33+x}Si_6O_{26+1.5x}$	Interstitial (MO ₄ Oint/MO ₅)	(1995)
4	β -SnWO ₄	$La_2Mo_2O_9$	Interstitial (MO ₅ /MO ₆)	(2000)
5	Cuspidine	La ₄ GaTiO _{9.5}	Vacancy (MO_4/MO_5)	(2005)
6	LaBaGaO	La _{0.8} Ba _{1.2} GaO _{3.2}	$\underline{Vacancy}(M_2O_7)$	(2007)
7	Melilite	$La_{1.54}Sr_{0.46}Ga_{3}O_{7.27}$	Interstitial (MO ₅)	(2008)
8	Fluorite	$-Bi_{1-x}V_{x}O_{1.5+x}$	Vacancy (MO _n)	(2012)
9	Scheelite	Sr-doped BiVO ₄	Vacancy (M_2O_7)	(2014)
		$LaNb_{0.92}W_{0.08}G_{4.04}$	$- \text{Interstitiat} (MO_5/MO_6)$	(2018)
10	Hexagonal perovskite	Ba ₃ MoNbO _{8.5}	Vacancy $(MO_4/MO_{6-\delta})$	(2016)
11	Molten substance	$Na_2W_2O_7$	/	(2018)
12	YBO ₂	Zn-doped YBO ₃	Vacancy (MO ₂)	(2022)
13	LaSr ₂ GaO ₅	Oxogallate	Vacancy (M ₂ O ₇)	(2022)

Recent developments in oxide ion conductors based on tetrahedral moieties

Outline

1. Introduction

- 2. Oxide ion migration in $La_{1+x}Sr_{1-x}Ga_3O_{7+0.5x}$
- **3.** Oxide ion migration in Bi_{1-x}Sr_xVO_{4-0.5x}
- 4. Oxide ion migration in $La_{1-x}Sr_{2+x}GaO_{4-0.5x}$ oxogallate

5. Conclusions

Insulator!

S. G. *P*42₁*m*

X. Kuang. Nat. Mater., 2008, 7, 498.

2. Non-stoichiometric melilite compounds. Introduction of interstitial oxygens

z = 0.00

Dr. X. Kuang

2. Non-stoichiometric melilite compounds. Oxide interstitial migration mechanism. 2D migration pathway

2. Transparent melilite. Aerodynamic levitation synthesis method for RESrGa₃O₇

J. Mater. Chem. C. 2016, 4, 3238

2. Transparent melilite electrolytes. Aerodynamic levitation synthesis method

Aerodynamic Levitation + CO₂ lasers heating

- Up to \geq 3000 °C
- Contactless
- High quenching rate $\approx 300 \text{ °C/s} \rightarrow \text{metastability}!$

2. Non-stoichiometric melilite compounds. $RE_{1+x}Sr_{1-x}Ga_3O_{7+0.5x}$

Cemhti

コ大学

TE A 12

J. Mater. Chem. A. 2018, 6, 5276

2. $La_{1+x}Ba_{1-x}Ga_3O_{7+0.5x}$ Melilite

*Oncoming paper

Recent developments in oxide ion conductors based on tetrahedral moieties

Outline

1. Introduction

- 2. Oxide ion migration in La_{1+x}Sr_{1-x}Ga₃O_{7+0.5x}
- 3. Oxide ion migration in $Bi_{1-x}Sr_xVO_{4-0.5x}$
- 4. Oxide ion migration in $La_{1-x}Sr_{2+x}GaO_{4-0.5x}$ oxogallate

5. Conclusions

3. $Bi_{1-x}Sr_xVO_{4-0.5x}$ Scheelite. Impedance Spectroscopy

 $2SrO + 2Bi_{Ri}^{\times} + O_O^{\times} \rightarrow 2Sr_{Ri}' + V_O^{\circ} + Bi_2O_3$

 $t_{0^{2-}} \sim 0.88 (700 \text{ C})$

Nat. Comm., 2018, 9, 4484.

3. $Bi_{1-x}Sr_xVO_{4-0.5x}$ Scheelite. Impedance Spectroscopy

Nat. Comm., 2018, 9, 4484.

3. Bi_{1-x}Sr_xVO_{4-0.5x}. DFT calculation of ⁵¹V NMR parameters

Nat. Comm., 2018, 9, 4484.

3. $Bi_{1-x}Sr_xVO_{4-0.5x}$ Scheelite. ⁵¹V NMR

3. Scheelite $Bi_{1-x}Sr_xVO_{4-0.5x}$. Molecular dynamics simulation

Long-range migration of oxygen vacancies takes place via the continuous breaking and reforming of V_2O_7 dimer.

Recent developments in oxide ion conductors based on tetrahedral moieties

Outline

- **1. Introduction**
- 2. Oxide ion migration in La_{1+x}Sr_{1-x}Ga₃O_{7+0.5x}
- **3.** Oxide ion migration in Bi_{1-x}Sr_xVO_{4-0.5x}
- 4. Oxide ion migration in La_{1-x}Sr_{2+x}GaO_{4-0.5x} oxogallate
 5. Conclusions

4. La_{1-x}Sr_{2+x}GaO_{5-0.5x}. Impedance spectroscopy

4. La_{1-x}Sr_{2+x}GaO_{5-0.5x}. MD simulations

MD simulations and BVSE did not succeed

Any problem with the structure model?

Non-indexed Extra reflections b а \downarrow : La₂O₃ x = 0.4♦ : Sr₄Ga₂O₇ *x* = 0.3 x = 0.3Intensity (a.u.) *x* = 0.2 x = 0.2*x* = 0.1 *x* = 0.1 x = 0x = 0LaSr, GaO, ICSD : 409463 20 30 40 50 60 33 34 2 Theta (deg.) 2 Theta (deg.)

4. Oxide ion conductors. $La_{1-x}Sr_{2+x}GaO_{5-0.5x}$

Inorg. Chem. 2022, 61, 5113

1 G site

2 Oxygen sites: only one of them has vacancies

3. La_{1-x}Sr_{2+x}GaO_{5-0.5x}. Molecular dynamics simulation

✓ Simulations breaking and reforming of Ga_2O_7 dimmers within the *ab* plane ✓ Migration facilitated by the subtle GaO_4 tetrahedra tilting.

Inorg. Chem. 2022, 61, 5113

Conductivity comparison

4. Conclusions:

Oxide Ion-Conducting Materials Containing Tetrahedral Moieties

- ✓ Remarkable rotation/deformation flexibility of the tetrahedral units
- ✓ Select metal elements with the ability to tolerate a variable coordination number (Ga³⁺. V⁵⁺, B³⁺, Mo⁶⁺, Ge⁴⁺)

Acknowledgement

Main collaborators

Dr. X. Kuang

Dr. X. Yang

Dr. M. Allix

Dr. M. Pitcher

Projects

LE STUDIUM

