Origin of dissipative Fermi arc transport in Weyl semimetals

E. Gorbar, V. M., I. Shovkovy, & P. Sukhachov

arXiv:1603.06004 (to appear in Phys. Rev. B)

JUNE 14, 2016

Low energy Dirac and Weyl fermions

 $H(\mathbf{k}) = (\blacksquare v \downarrow F \, \boldsymbol{\sigma} \cdot (\mathbf{k} - \mathbf{b}) + b \downarrow 0 \, \& 0 \, @0 \, \& - v \downarrow F \, \boldsymbol{\sigma} \cdot (\mathbf{k} - \mathbf{b}) - b \downarrow 0 \)$

Dirac semimetals

Weyl semimetals

Fermi arcs

Fermi arcs are open segments of the Fermi surface connecting projections of the bulk cones onto the surface Brillouin zone (BZ). [X. Wan et al., Phys. Rev. B 83, 205101 (2011)]

Effective model of the Fermi arcs

Disorder and Kubo theory

Quenched disorder model:

$$H_{\rm dis} = \int d^3 \mathbf{r} \,\psi^{\dagger}(\mathbf{r}) U(\mathbf{r}) \psi(\mathbf{r}), \quad U(\mathbf{r}) = \sum_{j} u(\mathbf{r} - \mathbf{r}_j) = \sum_{j} u_0 \delta(\mathbf{r} - \mathbf{r}_j).$$

Kubo formula for the dc conductivity: $\sigma_{xx}(\mathbf{r}) = -\lim_{\Omega \to 0} \frac{1}{\Omega} \prod_{xx}(\mathbf{r})$.

Approximate model (common for the 3D):

$$\Pi_{xx}(i\Omega_n, \mathbf{q}) \simeq e^2 v_F^2 T \sum_l \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \langle G(i\omega_l, \mathbf{k}) \rangle_{\text{dis}} \langle G(i\omega_l - i\Omega_n, \mathbf{k} - \mathbf{q}) \rangle_{\text{dis}},$$

$$\mathbf{f}$$
No crossing impurities lines

$$\Pi_{xx}(i\Omega_n;\mathbf{r},\mathbf{r}') = e^2 v_F^2 T \sum_l \langle G(i\omega_l;\mathbf{r},\mathbf{r}') G(i\omega_l-i\Omega_n;\mathbf{r}',\mathbf{r}) \rangle_{\text{dis}}.$$

Conductivity in the 1D model

Effective 1D Hamiltonian for the surface states: $H_{surf} = -i v_F \partial_x$.

The 1D effective model is valid only for $-\sqrt{m} < k \downarrow z$

 $<\sqrt{m}$.

Green's function is:
$$G_{\rm arc}(\omega, \mathbf{k}) = i \frac{\theta(m - k_z^2)}{\omega + \mu - v_F k_x + i0}$$

Approximate solution:

$$\Sigma_{\rm arc}(\Omega, \mathbf{q}) \equiv -in_{\rm imp} u_0^2 \frac{\sqrt{m}}{2\pi v_F}, \quad \mathbf{T} = n_{\rm imp} u_0^2 \frac{\sqrt{m}}{2\pi v_F}.$$

$$\mathfrak{Re}\,\sigma_{xx}(0,0) = \frac{e^2 v_F \sqrt{m}}{4\Gamma\pi^2}. \leftarrow \text{well-known, Drude-like, result}$$

1D chiral surface states are dissipative!?

Correct conductivity in the 1D model

1D problem: $[-i\nu\downarrow F \partial\downarrow x + \sum j \uparrow w \downarrow 0 \delta(x - x \downarrow j)]\psi(x) = E\psi(x)$, has exact solution:

$$G(\omega; x, x') = i \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \sum_j u_0 \left(\theta(x - x_j) - \theta(x' - x_j) \right) \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \frac{i}{\omega + \mu - E} \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \frac{i}{\omega + \mu - E} \right]} \int \frac{dE}{2\pi} \frac{1}{\omega + \mu - E} e^{\frac{i}{v_F} \left[E(x - x') - \frac{i}{\omega + \mu - E} \right]}$$

$$\Pi_{xx}(i\Omega_n; \mathbf{r}, \mathbf{r}') = e^2 v_F^2 T \sum_{i\omega_l} \langle G(i\omega_l; \mathbf{r}, \mathbf{r}') G(i\omega_l - i\Omega_n; \mathbf{r}', \mathbf{r}) \rangle_{\text{dis}},$$

$$\Re \mathfrak{e} \, \sigma_{xx}(0, 0) = \infty \quad \leftarrow \text{the transport in the 1D exact}$$

$$\mod e_l \text{ is nondissipative!}$$

The result is correct, but is the 1D model sufficient to describe Fermi arc transport?

Topological insulator vs. Weyl semimetal

Signs of dissipation in the full model

The full 3D model:
$$H(\mathbf{k}) = \gamma(k_z^2 - m)\sigma_z + v_F(k_x\sigma_x + k_y\sigma_y),$$

$$S^R(\omega, \mathbf{r}, \mathbf{r}') = \int \frac{d^2\mathbf{k}_{\parallel} e^{i\mathbf{k}_{\parallel}(\mathbf{r}_{\parallel} - \mathbf{r}'_{\parallel})}}{(2\pi)^2} S^R_s(\omega, \mathbf{k}_{\parallel}; y, y') + \int \frac{d^3\mathbf{k} \ e^{i\mathbf{k}(\mathbf{r} - \mathbf{r}')}}{(2\pi)^3} S^R_b(\omega, \mathbf{k}).$$
The surface Green's function:
$$S^R_s(\omega, \mathbf{k}_{\parallel}; y, y') = ip(k_z) \frac{(1 + \sigma_x) \ e^{-(y+y')p(k_z)}}{\omega - v_F k_x + i0},$$
The bulk Green's function:
$$S^R_b(\omega, \mathbf{k}) = i \frac{\omega + \gamma(k_z^2 - m)\sigma_z + v_F(k_x\sigma_x + k_y\sigma_y)}{\omega^2 - E(k)^2 + i0 \operatorname{sign}(\omega)}.$$
The Lippman-Schwinger equation:
$$\psi_s(\mathbf{r}) = \psi_s^{(0)}(\mathbf{r}) - i \int d^3\mathbf{r}' S(\mathbf{r}, \mathbf{r}') U(\mathbf{r}') \psi_s(\mathbf{r}'), = \psi^{(1)}(\mathbf{r}) = \psi^{(1)}_s(\mathbf{r}) + \psi^{(1)}_b(\mathbf{r}),$$

$$\psi^{(1)}_b(\mathbf{r}) \simeq -i \int d^3\mathbf{r}' S^R_b(\mathbf{r}, \mathbf{r}') U(\mathbf{r}') \psi^{(0)}_s(\mathbf{r}') \simeq -iu_0 \sum_j S^R_b(\mathbf{r}, \mathbf{r}_j) \psi^{(0)}_s(\mathbf{r}_j),$$

Scattered wave function

Polarization tensor in the full model

Fermi arcs are **not** purely 1D states \rightarrow the diagrams with crossing impurity lines can be omitted.

Self energy and quasiparticle width

$$\begin{aligned} & \left\{ G \right\}_{\text{dis}} \equiv \underbrace{\qquad} = \underbrace{\qquad} + \underbrace{\qquad} \underbrace{\qquad} \underbrace{ Surface \text{ or bulk}}_{\text{propagator}} \\ & \left\{ G (\omega, \mathbf{k}_{\parallel}; y, y') \right\}_{\text{dis}} \simeq \frac{2ip(k_z)e^{-(y+y')p(k_z)}}{\omega + \mu - v_F k_x + i\Gamma(\omega, k_z)} \frac{1 + \sigma_x}{2} \\ & \left[\Gamma(\omega; k_z) = \Gamma_s(k_z) + \Gamma_b(\omega) \right] \end{aligned} \end{aligned}$$

$$\begin{aligned} & \left[\Gamma(\omega; k_z) = \frac{\gamma(m - k_z^2)}{\pi v_F^2} n_{\text{imp}} u_0^2 \left[\sqrt{m} - \frac{(k_z^2 - m)}{\sqrt{k_z^2 - 2m}} \arctan\left(\frac{\sqrt{m}}{\sqrt{k_z^2 - 2m}}\right) \right] \\ & \left[\Gamma_b(\omega) \equiv n_{\text{imp}} u_0^2 \frac{|\omega + \mu|}{4v_F^2 \pi} \left[\sqrt{m + \frac{|\omega + \mu|}{\gamma}} - \theta \left(m - \frac{|\omega + \mu|}{\gamma}\right) \sqrt{m - \frac{|\omega + \mu|}{\gamma}} \right] \end{aligned} \end{aligned}$$

Conductivity, T=0

Conductivity, T≠0

Summary

- In the simplest model of a short-ranged quenched disorder, it was shown that the Fermi arc quasiparticles can scatter into the bulk states and into other surface Fermi arc states.
 - > Fermi arcs transport is **dissipative**.
 - There is no well-defined effective theory of Fermi arcs in Weyl semimetals in the presence of quenched disorder.
- Fermi arc quasiparticle width that consist of (i) the intra-arc scattering and (ii) the bulk dephasing of the Fermi arc states was calculated.
- Using the ladder approximation the Fermi arc conductivity was calculated.
 - > Conductivity decreases with increasing chemical potential μ .
 - At larger value of μ, the temperature dependence of the conductivity is nonmonotonic with a local maximum at a temperature that scales approximately as the chemical potential.