THE **SMARTER APPROACH** TO UNDERSTAND STRUCTURE AND PROPERTIES OF NEW INORGANIC MATERIALS

Franck Fayon,

Mathieu Allix, Michael Pitcher, Cécile Genevois, Emmanuel Véron, P. Florian, V. Sarou-Kanian, A. Rakmatullin and D. Massiot

Orléans

France

Combining experimental characterization and simulation methods to solve complex structures

Very high magnetic fields 28.2 T commercial ! Very fast sample spinning 120 kHz : 7 000 000 rd/min

A variety of correlation methods Multinuclear, 2D, 3D, etc...

Ab initio computations Structure prediction DFT GIPAW & PAW → NMR

Diffraction is gold standard for inorganic materials but

2002 Chemistry Nobel : Kurt Wüthrich : 3D structure of biological macromolecules by NMR

2017 Chemistry Nobel : Jacques Dubochet, Joachim Frank, and Richard Henderson for structure determination of biomolecules with cryo EM

Structure determination by coMbining mAgnetic Resonance, compuTation modEling and diffRactions

Outline

- **Complex superstructure of M⁴⁺P₂O₇ materials** (thermal expansion prop.)
- **Melilite La₂Ga₃O_{7.5} with interstitial O atoms** (oxide ion conductor)
- Scheelite Bi(Sr)VO₄ with O defect (oxide ion conductor)
- Novel transparent polycrystalline ceramics (optical)

$M^{4+}P_2O_7$ compounds

 $M^{4+}P_2O_7$ M = Si, Ge, Ti, Zr, Hf, Mo, W, Sn, Pb, ...

J. Evans

- SiP₂O₇ and TiP₂O₇ : 3X3X3 cubic with Pa-3 @ room temp.
- ZrP_2O_7 , HfP_2O_7 & $SnP_2O_7 \rightarrow Pa-3$? Other SG?

≠ number of inequivalent P sites and site multiplicities
 ≠ number of P₂O₇ with two equivalent or inequivalent P sites

SMARTER approach → use ³¹P solid-state NMR to probe local structure

³¹P Magic Angle Spinning NMR of M⁴⁺P₂O₇ compounds

 $M^{4+}P_2O_7$ M = Si, Ge, Ti, Zr, Hf, Mo, W, Sn, Pb, ...

Possible space groups

Space Group	Inequivalent P sites	Inequivalent P ₂ O ₇ dimers
Pa-3 (1x1x1)	1	1
Pa-3	11	6
P213	22	11
<i>R</i> -3	38	20
<i>R</i> 3	76	38
P bca	27	14
Pca21	54	27
P2 ₁ 2 ₁ 2 ₁	54	27
P21/c	54	28
Pc	108	54
P2 ₁	108	54
<i>P</i> -1	108	56
<i>P</i> 1	216	108

³¹P Magic Angle Spinning NMR of M⁴⁺P₂O₇ compounds

 $M^{4+}P_2O_7$ M = Si, Ge, Ti, Zr, Hf, Mo, W, Sn, Pb, ...

Presence of impurities, polymorphism ??

Check that all P sites (i.e. all ³¹P NMR peak) belong to the same phase with **2D NMR** !

ZrP₂O₇

000000000

-40

31P chemical shift (ppm)

8

8

-44

• Recoupling of ³¹P-³¹P homonuclear dipolar interactions

• Longitudinal mixing (flip-flop) : RFDR

-44

-40

-36

-36

31P chemical shift (ppm)

31P chemical shift (ppm)

Probing P-O-P connectivity and the number of P_2O_7

³¹**P** (spin ½, 100%) \rightarrow Use through-bond (²J_{P-O-P}) or through-space (dipolar short range) to probe P-O-P connectivities

→ 2D ³¹P-³¹P correlation (connectivity) spectra

Improved resolution !! of distinct *P* sites and P_2O_7 dimers

Possible space groups

Space Group	Inequivalent P sites	Inequivalent P ₂ O ₇ dimers
<i>P</i> a-3 (1x1x1)	1	1
Pa-3	11	6
P213	22	11
<i>R</i> -3	38	20
<i>R</i> 3	76	38
P bca	27	14
Pca21	54	27
P212121	54	27
P21/c	54	28
Pc	108	54
P2 ₁	108	54
<i>P</i> -1	108	56
P1	216	108

♦ 49 pairs of cross-peaks (1 x3 and 3 x2 intensities)

-80

-76

-72

-68

-64

At least 98 distinct P sites (likely 108)

 \rightarrow monoclinic with P2₁ or Pc space group

 \rightarrow orthorhombic with Pbca

Room temperature structures of M⁴⁺P₂O₇ compounds

Melilite compounds with extra oxide ions

$Melilite A_2 B(M_2 O_7)$

Tetragonal (P-42₁) a \sim 8 Å, c \sim 5 Å

layers of coner-sharing MO_4 tetrahedra layers of A,B cations \rightarrow *Ionic conduction properties*

Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure

XIAOJUN KUANG¹, MARK A. GREEN^{2,3}, HONGJUN NIU¹, PAWEL ZAJDEL^{2,4}, CALUM DICKINSON¹, JOHN B. CLARIDGE¹, LAURENT JANTSKY¹ AND MATTHEW J. ROSSEINSKY¹*

Nature Materials, 2008

 $LaSrGa_{3}O_{7} \rightarrow La_{1+x}Sr_{1-x}Ga_{3}O_{7+x/2} (0 \le x \le 0.64)$

Extra oxygen sites \rightarrow Oxide ion conduction

(x=0.54): 0.1 S.cm-1 @ 800°C (fuel cell applications)

M. Allix

pubs.acs.org/cm

Article

La2Ga3O75: A Metastable Ternary Melilite with a Super-Excess of Interstitial Oxide Ions Synthesized by Direct Crystallization of the Melt

Jintai Fan, Vincent Sarou-Kanian, Xiaoyan Yang, Maria Diaz-Lopez, Franck Fayon, Xiaojun Kuang, Michael J. Pitcher,* and Mathieu Allix*

> Synthesis of La₂Ga₃O_{7.5} (x = 1, full substitution!) by direct crystallization from an undercooled melt

(aerodynamic levitation under O_2 atm., precursors: $La_2O_3 \& Ga_2O_3$)

La₂Ga₃O₇₅ is stable up to 830 °C

Full occupancy of the interstitial O site

- \rightarrow Reduced oxide conductivity \otimes
- \rightarrow Structural model \odot

Laboratory powder XRD of La₂Ga₃O_{7.5}

Similar to the **pseudo-orthorhombic melilite La_{1.64}Ca_{0.36}Ga₃O_{7.32}** (PDF 04-017-7922) Li et al., *Angew. Chemie Int. Ed.* **2010**

\rightarrow Provisional structural model with P1

Combined Rietveld refinement with P1

- Description of melilite framework & oxide interstitial sites
- No symmetry constraints on the possible interstitial oxide ion orderings

Neutron diffraction of La₂Ga₃O_{7.5}

Pseudo-ortho. (P1) a = 9.6032, *b* = 9.5999, *c* = 9.6004 Å, α = 106.59, β = 108.13, γ = 113.81°

52 At. Pos. : 8 La, 12 Ga, 32 O

 \rightarrow Chain-ordering of O_{int}

Melilite compounds with extra oxide ions : $La_2Ga_3O_{7.5}$

Pseudo orthorhombic a = 9.6032, b = 9.5999, c = 9.6004 Å, $α = 106.59, β = 108.13, γ = 113.81^{\circ}$

*P*1 : 8 La, 12 Ga, 32 O

 $GaO_4 \rightarrow GaO_4 + O_{int} = GaO_5$

Full long-range ordering of O_{int} within the [Ga₃O_{7.5}] layers

Five Ga sites, formation of GaO_5 ? \rightarrow Solid-state ⁷¹Ga NMR

Probing the Ga environment with ⁷¹Ga NMR

SMARTER approach....

⁷¹Ga NMR I = 3/2, strong quadrupolar interactions (broadening)

Very-high magnetic fields Very fast magic angle spinning (0.7mm probe, up to 110 kHz)

⁷¹Ga NMR @ 20T, MAS 100 kHz

⁷¹Ga STMAS @ 100 kHz

5 inequivalent Ga sites

with 2:1:1:1:1 multiplicities

 \rightarrow consistent with **Ima2** space group

Melilite compounds with extra oxide ions : $La_2Ga_3O_{7.5}$

SMARTER approach....

Combined XRD and NPD refinement with Ima2 structural model

DFT GIPAW computation of ⁷¹Ga NMR using the refined Ima2 model

Scheelite materials for oxide ion conductivity applications

• BiVO₄ Scheelite structure

- Isolated VO₄ tetrahedral
- AO₈ polyhedra
- Monoclinic (I2/b)
- Tetragonal (I4₁/a) @ 250 °C

• Bi³⁺ for Sr²⁺ substitution → Oxide ion vacancies in the tetrahedral network

→ Improved oxide anionic conductivity

M. Allix A. Fernández Carrión X. Kuang

Mechanism for accommodation of O vacancies in the network of tetrahedral?

Formation of VO₃ units or pairing of VO₄ units to form V_2O_7 dimers? (like Ga_2O_7 units in $La_{1-x}Ba_{1+x}GaO_{4-x/2}$)

- Monoclinic scheelite I2/m
- Bi_{0.893(2)}Sr_{0.107(2)}VO_{3.918(6)} composition
- Bi/Sr mixed site $(Bi_{0.9}Sr_{0.1}) \rightarrow oxygen vacancies$
- strong positional disorder (O, Bi, Sr)

No observable residual scattering density in SPD & NPD Fourier difference maps ! Average structure – No evidence of O defects

SMARTER approach.... Probing the presence of V₂O₇ dimers with ⁵¹V NMR

⁵¹V NMR

I = 5/2, moderate quadrupolar interaction, Chemical Shift Anisotropy Very-high magnetic fields & Very fast magic angle spinning

SMARTER approach.... Probing the presence of V₂O₇ dimers with ⁵¹V NMR

- Build 2x2x1 supercell models of Sr_{0.125}Bi_{0.975}O_{3.937}
- \rightarrow Accommodation of **one O vacancy** and **two Sr** cations \rightarrow formation of **one V₂O₇** defect (8 possibilities)
- DFT optimization of atomic positions \rightarrow relaxed structures with realistic Sr-O distances
- DFT GIPAW \rightarrow ⁵¹V NMR parameters

⁵¹V NMR parameters (CS & Quad.) of possible local environnements

SMARTER approach.... Probing the presence of V₂O₇ dimers with ⁵¹V NMR

• Evidence for formation of V₂O₇ defects

Novel transparent ceramics obtained by full congruent crystallization from glasses

Sr1+x/2 Al2+x Si2-x O8

CERAMIC

Cemhti

1 cm

(b)

800

M. Allix C. Genevois

Metastable phases with new (unknown) structures →

100

70 -

60 -50 -

40 -

30 -

20 -

10

-10

400

(a) 90 80

Transmittance %

SMARTER approach

TEM

Very thin grain boundaries

No porosity Mosaic microstructure

T_{max},

New transparent polycristalline ceramics : Aluminosilicate feldspar

Feldspar mineral family

Aluminium (gallium) tectosilicate minerals : $M^+AlSi_3O_8 - M^{2+}Al_2Si_2O_8$

- Good glass-forming ability
- Congruent crystallization
- Fully polymerized tetrahedral network M⁺/M²⁺ cations charge balance AlO₄⁻, GaO₄⁻
- Polymorphism
 Feldspar, Paracelcian (3D) or Hexacelcian (2D)

 $Sr_{1+x/2}Al_{2+x}Si_{2-x}O_8$ ceramics ($0 \le x \le 0.4$)

K. Al Saghir et al., Chem. Mater. 2015.

SrGa₂Si₂O₈ ceramics

Annealing at Annealing at 875°C / 18h 1200°C/1h

Variation of the transparency with composition \rightarrow structural effect ?

Long range (average) structure

Intensity (a.u.

 $Sr_{1+x/2}Al_{2+x}Si_{2-x}O_8 \text{ solid-solution}$ (0 ≤ x ≤ 0.4)

SPD & NPD

20 25 20 (°)

15

10

SrGa₂Si₂O₈

• 3D network of tetrahedra

30 35

• **Monoclinic** (quasi-orthorhombic) **P 21/a** (paracelcian)

40 45

SPD & NPD

STEM-HAADF

- Pseudo-2D layered structure
- **Hexagonal** with **P6₃/mcm** (hexacelcian)

15 20 25 30 35 2θ (°)

K. Al Saghir et al., Chem. Mater. 2015.

M. Allix C. Genevois

Si/Al chemical disorder in ceramics : ²⁹Si and ²⁷Al NMR

Probing the Al/Si chemical disorder using ²⁹Si and ²⁷Al MAS NMR

Identification and quantification of the various Si (Q⁴_{mAl}) and Al (q⁴_{mAl}) units in the structure

SPD → long-range average structure (HR-TEM)
²⁹Si / ²⁷Al NMR → local structure and degree of Si/Al local disorder (departure from Lowenstein rule configurational entropy)

K. Al Saghir et al., Chem. Mater. 2015.

Building structural models from diffraction and NMR data

Supercell approximation of the substitutional disorder

- 2x2x1 supercell of the average unit cell (104 atoms)
- Generating all possible configurations (Al/Si ordering)
- Energy constraints (highest coulombic energy structures excluded)

Local charge compensation of the extra Sr atom (for x= 0.25)

Random selection with Qⁿ_{mAl} and qⁿ_{mAl} populations as constraints

2x2x1 model

• DFT-PBE geometry optimization (atomic positions)

only averaged bond lengths and angles available from diffraction

→ Periodic DFT GIPAW computations (CASTEP) of NMR shielding and EFG tensors

« Supercell » program Okhotnikov et al., J. Cheminform 2016.

Set of structures (effective medium approximation)

Ceramics : selected structural models

First-principle calculations (DFT-GIPAW) of NMR spectra from structural models

Models capture long-range structure & account partly for local structures → computation of properties (birefringence)

Ceramics : DFT computation of birefringence from models

Variation of the birefringence as a function of the Al/Si ordering (higher birefringence for full ordering)

Chemical disorder \rightarrow Tuning the birefringence of non-cubic crystalline phases

K. Al Saghir et al., Chem. Mater. 2015.

Conclusion

Structural description of (novel) materials

Make it **SMARTER....**

Acknowledgments

Orléans, France

CERAM group

Dominique Massiot, Pierre Florian, Vincent Sarou-Kanian, Aydar Rakmatullin, Nadia Pellerin, Valérie Montouillout, Michael Deschamps, Elodie Salager, Catherine Bessada Alberto Fernandez Carrion Koloud Al Sagir, Amandine Riouard Mathieu Allix, Michael Pitcher Cécile Genevois, Emmanuel Véron,

Thank you for your attention ;-)

Melilite compounds with extra oxide ions : La₂Ga₃O_{7.5}

Description of full chain ordering of O_{int} within the $[Ga_3O_{7.5}]$ layers

 $[Ga_3O_7]$ framework along c \rightarrow 2 interpenetrating hexagonal networks

M. Pitcher

Cemht

Two possibilities: chains or squares arrangement of O_{int}

Antiparallel tiling \rightarrow No geometric constraint on the tile \rightarrow chain arrangement *preferred*

Parallel tiling (square ordering) → geometric constraint on the tile (d = d') → loss of framework flexibility

Ceramics : DFT computation of birefringence from models

• Dielectric function $\varepsilon(\omega) = \varepsilon_1(\omega) + i \varepsilon_2(\omega)$ \rightarrow refractive indexes $n = \left(\frac{\sqrt{\varepsilon_1^2 + \varepsilon_2^2} + \varepsilon_1}{2}\right)^{1/2}$ \rightarrow birefringence $\Delta n = n_z - n_y$ • DFT

• PBE functional (GGA)

• ultrasoft pseudopotentials

Calculation of refractive indexes with ~12% accuracy

Random partial occupancy of Sr2 site (Sr2 empty for x = 0)

Decrease of the calculated birefringence for x = 0.25 in agreement with the **increase of the observed transparency**