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Concerning the title:

After my abstract was submitted, I discovered
that Gary had published in 1997 (with Neil
Cornish) a paper with an almost similar title:
“The tale of two centres’.

Actually, when choosing this title I had in mind
Edgar Poe's detective tales, particularly

“The gold-bug”, in which deciphering a secret
message leads to a buried treasure...



4D Einstein-Maxwell: old-fashioned theory,
but still full of surprises!

— I will present a “new’” exact stationary, asympt.
flat solution of the EM equations, and the
successive clues leading to its interpretation as
a complex physical system of two extreme
co-rotating dyonic NUTty black holes,

held apart by an electrically charged rod
which also acts as a Dirac-Misner string.

— Solution constructed 20 years ago (GC1997)
using finite Geroch transformation.



— Restriction of EM4 to stationary solutions
(1 timelike Killing vector) —

reduction to 3D gravitating ¢ model

with “hidden” symmetry group SU(2,1)

of transformations between solutions

(e.g. Schwarzschild — RN-NUT).

Static and rotating solutions are not

related by SU(2,1) transformations.

— Solutions with 2 commuting Killing vectors
(e.g. stationary axisymmetric):

combination of infinitesimal SU(2,1) transf.
with infinitesimal linear transf. K, — Kzf

in the 2-Killing vector space

— infinite dimensional Geroch group

——= complete integrability.

Basis for inverse scattering transform methods.



e Finite Geroch transformation
( . “From Schwarzschild to Kerr ..."”
Phys. Rev. D57 (1998) 4885, gr-qc/9710109):

— Problem: A linear transf. 9y — 9; = ad¢+ B0,
changes the asymptotic behaviour
( “centrifugal force™).

— Solution: Combine this with an SU(2,1)
transformation also changing the as. behaviour.

— Bertotti-Robinson solution to EM4:
geometry AdSs x S2
dx? dy?
ds? = —(a?—1)dt?*+ 5+
T — 1l —vy
generated by a constant electric field A = xdt.

5+ (1—y?)de?

— This is related to Schwarzschild by an
SU(2,1) transf. M: S — BR



— The linear transformation R(€2,~):
do = dyp' — Qdt', dt = ~dt’ acting on BR
does not change the as. behaviour (x — 00).

— The combined transformation

S =N"1R(Q,y)N
transforms Schwarzschild — Kerr.
— More generally, > acting on as. flat

monopole stationary axisymm. solution of EM
—— as. flat monopole 4+ dipole solution.



e Axisymmetric stationary metric (Weyl):
ds? = —F(dt—wdp)?+F 12! (dp?+dz?)+p2dp?).
Prolate spheroidal coords. (z,y):

p=r(z?—1)Y201 -2, 2= kay

— 1966 1970 vacuum metric:
52
T — 1 0 2k $2 — 1
F = : = ||—=——= : =00 €eR
<zc -+ 1) y <£C2 — y2> n ( )

naked curvature singularity at x = 1,
except for § = 1 (Schwarzschild);
6 = 2 solution first given by 1927.

Rotating generalization: 1972
(6 integer). 6 = 2: naked ring singularity;

— 1973: TS2 has a causal
boundary (gyp = 0) and a non-curvature
Misner-string singularity at « = 1;

— 2003: Two degenerate
horizons at * = £y = 1, and a conical singu-
larity at = 1.



e [ransformation 2 acting on ZV
— continuous family of rotating spacetimes
with dipole electromagnetic field.

—6=1: Kerr; =1+ ¢€: “almost Kerr".

— Rotating solution for § = 2:
Ernst potentials:

_Uv-w . V
U4+ W U+ W
Kinnersley potentials:

2
<+ 1 _
U=p 5.y (p=11-¢° &%=1)

1
_1+q -+%Q V=e(l-W).
Xr

— Simple enough, but for the explicit solution,
must dualize (recover the vector potentials

w; and A; from the imaginary part of the Ernst
scalar potentials £ and v)!

— Black hole unicity theorems —



e The full solution (x >1, -1 <y <1)
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M= (x)(1—y?) + MNa(z)(1 —y?)?

e

A= %[@dt + kOdy],

V= ’Uo(w) + v1(x)(1 — y2) + vo(x)(1 — 92)27

© = 01(x)(1-y*)+O02(2) (1-y*)*+O3(x) (1-y°)*.



e Asymptotically flat metric.

— mass M = 2k/p,

— angular momentum J = —k2q(4 + p2)/p?,
— dipole magnetic moment u = ex?q,

— quadrupole electric moment Qo = ex3¢?/p.
e Possible singularities:

— ring singularities (p = pg)

>(z,y) =0 (2eaqas.)
no solution! (Z > (1 +p)?)

— axial singularities (p = 0):

segment R (z=1, -1 <y<1),
points (x=1, y==+1).



e Ergosurface
F=f/>=0.

2 components:
a) f(x,y) = 0, contains R (f < 0);
b) R itself (X = 00).

e Causal boundary

gop = F71p2 — Fuw? =0

contains R (g, < 0).

e Horizons

N? = p?/gpp = 0 (Withgyy, > 0)

— candidates Hy(z =1, y = £1).



e Geodesics:
1st integral T4+ U=¢ (e=-1,0,41)
.2 .
_ 2 v L Yy
T = kK 2e <x2—1+1—y2> > 0,
(I — Ew)?F E-
p2 F

U —

e Near R (z = 1,y2 < 1): —F o &2, p? o &2
(2=22-1—0)

— F #0: U > e = geodesics turn back
before reaching R.

— FE = 0: geodesics terminate on R, but
timelike or null geodesics (e = —1 or 0)
cannot originate from oo:

“narmless” naked singularity.

e Near Hy: Geodesics such that, near x = 1,
1—y?2~X2(22—-1) (X fixed)

can be continued through r =+y =1

to a region with z < 1 and y2 > 1

—— 2 double horizons.

2 black holes (H4+) held apart by a rod (R).



e Interlude: 2-black hole stationary solutions

e BPS superpositions
, (1947): Static linear
superpositions of N identical extremal BH.
, (1971): Stationary linear
superpositions of N BH, with rod singularities
( , (1972)).

e \Weyl superpositions

Stationary axisym. linear superpositions of NV
identical non-extremal BH, with singular rods
( 1922, 1964).

e Extremal diholes

— 1966: Static solution, with only mass
and magnetic dipole moment.

— 2000: This is a dihole: 2 extreme
magnetic RN BH, with equal masses and
opposite magn. charges, held apart by a rod
(can be replaced by an external magnetic field,
at the expense of asymptotic flatness).



e Double Kerr
— 1980: Double Kerr-NUT .
— 2003: For equal masses,
this is as. flat if either the 2 spins are opposite,
or the 2 spins are equal, and the rod between
the holes is spinning
— Co-rotating double Kerr with massless, non-
spinning rod (only conical singularity):

, (2017)

e Non-extremal diholes
— 2001: Static non-extremal di-
holes with equal masses, opposite charges, and
rod
— G@Generalization to 2 counter-rotating black
dyons with opposite charges:

2013, 2014



e [ he horizons: geometry

Blow up the horizons ¢ = £y = 1 by
transforming to the coords. (

1 —
X = gy =Y
x2 — 1 T
On the horizons Y = +1,
H__q2X2 _1_QH__
sp(x)
A
(X)) =2 2(p) +¢?(1+p) X2+




— In the co-rotating near-horizon frame
o = o — Qpt,

k2 A(p) . A
ds?, = S5 [d@Q + 12(9) sin? edgﬂ,
0y = PO CEF1Z o 6/2).

2 Ip(x)
topologically S2.

2D\ 8
1(0) =1, but I(x) = a =L pr) >
q q
conical singularity!
— Horizon area:
2\
Apg = 47 (p) ~ A M?



-
e

e




e [ he horizons: electromagnetic field

?(2-p) ,, _ rgd(P)XZ + ¢>y(p)X*
2X(p) 4 = (X)

— Near-horizon electric field, or

Ag =

dp

1
= —— dIm 1984) —
Qu =7~ § wndimy ( )

~ex(1+p)
-

Electric charges Q4 = Q- =

But the solution is electrically neutral,
so the rod must be also charged!

—— electric quadrupole

1
— Magnetic charges: Py=—¢ dA, —
47T JH
p, — £ (P)
2q

—— magnetic dipole



e Komar mass and angular momentum:

1 |
M = Ef@kﬂr”dzw (k= &)

1 |
J = —8—”{001“%12”,, (I = 8y,)

— Ostrogradsky theorem —

1 | 1 |
M= S — ¢ pkvgs —/kW- ds
2o 47 JH, HY +47T VoK

1
T e e e e e e e e ——/Ruyklj dS,LL
41

— . using the EM eqgs., the bulk
integral can be converted to a surface integral

1
— total horizon mass My = _f{ wrdImE:
4 JH

K Kp

My =M_=—+ —

- » T

> M /2, so the rod must have negative mass!
— Horizon angular momentum:

K2
Jp=J-=—r 2X(2+p°) - ¢°p(1 +p)(2 — p)]

qp
A
— Also horizon NUT charges: Nt = i’{ (p).

4q




e [ he rod

Near-rod configuration (é2 =22 -1 — 0):

7 q (1 —y?)?dp? +

m2q4 [ dy2
p?(1—y?) [1—y
+ de? +a2fz 767 (dt — w(y)de)?|,
2
A | (1 Ry ) et A,
— conical singularity, with finite Ricci square
scalar

2

64p*
RY Ry ~ "h 151+ p)* + °y7)°.

— Transformation to the horizon co-rotating
frame:

ds? (dt + <t d@)Q

4 [_(1 — y?)?
LT Tax2(p)
2

K dy? 2 2,2 122
+ 2(1 —2) <1_y2+d£ + a7 de” || .




e Interlude: Straight spinning cosmic string in
flat spacetime:
( 1984, 1985)

ds® = —(dt + 47 d3)? + dp® + a”p? d@p? + dz?
(a=1—-4Mg).

The same viewed in a rotating frame,
dp = dp — S2dt

with critical angular velocity 2 = —1/4Jg:

ds® = a?Q?p? (dt+Q 1 dp)?+dp°—Q2dp°+dz=2.



— The rod is a spinning cosmic string in curved
spacetime, with negative tension (a > 1).

— This “spinning” string is a Misner string
connecting 2 opposite NUT sources at z = +«.
We do not periodically identify time

( ,

“Rehabilitating space-times with NUTS",

Phys. Lett. B750 (2015) 591, arXiv:1508.07622)

— 1 NUT source : w= —2N coséb

2 opposite NUT sources

w = —2N CO0S 9_|_ + 2N cosf_

On the axis (p = 0):

w=—4N (—k<z<k)or0 (z| >k) =
1 kA(p)

N:JS:— =
4QH 4q




e Rod vector potential

.2
Ay~ —e () | ¢ —y7)
q 2

v(p) _
q

— Constant contribution —ek P_ — P+ :

The rod is also a Dirac string connecting
2 opposite magnetic monopoles at z = £tk
— Radial magnetic flux density

|9|B§ = Fyp = ekqy

— rod magnetic moment

1 +1 o
= J|g|BS z 27 dy = i
KR 47r/_1 91B>z2mdy = == = 3




e Rod electric charge

The Maxwell equation 0,(4/|g|F*) = 0O
IS satisfied only outside sources —
distributional contribution

1

Qr = [ o (VIglF*) | de ay de.

In the global frame,
Ay = —€[1+0(£9)], guw=0(2) —

Feocé (£>0), /]gIF® o 0(€)

1
> Qr == [ ex(14+p)(&) g dydip= er(1 +p)

ensures Q4 + Q- + Qr = 0.



e Rod mass

The Einstein egs. with Maxwell source
R,—87Ty,, = 0 are only satisfied outside sources.
In the presence of distributional sources,

= Komar mass at oo
M= My + M_+ Mp with

1
41

[Ri] = —(gtt)_l/zgij(gtt),lj/;?;2 = —g*¢715(9)
- MV =k

Mp = ((R]] — 8x[T{]) \/|g| d®x = MY+ ME™

MF" = QrA(§ = 0)= —x(1 +p)

— Total rod mass Mp = —kp
repulses test particles (antigravity)

2
_R:2<f+@>_mp
p p 2



e Behind the horizon H:
— Region I with -1 <z <landy>1
— Inner horizon H!, (z=-1, y=1)

e Between outer and inner horizon,
timelike singularity Sg (y = o0), with f < 0,
gop < 0, and Ricci square scalar ~ y*

e Is Sp really at infinity?
— The 2 horizons H and H' are topological
spheres, with A > A’

— Near Sg, putting y =71

, £ = COSY,

a 4,92 2 2 2 ;2
— d b Cos d d
o2y 9 + x[dn= + n=dx

+ en?sin? x(dt + k(z)n ?de?)]

—= ./|g| goes to a finite limit for y — oo
— n=20is a "point” (timelike line)

ds? ~

e Only spacelike geos with E = 0 terminate
at y = oo.



e Now the z axis (p = 0) includes:

— a regular segment y =1, -1 <z <1
between the 2 horizons;

— 2 singular rods x = +1 from the outer or
inner horizon to Sp.

— The 2 rods have different tensions and
angular velocities.

— The 2 rods carry different diverging electric
charges (integration on y from 1 to oo0), SO Sp
must carry infinite electric charge, and finite
magnetic and NUT charges.

e Similar region II_ (y < —1) behind H_.

e Beyond the inner horizons:

— Region 11l (X < -1, -1<y<1),

with a singular rod connecting the 2 co-rotating
horizons Hf|_ and H’ , and

— A timelike ring singularity > (zg,0) = 0, with
f>0, gpp <O.

— Only fine-tuned spacelike geodesics can reach
this ring (similar to Kerr-Newman).



e Summary

— Exact one-parameter rotating e.m. solution
generated from ZV2 static vacuum solution.
— No naked ring singularity: more regular
than the seed static solution,

or its rotating vacuum counterpart TS2.

— Has only dipole magnetic moment

and quadrupole electric moment.

— Generated by a complex system:

2 co-rotating dyonic NU Tty black holes

held apart by a rotating, electrically charged,
magnetized rod.

— More general 4-parameter class of solutions
( 2000): Does it include

a purely magnetic rotating solution

(without quadrupole electric moment) —

a system of 2 magnetic NUTty black holes
and an electrically neutral rod?



