Coupling ultrasound treatment and adsorption on activated carbon for the removal of micropollutants from water

L. Duclaux ^a, K. Larbi ^b, L. Reinert ^a, S. Guittonneau ^a, M. Ondarts ^c, J.-M. Lévêque ^a,
 ^a LCME, Université Savoie Mont Blanc, 73000, Chambéry, France
 ^b SEAMM, Université Ibn-Badis, 27000, Mostaganem, Algeria
 ^c LOCIE, Université Savoie Mont Blanc, 73000, Chambéry, France

Context

- Micropollutant : « Product released by human, mineral or organic, may be toxic at tiny concentration (from ng/L to µg/L) »
- Activated carbon adsorption and ultrafiltration used for tertiary treatment of Waste Water Treatment Plant (WWTP): [Margot et al., Sci Total Environ, 461-462, 2013]
- In waste water, the presence of Organic Matter may hinder and slow the adsorption process, long kinetics are related to the fabric or granulated activated carbons textures
- Ultrasound irradiation known to :
 - generate more hydroxyl radicals at higher frequency (300 kHz)
 - involve more mechanical effects (cavitation) enhancing the mass transfer at lower frequency (20 kHz, 40 kHz)

[O. Hamdaoui et al..., C. Pétrier, Ultrason. Sonochem. 10 (2003) 109–114]

Objectives

- Accelerate the adsorption kinetics of a micropollutant through ultrasound irradiation coupled to adsorption
- Understand the effect of ultrasound irradiation mechanical effects on the adsorption phenomena
- Simulate the adsorption kinetics in macroporous carbon by diffusion models

Models of micropollutants

Carbamazepine

Buffered solution (KH_2PO_4/Na_2HPO_4) 0.04 M (pH = 7.5, close to the one of waste water)

Adsorption kinetics studies

Initial conditions :

- pH=7,5 phosphate buffer (KH₂PO₄/Na₂HPO₄) 0.04 M T=25°C
- Ibuprofen C₀= 4 ppm ; V= 250 mL, 500 mL
 Disk of fabric or braids or fibers (12 mg)
- Carbamazepine C₀= 20 ppm ; V= 1L
 Disk of fabric or granulated or powdered AC (20 mg)

Different agitation modes :

- Orbital agitation 250 round/min
- Reactor with ultrasonic probe, 20 kHz (50% Amplitude, ~86 W/L)
- Ultrasonic bath, 40 kHz (~10 W/L) + adsorbent or not

Waste water medium:

Dissolved Organic Matter (Humic Acid)

Ultrasound Reactor (Cup-horn)

Activated carbon fabric

KIP1200 Fabric (Dacarb, France)

Braid (Ø=750 µm) formed of 3 yarns

Yarn

The yarns are formed of carbon fibres Ø=12 µm

Activated carbon fabric

Pore size distribution by gas adsorption

> S_{BET} = 1560 m²/g Vμp = 0.54 cm³/g

Pore size distribution of fabric by mercury porosimetry

- Intra-yarn porosity [0.8-60] μm V = 1,24 cm³/g

- Braid porosity (inter-yarn & interbraid) [60- 450] μm V = 1,94 cm³/g

- Fibre Density 0,76 cm³/g

- Apparent Density 0,22 cm³/g

Effect of ultrasound (probe 20 kHz, power 86 W/L) on fabric adsorption

pH = 7.34 ; T = 24 \pm 2°C ; C₀ = 4 ppm ; Disk of fabric m_{Fabric} = 12 mg ; V_{Solution} = 500 mL

Degradation of Ibuprofen by the OH° radicals from the water sonolysis obtained by the ultrasonic probe (20 kHz)

Effect of ultrasound (bath 40 kHz, power 10 W/L) on ibuprofen adsorption

pH = 7.34 ; T = 24±2°C ; C₀ = 4 ppm ; m_{Fabric} = 12 mg

- Absence of ibuprofen degradation in the ultrasonic bath

- Acceleration of the adsorption kinetics in the presence of ultrasound

Effect of ultrasound (bath 38 kHz , power 12 W/L) on carbamazepin adsorption

- Degradation of carbamazepin in the ultrasonic bath (12 W/L acoustic power)

- Acceleration of the adsorption kinetics in the presence of ultrasound (40 kHz)

Ibuprofen adsorption under agitation various texture

[IBP] = 4 ppm, T = 25°C, m_{Tissu} = 12 mg, V=250mL, pH = 7,4

Different macroporosities limit the adsorption kinetics The mass transfer is limited by :

- the intra-yarn diffusion for adsorption on fabric or braids
- the intra-fiber diffusion for adsorption on fibers

The kinetics acceleration by ultrasound treatment is not observed on powder

Volumic diffusion model in the pores : braids or yarns or fibers

Volumic pore diffusion model : braids or yarns or fibers

- External mass transfer at external surface of the carbon cloth :

$$V\frac{dC_a}{dt} = -mSk_l\left(C_a - C_{Ar}\Big|_{r=R}\right)$$

k, external transfer coefficient

Ca concentration in liquid phase $C_{Ar}|_{r=R}$ concentration in the pore at r value

- Mass balance into a braid (yarn or fibre) :

 $\varepsilon_P \frac{\partial C_{Ar}}{\partial t} + \rho_P \frac{\partial q}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left[r \left(D_{ep} \frac{\partial C_{Ar}}{\partial r} \right) \right]$ g : adsorbed amount $\mathcal{E}_{\mathcal{P}}$: porosity ratio ρ_P : apparent volumic mass

D_{ep}: diffusion coefficient

- Boundary conditions (Braids) :

$$\frac{\partial C_{Ar}}{\partial r}\Big|_{r=0} = 0 \qquad \qquad D_{ep} \frac{\partial C_{Ar}}{\partial r}\Big|_{r=R} = k_l \left(C_a - C_{Ar} \Big|_{r=R} \right)$$

Boundary conditions (Yarns or fibers) :

Mass balance to calculate C_{ϵ}

$$\frac{\partial C_{Ar}}{\partial r}\Big|_{r=0} = 0 \qquad C_{Ar=R} = C_{\varepsilon} \qquad \qquad \frac{m\varepsilon}{\rho_{app}} \frac{\partial C_{\varepsilon}}{\partial t} = S_{ext}k_l(C_a - C_{\varepsilon}) - S_{ref}D_{ep}\frac{\partial C_{Ar}}{\partial r}\Big|_{r=R}$$

Initial conditions :

$$t = 0$$
; $C_A = C_{A0}$ $t = 0$; $q_r = 0 \forall r$ $t = 0$; $C_{Ar} = 0 \forall r$

[Leyva Ramos et al., Carbon, 2280-89, 2007]

Simulation of the ibuprofen adsorption kinetics

 $\lambda = \frac{d_m}{d_f} < 0.4$

• Equilibrium law Langmuir-Freundlich

$$q = \frac{q_{max}(kC)^n}{1 + (kC)^n}$$

Coefficient of external transfer

$$\left[\frac{d(C_A/C_{A0})}{dt}\right]_{t=0} = -\frac{mSk}{V}$$

- Coefficient of diffusion
 - Molecular (Wilke-Chang correlation)

$$D_m = 7,4.10^{-8} \frac{(\varphi M_b)^{1/2} T}{\eta_B V_A^{0,6}}$$

Effective

$$D_{eff} = \frac{\varepsilon_P}{\tau} D_m K_R K_P$$

$$\tau: \text{ tortuosity}$$

$$K_p = (1 - \lambda)^2 \qquad \lambda = K_R = (1 - 2.104\lambda + 2.09\lambda^3 - 0.95\lambda^5)$$

 d_m : molecule diameter (adsorbate) d_f : pore diameter

Model of volumic diffusion

Hypothesis :

- Equilibrium type : Langmuir-Freundlich
- Instantaneous adsorption at equilibrium
- -1 radial dimension

1/ Limiting phenomena : diffusion in the braid

- 2/ Limiting phenomena : diffusion in the yarn
- **3/** Limiting phenomena : diffusion in the **<u>fibre</u>**
 - + Homogeneous concentration in the yarn porosity

Object	Øpore	λ	D _{eff}	t _{diff}
	m	-	m ² .s ⁻¹	S
Fiber (micropore)	1.4×10 ⁻⁹	3.3×10 ⁻¹	1.6×10 ⁻¹¹	10
Yarn	0.8×10 ⁻⁶	5.9×10 ⁻⁴	1.0×10 ⁻¹⁰	547
(porosity inter- fibre)	60×10 ⁻⁶	9.9×10 ⁻⁶	1.6×10 ⁻¹⁰	
Braid	60×10 ⁻⁶	7.9×10 ⁻⁶	1.8×10 ⁻¹⁰	3046

Calculated Coeff. $Dm = 4.26 \times 10^{-10} m^2.s^{-1}$

Tortuosity (fibre and yarn) : 2

- Calculation of the typical diffusion time :
 - L : lenght (diameter of the object)

 $t_{diff} = \frac{L^2}{D_{eff}}$

Fabric kinetics : fibre or yarn or braid diffusion?

C₀=4 ppm /12.5mg CA/250 mL reactor

Ø ref.	k,	Biot	D _{ep} fittod	D _{eff}	
	Coeff. ext. transfer	matter	niteu	Calculateu	
μm	m.s ⁻¹	-	m ² .s ⁻¹	m ² .s ⁻¹	
12.6	7.9×10 ⁻⁶	165	3.0×10 ⁻¹⁴	1.6×10 ⁻¹¹	
295	7.9×10 ⁻⁶	9.7	1.2×10 ⁻¹⁰	1.6×10 ⁻¹⁰	>
750	7.9×10 ⁻⁶	3.8	7.8×10 ⁻¹⁰	1.8×10 ⁻¹⁰	

Best agreement identified Dep – calculated Deff The model of diffusion in the yarn makes sense

Biot=k_/×L/Dep

[M. Ondarts, et al..., L. Duclaux, Chemical Engineering Journal 343 (2018) 163–172]

Adsorption in fabric modelled by the diffusion in yarn, effect of ultrasound

The ultrasounds increase both external transfer and the diffusion within the yarn, **value higher than for the diffusion in a liquid,** effect of cavitation?

Coeff. Dm liquid = 4.26×10⁻¹⁰ *m*².*s*⁻¹

[M. Ondarts et al..., L. Duclaux Chemical Engineering Journal 343 (2018) 163–172]

Effect of the ultrasounds (38 kHz bath) on the ibuprofen adsorption kinetics on fabric in presence of organic matter (OM, TOC=40 ppm)

pH = 7.34 ; T = $24\pm2^{\circ}$ C ; C₀ = 4 ppm ; V=250 mL, m_{Fabric} = 12.5 mg

The presence of organic matters slows the adsorption kinetics but the ultrasonic irradiation still accelerates the kinetics compared to agitation in presence or not of organic matter

Conclusion

- The ultrasounds of low frequency can induce a degradation of the ibuprofen and carbamazepin by the OH° radicals produced by the water sonolysis.
- The ultrasounds of low frequency and low power (ultrasonic tub) allows the speeding of the diffusion kinetics in macroporous carbon (fabric or granulated AC).
- Kinetics slowdown due to organic matter (OM) competition can be override by ultrasounds treatment.
- Prospect : determination of the self-diffusion coefficients by inelastic neutron scattering.

Effect of ultrasound (bath 40 kHz) on carbamazepine adsorption on granulated AC

pH = 7.4 ; T = $25\pm2^{\circ}C$; C₀ = 20 ppm ; m_{Fabric} = 20 mg

- Degradation of carbamazepin in the ultrasonic bath (12 W/L acoustic power)

- Acceleration of the adsorption kinetics in the presence of ultrasound (40 kHz)

Effect of ultrasound (bath 38 kHz) on carbamazepin adsorption on powdered AC

pH = 7.4 ; T = 25±2°C ; C₀ = 20 ppm ; m_{Fabric} = 20 mg

- Adsorption kinetics is similar in silent conditions (orbital agitation) and in the presence of ultrasound (38 kHz)

Structural parameters of the activated carbon fabric

Parameter	d µm	R _{pore} m	Total Porous volume V_{μ} mL.g ⁻¹	ρ _{app} kg.m ⁻³	ρ _s Squeleton density kg.m ⁻³	Porosity in which diffusion occur ε
Fiber	12.5	1.4.10-9	$V_{micro} = 0.54$	760	1289	0.41
Yarn	295	0.8 - 60.10-6	1.54(V _{micro})+ 1.24(V _{macro})	391	1289	0.485
Braid	750	60.10-6	1.54(V _{micro})+ 1.24(V _{macro})	391	1289	0.485

Granulated activated carbon

Presence of macropores

Granulated AC (from China) Mean particle size : 3 μm

Cylindrical form Ø=915 µm lenght=3.5 mm

Structural characteristics of the different elements of Extruded: particles, and grain (made of agglomeration of particles)

	d	R _{pore}	V _p	ρ _p	$ ho_{sk}$	۶ _p
unity	(µm)	(m)	(mL.g ⁻¹)	(kg.m ⁻³)	(kg.m ⁻³)	(v/v)
Particle s	3 ^{\$}	<2×10 ^{-9*}	0.39#	1155	2100*	0.45
Grain	915*	<mark>0.2×10⁻⁵<</mark> <2.5 ×10⁻⁵	0.59	894*	1880*	0.53

*Values deduced from nitrogen adsorption measurements at 77 K*Values deduced from pycnometry or lenght measurements\$ mean value from SEM image

Effect of the organic matter (OM) on the adsorption kinetics of ibuprofen

Variation of the humic acids concentration (Aldrich) under Agitation (250 rpm)

[IBP] = 4 ppm, T = 25°C, m_{Fabric} = 12 mg, V=500mL, pH = 7,4 ; tyndallized water 4h

Diminution of the adsorption speed because of the competition with OM
 OM-Ibuprofen Complex and adsorption of a part of OM

Growth of biofilm on activated carbon cloth

- 2 kinds of fabric : raw and oxidized in hydrogen peroxide
- Renewal Chambérys' WWTP water from secondary treatment :

T0, +6 days, +13 days, +20 days, +28 days, +34 days, +42 days, +55 days,

Legend

- 1) Pump
- 2) valve
- 3) Reduction tube
- 4) Carousel
- 5) Water container

TOC=12-20 mg/L

Characterization by confocal microcopy

Fluorescence coloration : - red Syto9

- green propidium iodide

- Bacteria red dead
- Bacteria green : unspoilt

The bacterias are arranged in a biofilm, in the voids between the carbon fibers, they block up these spaces.

Effect of biofilm on the adsorption under orbital agitation

pH = 7.34 ; T = 24±2°C ; C₀ = 4 ppm ; V=250 mL, m_{Fabric} = 12 mg

The biofilm strongly slows the adsorption kinetics, it forms a barrier to the ibuprofen access

Influence of ultrasound (probe 20 kHz) on the fabric texture

Sonication 10h probe 20KHz, 500 mL of buffer solution, disk 12 mg

SEM Analyses

Sonicated Fabric

	Raw Fabric	Sonicated Fabric 10h
BET Surface area (m²/g)	1520	1480
Surface Micropores (m²/g)	1320	1310
External Surface	190	170
Volume micropores (cm ³ /g)	0,50	0,50

- No change in sonicated fabric

- No detectable disorder compared to raw fabric.

Influence of Ultrasounds on the structure of Fabric

SEM image of residual solid after filtration (*1000)

- Présence of filaments (carbone fibers)
- Presence of more rounded shape particles made of Ti from probe erosion

Effet du mouillage avec et sans ultrasons

Mouillage préalable du tissu dans eau tamponnée (24h)

[IBP] = 4 ppm, T = 25°C, m_{Tissu} = 12 mg, V=250mL, pH = 7,4

- L'absence de mouillage a un effet bénéfique sous agitation
- Compétition de l'eau tamponnée et de l'ibuprofène?

Effet des ultrasons sur un tissu recouvert de biofilm en présence de matière organique dissoute

Couplage Ultrasons + Adsorption

En présence de matière organique, les ultrasons sont inefficaces pour accélérer l'adsorption de l'ibuprofène sur un tissu recouvert de biofilm. Il n'y a plus aucune d'adsorption sous ultrasons.

Influence de la concentration en ibuprofène sur la cinétique d'adsorption en présence US

Léger ralentissement de la cinétique lorsque l'on passe de 4 ppm à 0,8 ppm

Supports étudiés

Caractéristiques physicochimiques : Porosité (adsorption N₂ et CO₂)

	Surface BET (m²/g)	Volume μcropores (<0,7 nm) (cm³/g) DFT	Volume supermicropores (cm³/g) DFT	Volume mésopores (cm³/g) DFT	Volume poreux total (cm³/g)
Tissu KIP1200	1560	0,40 (74%)	0,14 (26%)	0	

Chimie de surface : Titrage de Boehm et pH_{pzc}

Tissu KIP1200	0,02	0,03	0,05	0,37	0,47	0,21	8,75
---------------	------	------	------	------	------	------	------

Réacteur US

Sonde 20kHz

 $R^2 = 0,98$

Puissance électrique (W)

Puissance acoustique (W)

Dégradation sonochimique de l'ibuprofène

Meilleure dégradation de l'IBU à 500 kHz qu'à 20 kHz pour une puissance malgré la faible puissance acoustique (plus de radicaux produits)
Additivité des cinétiques en double fréquence : 500 + 20 kHz

35

Formula	C ₁₃ H ₁₈ O ₂
Molar mass	206.28 g/mol
Solubility (pH = 7,4)	110 ppm
рК _А (25°С)	4.91
Log K _{ow}	3.87
Dimensions (Å)	13.57×7.96×5.2

Physico-chemical characteristics

