

Ca_2MnO_3X (X = Cl, Br) – Oxyhalides with 1-dimensional ferromagnetic chains of square planar S = 2 Mn³⁺

Fabio DENIS ROMERO – 231004

GRENOBL

Mixed Anion Materials

Compounds with more than one anionic species

Kageyama et al. Nature Communications 2018

Hume-Rothery rules

For substitutional solid solutions:

The atomic radius of the solute and solvent atoms must differ by no more than 15%

A significant size difference between ions results in the occupation of different crystallographic sites

Will favor layered order

Hume-Rothery and Powell Zeitschrift für Kristallographie 1935

55,000

45,000

35,000 2000

1000

No. of compounds

n = 1 Ruddlesden-Popper Structure

Knee and Weller Chem Mater 2002

neel.cnrs.fr

Coordination Requirements

Kriworuschenko and Kahlenberg Crystal Research and Technology, 2002; Hector et al. J Mater Chem 2001, Sannes et al. ACS Omega 2023

Can we make Ca₂MnO₃Cl?

2CaO + ½MnO₂ + ½MnCl₂ Quartz tube sealed under vacuum 1×12h 850 °C

 → Orange powder
→ Moisture sensitive (decomp. in days)

→ Sharp reflections → Not Ca_2FeO_3Cl structure

Structure solution

 $\rightarrow \text{TEM}$

- EDX analysis (avg 10 crystallites):
 - Ca_{2.0(1)}Mn_{1.3(1)}Cl_{0.7(1)}O_x
- *Cmcm*
 - *a* = 9.75 Å
 - *b* = 6.49 Å
 - *c* = 6.58 Å

UGA Université Grenoble Alpes

• vol. = 416 Å³

Refinement against Lab XRD

Crystal structure

- Chains of Mn³⁺O₄ square-planes
- α ~ 120 °

institu

(a)	(b)
	α
a waa waa	b o o
FD	

Ca₂MnO₃Cl

0 📀 🕑 Cl

	<i>X</i> = CI
Mn-X	2.851(2) Å ×2
Mn-O1	1.909(3) Å ×2
Mn-O2	1.925(3) Å ×2
Mn BVS	2.91
Mn-Mn intrachain	3.288(2) Å
Mn-O1-Mn (α)	118.9(2) °
Mn-X-Mn	6.488 Å
Mn-Ca-Mn	5.855 Å

Ca_2MnO_3Br

 $2CaO + \frac{1}{2}MnO_2 + \frac{1}{2}MnBr_2$ Quartz tube sealed under vacuum 1×12h 850 °C \rightarrow Orange powder \rightarrow Moisture sensitive (decomp. in hours)

neel.cnrs.fr

Magnetic Properties

C = 3.23 emu K / mol and 3.04 emu K / mol

 μ_{eff} = 5.09 μ_{B} and 4.93 μ_{B} vs. μ_{exp} = 4.90 μ_{B}

 θ = 22 K and 19 K for X = CI and Br respectively 48 K (*) \rightarrow FiM Mn₂O₃ impurity <1% by mass AFM T_N \sim 20 and 28 K (---)

D1b

Structural Properties

Ionic radii:	
O ²⁻	1.40 Å
Cl⁻	1.81 Å (+29%)
Br⁻	1.96 Å (+40%)

	<i>X</i> = CI	<i>X</i> = Br
Ca-X	3.122(4) Å ×1	3.125(3) Å ×1
	2.945(3) Å ×1	3.027(3) Å ×1
Ca-O1	2.250(4) Å ×1	2.253(4) Å ×1
	2.468(2) Å ×2	2.479(3) Å ×2
	2.337(3) Å ×2	2.353(3) Å ×2
Ca BVS	2.06	1.63
Mn-X	2.851(2) Å ×2	2.898(3) Å ×2
Mn-O1	1.909(3) Å ×2	1.915(2) Å ×2
Mn-O2	1.925(3) Å ×2	1.932(3) Å ×2
Mn BVS	2.91	2.57
Mn-Mn intrachain	3.288(2) Å	3.285(2) Å
Mn-O1-Mn (α)	118.9(2) °	118.2(2) °
Mn-X-Mn	6.488 Å	6.536 Å
Mn-Ca-Mn	5.855 Å	5.936 Å

Structural Properties

Ionic radii:	
O ²⁻	1.40 Å
Cl⁻	1.81 Å (+29%)
Br⁻	1.96 Å (+40%)

	X = CI	<i>X</i> = Br
Ca-X	3.122(4) Å ×1	3.125(3) Å ×1
	2.945(3) Å ×1	3.027(3) Å ×1
Ca-O1	2.250(4) Å ×1	2.253(4) Å ×1
$C_2 O_2$	2.468(2) Å ×2	2.479(3) Å ×2
Ga-02	2.337(3) Å ×2	2.353(3) Å ×2
Ca BVS	2.06	1.63
Mn-X	2.851(2) Å ×2	2.898(3) Å ×2
Mn-O1	1.909(3) Å ×2	1.915(2) Å ×2
Mn-O2	1.925(3) Å ×2	1.932(3) Å ×2
Mn BVS	2.91	2.57
Mn-Mn intrachain	3.288(2) Å	3.285(2) Å
Mn-O1-Mn (α)	118.9(2) °	118.2(2) °
Mn-X-Mn	6.488 Å	6.536 Å
Mn-Ca-Mn	5.855 Å	5.936 Å

UG Université Grenoble Alpes

COL

Magnetic Properties / D1b

Magnetic structure

- FM chains coupled AFM
- Refined 3.7(1) and 3.5(1) μ_B

Interaction through halide responsible for long range order

Halide interactions

Mn-...Cl...-Mn < Mn-...Br...-Mn

McGuire, et al. Crystals 2017; Westphal, et al. J. Phys. C: Solid State Phys. 1980; Westphal, et al. J. Phys. C: Solid State Phys. 1982; Extended Interactions between Metal Ions: In Transition Metal Complexes 1974; Magnetochemistry 1986 6.488 Å 6.563 Å 5.855 Å 5.936 Å

T _N	<i>X</i> = Cl	<i>X</i> = Br
Ca ₂ MnO ₃ X	20 K	28 K
MnX ₂	1.96 K	2.16 K
MnX ₂ ·4H ₂ O	1.62 K	2.12 K
[(CH ₃) ₃ NH]MnX ₃ ·4H ₂ O	0.98 K	1.58 K

Conclusion

- Synthesis of two oxyhalides w/ novel structure type
- 1-dimensional chains of square-planar S = 2 Mn³⁺
- FM chains coupled AFM
- Determinant magnetic interaction through halide
- Spin-flop transitions at low T

Acknowledgements

Institut Néel

Christophe Lepoittevin Stéphanie Kodjikian Claire V. Colin University of Oxford

Michael A. Hayward

Thank you for you attention

