

Structure and luminescence properties of highly nonstoichiometric gadolinium aluminium garnet (GAG)

PhD Xue FANG

xue.fang@cnrs-orleans.fr

Supervisors: Mathieu Allix & Michael J. Pitcher

New Inorganic Functional Oxides: Synthesis, Characterisation and Simulations

06/10/2023

Applications and structure of garnet

s-YGG

541

P

Highly non-stoichiometric YAG

Highly non-stoichiometric GAG

Modification of Luminescence Properties

Up-conversion YAG: Er³⁺/Yb³⁺

Highly non-stoichiometric GAG/GGG

 $Gd_{3+x}Al_{5-x}O_{12} / Gd_{3+x}Ga_{5-x}O_{12} Gd^{3+}(0.938\text{\AA}) > Y^{3+}(0.9\text{\AA})$

???Question:

- 1 Other highly nonstoichiometric garnet? (ADL synthesis)
- ② Range of solid solution (x < ?) (SPD)
- ③ Which dopant? Ce³⁺, Tb³⁺, Tm³⁺, Yb³⁺ occupy the B site to form a new luminescent site.
- ④ How the luminescence performance respond to new BO₆ site? (Luminescence spectrum)

Gd_{3+x}Al_{5-x}O₁₂ !!

Aerodynamic levitation

Aerodynamic levitation (ADL)

Synthesis-crystallization from glass

Average structure analysis by powder diffraction

Cécile Genevois

③ Which dopant? Tb³⁺ occupy the B site to form a new luminescent site? (STEM) Gd³⁺ (0.938Å) Tb³⁺ (0.932Å)

LE STUDIUM-2023 CEMHTI CNRS

Where is the dopant Tb? STEM-EDS

Luminescence properties

Ana Becerro and Victor Castaing

Luminescence properties

Conclusions

Perspectives

fangxue1207@163.com xue.fang@cnrs-orleans.fr

- Development of new functional materials
 - New energy
 - Glass-ceramics

- Solid chemistry
- Crystallography

- Solid state reaction
 - Non-equilibrium synthesis

 Rietveld refinement (TOPAS)
XRD/SPD/NPD

• Local structure NMR /EXAFS/ STEM **Å**

• Properties analysis AC impedance Luminescence spectroscopy

Acknowledgements

CNrs

Mathieu Allix Michael J. Pitcher Cécile Genevois **Emmanuel Véron** Didier Zanghi Frank Fayon Vincent Sarou-Kanian

Ana Isabel Becerro Victor Castaing Matthew S. Dyer

Sandra Ory Alessio Zandonà Weiwei Cao

CERAM group CEMHTI group CNRS group

THANKS FOR YOUR ATTENTION