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Negative Magneto-Resistivity in 3D Dirac semimetals

Three key steps:

1. Quantum Chiral Anomaly + Scattering:

Steady state solution:

2. Chiral Magnetic Effect (CME):

3. Combining 1. and 2. we obtain:

Turns Dirac semimetal into
parity-breaking Weyl semimetal

But how interactions modify this picture?

D. Kharzeev et al, Nature Physics 12, 
550–554 (2016)

Experimental observation:

It seems that it can be observed even in systems with ill-defined chirality:

F. Arnold et al, Nature Communications 7, 11615



  

Derivation of mean-field approximation
for interacting Dirac semimetal

We start with Wilson-Dirac Hamiltonian and add contact interactions,
which serve as a simple model of screened Coulomb interactions:

For the partiton function we perform standard Suzuki-Trotter decomposition:

And perform Hubbard-Stratonovich transformation:

where matrices are said to correspond to different condensates in the mean-field 
approximation:



  

Derivation of mean-field approximation
for interacting Dirac semimetal

First of all, let us study phase diagram of this model at zero external fields
and vanishing bare chemical potential, so that particle-hole symmetry is intact:

To this end we find such values of Hubbard fields which minimize the free energy:

so that mean-field value is

      It is interesting how interactions renormilize chiral chemical potential.

We add two bare parameters to the model: mass and chiral chemical potential:

Finally we numerically minimize the free energy for different values of bare 
parameters.



  

The phase diagram

1) All condensates appear to be homogeneous in space.

2) Non-zero condensates are:

To make it more convinient we separate different matrix structures in Hubbard field:

where gamma-matrices form complete basis in the space of Hermitian matrices.

What have we found?

Chiral condensate:

CP-breaking mass:

Chiral chemical potential:



  

The phase diagram

There are two phases: normal (as well as topological insulator) when  
     
and so-called Aoki phase (Axionic insulator phase) when               .

Normal phase

Aoki phase



  

The phase diagram

Dependance of CP-breaking mass on interaction strength.



  

The phase diagram

Chiral chemical potential is strongly enhanced by interactions,

especially in the Aoki phase



  

CME conductivity

But at the end of the day, we can not measure chiral chemical potential.

Let us study something which can be related to measurable in experiment quantities,
the CME conductivy:

Naively, we could say that since chiral chemical potential is enhanced,
then this conductivity is enchanced, too.

But there are also loop corrections:

V V

… + + ...



  

CME conductivity

Note: on the lattice static CME conductivity is zero at k = 0!

Lines without markers represent analytical formula with appropriate 
parameters:

See also for absence of CME
in equilibrium:

M. Zubkov, Phys.Rev. D93 
(2016) no.10, 105036

N. Yamamoto, Phys. Rev. 
D 92, 085011 (2015)



  

CME conductivity

Values of CME conductivity on the phase digram

1) Never exceeds naive result for CME conductivity with renormilized chiral
chemical potential

2) Effect of the mass is strong — always supresses conductivity 

Aoki phase

Nf = 1
Weyl SM

Nf = 3
TI

Nf = 3
TI

Nf = 1
TI

Nf Dirac cones

3) When there is a Dirac cone in the spectrum loop corrections are very small

P. Buividovich, M. Puhr, S. 
Valgushev, Phys. Rev. B 92, 
205122 (2015)

Matthias Puhr

Dr. Pavel Buividovich



  

Step towards out-of-equlibrium dynamics

Can we generilize mean-field approach in order to study non-euilibrium dynamics?

We can use Keldysh formalism: 

Next we perform Hubbard-Stratonovich transformation again for each part of Keldysh
contour and parametrise fields along forward and backward branches as:

where we separate «classical» fields and «quantum» fluctuations, integrate out fermions
and obtain path-integral representation for observable:  
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Step towards out-of-equlibrium dynamics

Linear in quantum fields

Expand to first order of
quantum fields

Neglect

Integrating out quantum fields we formulate the following self-consistent 
equations of motion:

with  time-dependent mean-field Hamiltonian:

V V

… + + ...



  

Step towards out-of-equlibrium dynamics

We can numerically solve these differential equations with appropriate initial values.

Essentialy classical dynamics of Hubbard field + fully quantum dynamics of fermions in
the background of classical fields (external gauge fields and dynamical Hubbard fields)

1) Let's impose static homogeneous background magnetic field:

so that magnetic field points in the z diection.

2) For simplicity we study dynamics only at T = 0.

Physical setup:

3) Lattice is periodic, therefore flux of magnetic field is quatized:

Partialy digonalized
Hamiltonian!



  

B=0

Line of constant physics
with Nf=1 Dirac cone

We study the line of constant physics where
there is only one Dirac cone in the spectrum

1) All condensates are again homogeneous in space.

2) Non-zero condensates are:

Chiral condensate:

CP-breaking mass:

Anomolous magnetic moment:

Anomalous magnetic moment induce Zeeman splitting:

Phase diagram in the magnetic field

After numerical minimization we find that:

Zero bare chiral chemical potential:

(Formula is given for continuum fermions)

Chiral anomalous magnetic moment:



  

Phase diagram in the magnetic field

L=100

Renormalization of the mass of electrons in normal phase by interactions
at different values of magnetic field and comparison to the formula:

Normal phase

Renormalization is very weak in normal phase

Our magnetic field B = 1 corresponds to physical magnetic field B ~ 1T
for reasonable size of lattice step a ~ 0.1 nm. 

(Derived for LLL in continuum)



  

Phase diagram in the magnetic fieldL=100

Normal phase Normal phase

Normal phase Normal phase
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Real-time simulations: setup

Since initial ground state is completely homogeneous in space, we can
greatly speed up numerical calculations — by a factor of L.

Let us illustrate the idea in continuum theory, however the same holds
also for lattice.
In magnetic field states are described by wave-functions of quantum
oscillator which obey:

It is possible to show that because of this if initial state is homogeneous,
then this homogeneouty will be preserved by evolution.

We can use this in order to simulate all quantities at a single point:



  

Vector current and anomaly in constant electric field

We apply constant electric field E||B to the free sysytem (V = 0)

The current and axial density are saturated by
contrubution of lowest Landau level.

In limit of infinite lattice size we reproduce
chiral anomaly and Nielsen-Ninomia static
magnetoconductivity:

Scaling of anomaly coefficient
with the volume

Nielsen, Ninomiya,
Phys. Lett. B 130 (1983) 389

For real time evolution of free Weyl SM see also B. Rosenstein, M. Lewkowicz 
Phys. Rev. B 88, 045108



  

Vector current and anomaly in constant electric field

Now we switch on iteractions:

Although naive «chiral density» production rate is greatly increased,
the DC conductivity is almost insensitive to interactions!

It is also interesting to test the result obtained by M. Zubkov and R.A. Abramchuk:

But with present data we cannot see such corrections since our parameters correspond
to asymtotic region              . This gives an important direction for future work.

arXiv:1605.02379



  

Dynamics of condensates: Axion(s)

Are there any signatures of axion dynamics in the vector current?



  

Dynamics of condensates: Axion(s)

Are there any signatures of axion dynamics in the vector current?

Zoomed in fluctuations of axion in the Aoki phase



  

AC conductivity
We can also study a response to a short pulse of electric field parallel
to magnetic field:

«CME» current

An induced steady («CME») current is again insensitive to interactions!

This current is a sum of ordinary Ohmic conductivity and CME, and 
depending on the time length of the pulse either Ohmic conductivity 
dominates or CME.



  

AC conductivity
But we miss important ingredient — namely, backreaction of electric field!

Let us supplement our equations with Maxwell eqautions for homogeneous in space
and static magnetic field and homogeneous electric field:

Plasma oscillations emerge as a consequence of backreaction of electric field

Doesn't significantly affect on dynamics of axion



  

AC conductivity
Knowing electric field and the response, one can use defenition of optical conductivity 
in order to estimate it:

1) It seems that optical response is very similar to response of free fermions
in magnetic field (in normal phase) and effects of interactions are presumably small 

Free fermions
in magnetic field

2) No evident signatures of axion (probably poorely visible..)

Typical frequencies are order of THz for B~1T

Preliminary conclusions:



  

AC conductivity

Imaginary part of conductivity:

In Aoki phase some interesting resonanse emerges at frequency f~0.1

Position of the resonanse is almost insensitive to external fields!

Period of oscillations of axion is an agreement with this observations: T~10



  

Conclusions

1) We have studied model of interacting Dirac semimetal using Wilson-Dirac 
fermions with contact interaction term both in equlibrium and in out-of-
equlibrium setups.

2) In equlibrium we explored the phase diagram and observed enchancement 
of chiral chemical potential by interactions.

3) However, calculated value of CME conductivity was enhanced primarily due 
to enchancement of chiral chemical potential, while loop corrections were 
quiet small and always decreased the conductivity, so that conductivity never 
exceeded naive value with renormilized chiral chemical potential.

4) In out-of-equlibrium setup we studied process of formation of chiral 
imbalance in parallel magnetic and electric fields and found that effect of 
interactions is quiet small.

5) Effects of interactions in the normal phase are turned out to be very small in 
both DC and AC conductivity.

6) Although there is a dynamical axion field, we were not able to detect any 
observable signatures of it in the response of vector current in normal phase.

7) As one of possible directions of future development it is interesting to 
simulate different types of chiral waves: M. Chernodub, JHEP 1601 (2016) 100
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