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o Spinning sphalerons in Weinberg-Salam



Superconducting vortices in
electroweak theory



U(1) Abrikosov-Nielsen-Olesen vortex

Abelian Higgs model

L=~ (Fu)? + Do — 50107 — Y
Cylindrically symmetric fields
" = nfano(p)e’™?, AN = (n — vano(p))dep,
n ez, VW = 2mn = magnetic flux quantization

n = 1 vortex is topologically stable
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Witten's U(1)xU(1) model '85

Lw= — DY +10u61P ~ 5 (162 — )’
A
— FRY 4 Dbl ~ 22 (100~ B) ~Alnlal?

‘bare vortex': AQ) = AN, 1 = M, AR = ¢y =0.
‘dressed vortex': AE}) ~ AZNO, @1 ~ PN, ¢2 = f(p) # 0.
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Witten's superconducting strings

Solutions with Af) # 0 interpolating between the ‘bare’ and

‘dressed’, with current J, = 8”F,Si) along the string.

A — (oodt + 03dz) (1 — u(p)), ¢2= f2(p)ei”0f+"ff3z’

Twist vector o, = (00, 03) with norm o2 = (f% - 08
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3 critical current. GUT = cosmological applications



What about Standard Model ?

o Weinberg-Salam theory also contains two complex scalar fields
and two vector fields (U(1) and SU(2)).

@ It has embedded ANO vortices = Z strings

_ 2 2 _3\ AANO _ ¢ANO
Wz =2(g"" + g°m°)AM°, &7 = 0 .
/Nambu '77; Vachaspaty '93/

@ Perhaps there exist also dressed Z strings that could be
generalized for non-zero currents ? /Perkins '93; Olesen '93/

® Z strings are unstable and can be deformed to vacuum = no
non-trivial lower bound for their energy
/Klinkhamer, Olesen '94/

@ Search for dressed Z strings gave no result /Achucarro, '94/.



Some known electroweak solutions

@ Spinning dumbbells. /Nambu '77; Urrestilla et al. '02/

@ Sphalerons = energy saddle points.
/Klinkhamer & Manton '84/

o Vortex lattices /Ambjorn and Olsen '88/
@ Oscillons /Graham '07/

o Twisted superconducting strings in the g — 0 limit
/Forgacs, Reuillon, M.S.V '06/

Perhaps one can find electroweak analogs of Witten's strings 7



SU(2)xU(1) Weinberg-Salam theory
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Field equations

9uB" = gPR(i®TD"®),
O WH  +  €apc WOW = g? R(idTr2 D 0)

D,D'® = §(¢T¢—1)q>.

n? = ®1720 /(dTd) = electromagnetic, Z fields ~ /Nambu '77/

/

Fu = é% B — gE W23, Zu =B+ n°W3,,

= electromagnetic current density

J,=0"F,,



Vortex symmetries

0 0 0

7w fo=3 Keo=3;

Ky =
(t) o

= energy, momentum, angular momentum

0 2 0 2 0 2
/TMK(’:_)C/ X, /TMK(;)C/ X, /TMK(f;)d X,

electric charge and current (« = 0, 3)

I = / J%d%x



Field ansatz

Symmetries commute = 3 a gauge where the fields depend only
on p. Let o, = (00, 03) be a twist vector then

W = u(p) oadx® = v(p) dp + 71 [t1(p) 00 dx™ — vi(p) dy]

X _( flp)
+7-3 [u3(p) oadx® — V3(p) ng], ¢ = < 6(2) >

@ W, = 0 gauge condition — remain 8 out of 16 real functions

o W =W, d = o*

@ Boosts along z = x3 axis

o Residual global symmetry (f; + i) — eér(ﬂ + ify),

(u1 + iU3) — e_’r(ul + fU3), (V1 + iV3) — e"r(vl + iV3)
@ Only the "twist” (norm) o2
equations

= o% — 08 appears in the

@ Maxwell and Z fluxes are no longer quantized.



8 coupled equations
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Boundary conditions

@ At the symmetry axis p = 0 the fields are regular, energy
density is finite.

o At infinity p — oo the fields approach the Biot-Savart field of
an infinitely long electric wire:

A= L odin? fcdy
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Local solutions at the origin

u=a-+..., ulzagp”—i—..., u=1+...,
vi=00p""2), ws=v+azp’+..., v=2n—v+asp’+...,
fi=asp"+..., h=gqgpl" "+ ..

If n,v € Z then one can pass to a regular gauge where W, = 0 at
p =0, but fields depend also on t, z, .



Infinity = Biot-Savart-+-corrections
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depend on

m,, m, m,= \/mv%—|—02(QInp+c1)2~Ion

= fields are localized if only 2 > 0 (magnetic or chiral type).



Global solutions

o the local solutions at p < 1 and at p > 1 are numerically
extended and matched at p ~ 1 within the multiple shooting
method.

o there are 16 matching conditions and 17 parameters to resolve
them: a1,...,as and g at the origin, also c¢1,...,cg, C, 7 at

infinity and also o2.

@ there is one parameter left to label the global solutions:
condensate parameter | g = £(0) |.

g =0 = Z strings

ing
Wz =2(g"? +g°m)A%, o= < fNO(pO)e ) :



g = h(0) < 1; perturbative solutions

small Z string deformations (W, ®) = (Wz,®z) + (W, i),

(OW, 5) ~ €7 Y (p)

= eigenvalue problem for 02 = 05 — o3

V= (02 + Vz[B,0.,n,v, p])V,

= 2n bound states labeled by v =1,2,...2n

U~ exp(—mgp),  mi=ml+o’

describe Z string slightly perturbed by a current Z, ~ o.

/One has 0g = w/a% — 02 = vortices with 02 > 0 exist in the

region where Z-strings are unstable: one can set momentum

o3=0= 09 =V—0?/



(', )-eigenvalue (5 =2)
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Fully non-linear solutions, g = (0) ~ 1
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Generic superconducting vortices

are globally regular, with a regular vortex core containing a massive
W-condensate that creates a current. The current produces a
Biot-Savart field outside the core. They are field theory realisations
of electric wires

o Exist for any value of the Higgs mass and for any 6,

o Comprise a four parameter family labeled by current Z,
electric charge @ and by two integers n, v determining the
values of the magnetic and Z fluxes.

o Vortices with different @ are related to each other by Lorentz
boosts.

o For Z — 0 reduce to Z strings.



Current 1/lg =1

q="£(0)

lp = c®g = c x 54.26 x 10° Volts = 1.8 x 10° Amperes.



Large current limit

@ In conventional superconductivity models Z is bounded
because it is carried by the scalar condensate, which is
destroyed by the strong magnetic field.

@ In the Weinberg-Salam theory the current is carried by the
vector W-condensate, which is not quenched by the magnetic
field, even though ® — 0. As a result, Z is unbounded (in
classical theory).

@ For Z > 1 the system splits into the central W-condensate
region and the external region.



Central W-condensate region, p < 1/7

B ~const., & ~1/77 ~ 0 = L = —z5 W3, W

TPWadx" = 7I\U(€)dz+73V(€)de € = A\p, A = scale parameter

E4+...+ U —085+091In(&)+...
1 V. —0.32,/€0006¢70016




External region, p > 1/7

U(1)xU(1) theory = Maxwell + Abelian Higgs

1 B
=— (F;w)2 2(Zu v)? + (0, Zu)¢|2 - g(\d>|2 —1)?
with
g g
Av=5B,—=W,,  Z,=B,+W,, ¢1r¢pp=0¢
g g
Solution
1I<p<T : A,~TIhp, Z#NIIn%,

)
p>1L Ay~TIlnp, Z=0, o=



Large Z vortex cross section

Broken phase:

electromagnetism Higgs “crust

Symmetric phase:
electromagnetism +
massless Z field

W-condensate
core region

[. W-condensate core ~ 1/Z /Ambjorn & Olesen '88/
Il. symmetric phase ~ 7
[11. Higgs ‘crust’ ~ 1/m,



Inner structure of large 7 vortex
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lI. Stability analysis

J.Garaud and M.S.V. Nucl.Phys. B 799, 430 (2008)
Nucl.Phys. B839, 310 (2010)



Generic vortex perturbations

&+ 30, B, B,+0B,,  WI— WI+iw?

0o = Z, k, m{[bw, k, m(p) + i 1y, k, m(p)] cos(wt + mp + Kz)

+[mw, k, m(p) + i Xw, k, m(p)] sin(wt + mp + kz)} ,

0Bu=> ,k,m{...}
W2 =Y " k,m{..}



Perturbation equations

Imposing the background gauge condition and separating the
variables gives a Schroedinger system

VU 4 U V=0V

V(p) is a 16-component vector, Uy, ..(p) is a potential matrix
determined by the background fields.

Bound states with w? < 0 = unstable modes.

They exist only in the m = 0 channel.



String instabilities

Negative modes with w?(x) < 0 have the structure

eIt cos(kt)W(p) = vortex fragmentation

A= 21/k

k< Rmax(T) = | A> Anin(T) = 27/ | =

imposing periodicity with period L < Apin(Z) eliminates negative
modes /Plateau-Rayleigh, Gregory-Laflamme/

Periodicity can be imposed by bending the vortex to a loop. =
small and thick vortex loops might be stable — because they are
hard to pinch or bend



Stabilizing vortex segments

@ Making loops (electroweak vortons ?)

o Attaching the ends to something (polarized clouds) = charge
transfer

M

A
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Electroweak thunderbolts

Finite vortex segments transferring charge between regions of
space. Their current Z ~ 10° — 1019 A

For atmospheric thunderbolts Z ~ 3 x 10° A



Virtual vortex segments

o Closed segments — showers of neutral particles

@ Open segments — charged jets

Perhaps they could be observed at the LHC 7



Summary of part |

@ There are superconducting vortices in the electroweak theory.

@ Their current can typically attain billions of Amperes, and
there seems to be no upper bound for it (in classical theory).

o For large currents the electroweak gauge symmetry is
completely restored inside the vortex by the strong magnetic
field.

@ Vortices with @ # 0 could be stable upon imposing periodic
boundary conditions.

Could vortex loops exist and be stable 7



[I. Spinning solitons and spinning vortex loops

E.Radu and M.S.V. Physics Reports, 468, 101-151 (2008)
J.Garaud, E.Radu, M.V.S. Phys.Rev.Lett. 111, 171602 (2013)



Making a vorton

Effective macroscopic description: superconducting vortex =
elastic rope /Davis, Shellard '88/

S

o
superconducting string

vorton



of

nt = accelerated motion

radiate ? Loop of curre

RADIATION ?

Are they stationary ?



Constructing stationary vortons

Global limit of Witten's model
L=0,0"0"p+ 0,0"0c — U
U= 220168 — 12 + 2Aolo2(o? — 202) + 510l
Axial symmetry
¢ =X(p,2)+iY(p.z), o=2Z(p,z)e "
Noether charge @ and angular momentum J
Q= w/ lo|?d®x, J= / T£d3x =mQ

spinn. m=J/Q



Equations + boundary conditions

Phases of o = Ze't+m? ¢ = X 4 iY increase along S, S;.

A
AX = <7¢(x2 +Y2o1)+ 722> X,

A
AY = <7¢(X2 +Y2-1) +722> Y,

m A
AZ = <? —w?+ 7"(22 —n2) +y(X* + Y2)> Z.



Thick vortons (small m

e

L7

)

L7

=

/Radu and M.S.V. '08/ — 20 years later.




Thin ring vortons — large m = J/Q

Pinching and bending instabilities ~ /Battye and Sutcliffe '09/



Fully non-linear evolution in 3 + 1

One solves the non-linear evolution problem (within a finite
element numerical scheme)

oU(¢,0)
l¢l?

oU(¢, o)

75 =0
a2 7

O + ¢=0, Oo+

in a finite spatial box with reflecting boundary conditions. One
starts from a stationary vorton configuration

t=0: ¢=dvort(X), 0 =0yort(x), ¢=0, ¢=—iwo.

A non-trivial evolution is triggered by the discretization. The result

depends on value of m=J/Q: video

J.Garaud, E.Radu, M.V.S. Phys.Rev.Lett. 111, 171602 (2013)



Mikhail S. Volkov Superconducting non-Abelian vortices in Weinberg-Salam theo



Mikhail S. Volkov Superconducting non-Abelian vortices in Weinberg-Salam theo



Small vorton

(m=1)

Stable — similar result for "spinning light bullets”
/Michalache ... Malomed ...2002/
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Summary of part Il

@ The small and thick n = m = 1 global vortons with a
sufficiently large charge are dynamically stable.

o Can global vortons be promoted to local solutions of the
Weinberg-Salam theory = electroweak vortons ?

o If stable electroweak vortons exist, could they contribute to
the dark matter ?



[I1. Electroweak vortons with n = 0, m ## 0 winding
= spinning sphalerons

E.Radu and M.S.V. Phys.Rev. D79, 065021 (2009)



Axial ansatz with 8 functions of p, z

+
W=(Y,+ lebg + T3¢Z’)dxa + 2vdxk, & = [ j;_ ]

where x? = (t, ) and Y,, 11,43, v, depend on xk = (p, z).

1

r— oo W=(7'3—1)(wdt+dg0)—|—5W, (D:[O

| + 50,

winds only about the azimuthal direction, m # 0, but n =10



Sphaleron = saddle point

sphaleron

w(r)

CS

6., = 0 = spherically symmetric /Klinkhamer & Manton '84/

W = e+ 1. &= O

0, > 0 = axially symmetric






Angular momentum
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In quantum theory J € Z = @ is quantized, sphalerons mediate
transitions in sectors with Q = 0 (ZZ), £e (ZW¥), ...



Inner structure

For large J shows the Regge behavior J ~ E? predicted by Nambu
for dumbbells.

|

B.

J

Contains a monopole-antimonopole pair and a spinning loop with
zero winding number.



Summary of results

@ Solutions describing superconducting vortices in the
Weinberg-Salam theory.

@ Stationary and stable vortex loops (vortons) within the
U(1)xU(1) global theory model.

@ Spinning sphalerons in the Weinberg-Salam theory —
(n=0,m > 0) vortons.

It is plausible that n > 0, m > 0 electoweak vortons also exist. The
n=1,m =1 vorton should be stable — a possible dark matter
candidate



