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wx univERsITY OF  The Research Environment
LIVERPOOL

== ” i@ - The Materials Innovation Factory (MIF)
enables chemists, physicists,

mathematicians and computer scientists to
work together on a single site.

£ ° The Leverhulme Research Centre for
Functional Materials Design funds
researchers and PhD students to work in this
interdisciplinary space.

 Resulting in new approaches to aid
discovery of novel materials.
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LiO.7AI1.3TiO.7(PO4)3

All solutions

Lag 5Ll 29T10;

Li

L

Optimal solution
EIMD =12.7

The Element Movers Distance

We needed a quantitative measure
of chemical similarity between two
compositions

We use the Earth Movers Distance

Elements are labelled with their
Pettifor number

We seek the transfer elements from
one to the other with the lowest total
work done — the EIMD

C J Hargreaves, et al., Chem. Mater. 32 (2020) 10610
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All solutions Optimal solution
EIMD = 12.7 C J Hargreaves, et al., Chem. Mater. 32 (2020) 10610
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Search the largest repositories of reported materials for compounds of interest using the chemical composition
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EiMTree

. and implements the process described

Enter a chemical composition to see the 100 most similar EIMTree indexed compositions, the databases these are reported in with their associated 1Ds, and the EIMD distance to the
. Please consider citing these papers if you use this in your work.

query. This application was reported in
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EIMTree

[Q MgSiO3 ]

Enter a chemical composition to see the 100 most similar EIMTree indexed compaositions, the databases these are reported in with their associated 1Ds, and the EIMD distance to the
. and implements the process described

query. This application was reported in
in . Please consider citing these papers if you use this in your work.



El MTree [Q MgSio3 ]

Refine Search

Searched 1,367,526 unique compositions across 5,410,119 records for Mgp > Sigz Ogg in 0.044s

Composition Database: Matched IDs Distance
Mgo.2 Sip2 Ops 13556589, 286755, 197969, 288960, 286091, 121980, 92458, 443473, 287831, 67294, 299292, 356152,... 0.0
1290217, 68370, 290220, 34074, 31288, 37313, 171911, 30808, 31176, 137833, 80669, 64629, 290216,...
— — 11247033, 1247034, 1247031, 1247036, 1247035, 1247032, 1213086, 1221853, 1247037, 1720923,...
1 4 & LS1247033, 1247034, 1247031, 51247036, 51247035, §1247032, $1213086, $1221853, S1247037,.
MPDS Property :P11803448, P11324227, P20004039, P1001007, P1800098, P1800348, P11324223,...
Database
Matbench Experimental Formation Enthalpy Kingsbury: 439
Brgoch Superhard Dataset: 2107
:0f52c618e87867¢cc, 1d7ede940b42e292, 2ba30825febc0878, 8f13cdb0337ad6f5, 82d6b67054d0c514d,...
agm003248137, agm002561439, agm003274640, agm003272733, agm003227041, agm003248089
: mp-1180468, mp-657338, mp-644879, mp-1020125, mp-1182302, mp-603930, mp-554137, mp-...
139549, 35
: 2dm-4459
15225, 159559, 159563, 159564, 680702, 5218, 163892, 5300, 674100, 163891, 151550, 158514,...
12251, 3626
(11184, 11712, 12277, 12487, 15884, 20208, 24066, 24263
19276, 15213
: 7445, 8275, 8301, 8372, 10754
(11312, 11882, 12448, 12657, 16170, 20662, 24636, 24834
17445, 8275, 8301, 8372, 10754
19276, 15213
3427
Mgo.196 Zno.004 Sio.2 Oo.e : , 0.004
11047271, 1047268
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EiMTree

Q Li7siosCl

. and implements the process described

Enter a chemical composition to see the 100 most similar EIMTree indexed compositions, the databases these are reported in with their asscciated 1Ds, and the EIMD distance to the
. Please consider citing these papers if you use this in your work.

query. This application was reported in
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El MTree [Q Li7Sio5Cl ]
Searched 1,367,526 unique compaositions across 5,410,119 records for Lips Sing71 Qo357 Clgg71 in 0.067s Refine Search
Distance

Database: Matched IDs
0.595

Composition

Lig.s Snpogs Op.a17

jo
0671

:agm003225142, agm003281557
- mp-768960, mp-768966, mp-768967, mp-755346

Lips Bo1 Opa
: 21977
(gr— 122482
51
Ligs Big.o71 Op.az9 426306 0.786
» 155950

©1818766, 1121989

|[‘“ | & Q MPDS Property Database: P1128474, P20057326, P1128479, P20103788
- :agm003215469, agm003215470

:mp-38487, mp-754060

. 3407

13453
0.883

Lig.406 Geo.oss Po.oo7 Sozs
A M AT A ST

|ﬂ|"|?:l
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Enter a single composition to see it within the context of reported compositions or generate EIM2D plots and distance matrices from lists of
comma separated compositions
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EIM2D

Q Li7siosc||

Enter a composition to see the 100 most similar EIMTree indexed compositions, embedded to two dimensions via . Enter up to 100 compositions, separated via commas, to
plot their chemical similarity. Tap the distance matrix to view specific distances. This application was reported in
. Please consider

, and implements the process described in
citing these papers if you use this in your work.
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Composijon 2

Composition 1
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Li0.5 Si0.071 00.357 Cl0.071
Li0.5 BiD.071 00.429

Li0.5 P0.071 50.429

Na0.5 5n0.083 00.417

Li0.5 00.5

LiD.5 PD.0O71 Se0.214 50.214
Li0.5 AlD.1 Q0.4

Li0.5 Mn0.083 00.333 F0.083
MNa0.2 Li0.2 Ga0.1 00.4

Li0.5 Fe0.083 00.333 F0.083
Li0.489 Si0.051 P0.022 S0.365 10.073
Li0.5 S0.5

I0.1 LiD.4 AlD.1 00.4

Li0.5 50.25 Br0.25

Li0.5 ©0.2 Br0.3

Li0.5 Ga0.1 S0.4

Na0.5 00.5

K0.05 Na0.45 In0.1 00.4

Na0.5 5n0.125 00.375

Li0.5 Mn0.071 00.214 F0.214
Li0.5 AlD.1 S0.4

MNa0.25 Li0.25 50.5

Li0.5 Se0.25 Cl0.25

Rb0.061 Li0.424 Pb0.091 00.424
Rb0.2 Li0.2 Ga0.1 00.4

Li0.485 Si0.044 P0.029 S0.368 10.074
Li0.5 Mn0.1 ©0.3 FO.1

Li0.5 Se0.5

Cs0.061 Li0.424 Pb0.091 00.424
Li0.5 Te0.25 Cl0.25

K0.3 Na0.2 In0.1 00.4

Na0.5 50.25 10.25

Li0.333 Eu0.167 00.5

Ra0.5 S0.5

Distance

3.5

2.5

1.5

0.5
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Q Li7SiO5Cl, LiePOS5CI, LIEP

Enter a composition to see the 100 most similar EIMTree indexed compositions, embedded to two dimensions via . Enter up to 100 compositions, separated via commas, to
plot their chemical similarity. Tap the distance matrix to view specific distances. This application was reported in
, and implements the process described in . Please consider

citing these papers if you use this in your work.



Composition 2

Li7sioscl

LisPOSCI

LiePSSCl

LiePS5Br

LiePS5I

Compaosition 1

Li7Sioscl LisPOSCI Li6PS5CI Li6PSSBr

Li6PS5L

Distance
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Predict the ionic conductivity of potential formulations for solid state electrolytes from the composition



wv universiTy oF  Lj lon Conductivity Background
w LIVERPOOL

75%

25% —
10%

e Validated literature values
« ACIS experiments
820 entries

e Thio-LISICON Perovskite
-3 -2 -1 -0 -9 L -8 NASICON e Glass
©910(0) LISICON Other

e Garnet Argyrodite

http://pcwww.liv.ac.uk/~msd30/Imds/LilonDatabase.html

C J Hargreaves, et al. npj Comput. Mater. 9 (2023) 9
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Li-Tonic Conductivity

Q Li7SiO5Cl, Li6PO5CI, Li6PS5CI, Li6PS5Br, Li6PS5I
Calculate

Enter the chemical composition (or a list of up to 2,000 compositions separated by commas) of a candidate Li conducting solid state electrolyte to return a binary classification
architecture, trained on
. Please consider citing these papers if

o - - . - 4 | . .- - - - 14 - . .-
prediction of whether a material will have a conductivity = 107 5 cm™', and a regression prediction of the materials conductivity in logygl5 cm™'). These classification predictions
were found to have an accuracy of 0.71, with regression predictions having a mean absolute error of 0.99. This is based on a
. and is 2 hosted version of the deep learning model introduced in
you use this tool in your work.

and reported in
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Li-Ionic ConductIVIty

Q Li7SiO5Cl, Li6POS5CI, Li6PS5CI, Li6PSS5Br, Li6PSS5I
Calculate ]
Composition Classification Model (> 1074 Regression Model (logqo(Sem™))
Li7SiOsCl 0 -8.43
LisPOSCI 0 -9.36
Li6PS5CI 1 -3.25
Li6PS5Br 1 -3.11
LigPS5I 1 -3.15 LI
MAE on log,,(conductivity) =

0.85

Accuracy ~ 81 %




Predict whether a MOF is likely to be porous using the SMILES representation of the linker and a chosen metal
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Rémi Pétuya

universiTy of  NMJOF Porosity Background

* Metal organic frameworks are
porous materials with inorganic
and organic fragments

* Experimentally determined
structures are reported in the CSD

* We took these and split them into
separate metal / organic
fragments to enable machine
learning prediction of porosity

R Pétuya, et al. Angew. Chem. Int. Ed. (2022) €202114573

Refcode PLD(A)

1M1L3D

dataset
somorwith [N
species and

P I

Refcode

Linker
ABAVIJ 0OC(=0)clccnecl
ABAVOP 0OC(=0)clccnecl

50 Mordred 2D
descriptors
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Q OC(=0)C(=0)0 ‘
rQ Zr, Zn, Cu, Fe X 1
' Calculate ’

Enter the formulation of a potential MOF using the SMILES representation of the linker and the metal(s) to be combined, to predict the likelihood of pores of different sizes forming

in the resultant structur. Due ta limitations in the training dataset only some elements are supported as metal, . Predictions were found to
have an accuracy of 80.5% on a test set. This application was reported in and is
based on the model first reported in . Please consider citing these

papers if you use this in your work.
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Porosity

Q. 0C(=0)C(=0)0

Q. Zr, Zn, Cu, Fe

'd

Calculate
Linker Metal Predicted porosity category
OC(=0)C(=0)0 Zr porosity = 2.4 A
0C(=0)C(=0)0 Zn 2.4A < porosity < 4.4A ACCU racy -~ 80 %
OC(=0)C(=0)0 Cu 444 < porosity <5.94
OC(=0)C(=0)0 Fe 2.4A < porosity < 4.4A
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Predict the thermal conductivity of a candidate thermoelectric material from its composition



s, Michael Moran

- \}LM‘@
2™ UNIVERSITY OF S %
<7 LIVERPOOL & g

ES e

Thermal Conductwnty

[Q Cu9Al4, Sr2Tie013, Ti2FeNiSbe, CuZSnZnS4| x

Calculate

Enter a composition, or a list of up to 2000 compositions separated by commas, to return a pradiction of the thermal conductivity of each formulation.The prediction was found to
have a RZ of 0.71. and root mean squared error of 0.55 logg(W m™" K1) on a test set of thermoelectric materials comparing the true logarithm of thermal conductivity to the
predicted logarithm of thermal conductivity. This application was reported in

and is an improved version of the model first used in . Please consider

citing these papers if you use this in your work.
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Thermal Conductwnty

[Q Cu9Al4, Sr2Ti6013, Ti2FeNiSh2, Cu2SnZnS4

[ Calculate
Composition Predicted thermal conductivity (W m™! K1)
Cu9Al4 15.78
Sr2Ti6013 9.91

Ti2FeNisb2 6.19 RMSE on IOgm(CondUCtIVItY) =
Cu2SnZns4 7.5 O . 55




MOF porosity

Model the heat capacity of a material from a csv of temperature readings and the corresponding Einstein and Debye components



Heat Capacity

Choose File | ExampleData.csv

Einstein components

Add Einstein component Remove Einstein component

Debye Components

Debye Temperature 1 (K)

| Q, 300 ‘
Pre-factor component for 1

@ |

Add Debye component Remove Debye component

Linear {y) component

&

Plot data as C/T" (n = 0 for high T fitting, 3 for low T fitting)
Qo

Model Starting Temperature (K)

Q 2

Model Ending Temperature (K)

Q. 250 x

X axis log scale?
Y axis log scale?
' ™

Calculate

Jon Newnham



Jon Newnham

Heat Capacity

Choose File | No file chosen

Your file is already uploaded and will be stored for 15 minutes, there is no need to reupload file unless wish to change the data you
are operating on

25 . data [ ]
total s N

T T T T T
0 50 100 150 200 250 300

T
Click here to download your model

Einstein components



Jon Newnham

Heat Capacity

Choose File | Mo file chosen

Your file is already uploaded and will be stored for 15 minutes, there is no need to reupload file unless wish to change the data you
are operating on

5] = data ]

T T T T
0 50 100 150 200 250 300

Click here to download your model

Einstein components
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The LMDS is up and running, and freely available to all

Cloud based web-servers like the LMDS are a good way to make
computational models available for wide use

The LMDS server will be expanded in the future, so watch this space!

https://Imds.liverpool.ac.uk
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