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Kinetic models for cell motion

Kinetic equation

Consider x e R", andve V =S% €>0.
The kinetic equation for the cell density function f is

1 1 1
Oef + —v - Vif = (5L1+ —La2)f,
€ € €

The turning operators £1 and L are
Lif = / (ki(x, v, V)F(V') = ki(x, V', v)f(v)) dV/, i€{1,2}.
1%
with

/ Li(F)(v)dv = 0.
\4

Chalub, F., Markowich, P., Perthame, B., Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. (2004)

Hillen, T., Othmer, H.G.: The diffusion limit of transport equations derived from velocity jump processes. (2000)
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Kinetic models for cell motion

Assume an equilibrium probability distribution F = F(x,v) > 0,
(F) = [, f(v)dv =1 that is first-order symmetric,

(vF) =0
and fulfills for each x € R" the detailed balance condition
ki(x, v/, v)F(x,v) = ki(x, v, V')F(x, V).
Density and mean flux

p:/vfdv:(f>, q = (vf).

As ¢ — 0 one obtains convergence to a drift-diffusion equation for p.
We consider two examples for turning kernels.
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Kinetic models for cell motion

Haptotaxis-kernels
Choose the kernels k; and k> as
kl(Xv v, V,) = nFa
ka(x,v,V') = =AyVxQ - V'F.

@ 1) = constant: part of the turning rate independent of the cell-state.

e F = F(x, v): normalized directional distribution of tissue fiber, in

general not isotropic, (vF) = 0.
e @ = Q(x): macroscopic volume fraction of tissue fibers.
o Ay = Ay(Q(x)): cell-state dependent part of the turning rate.
X0

@ ¢ = 2% ¢ the cell-velocity.

toc?
Then
1 n 1
Orf + va (vf) = 2 (f—Fp)+ z)\Hva -(fv—Fq).
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Kinetic models for cell motion

As € tends to 0 the macroscopic approximation is
Otp — Vi - (Vg (pD) — pAyVxQD) =0

with
nD:/ v ® vFdv = Df
v

which is a generally anisotropic drift-diffusion equation.

Engwer, C., Hillen, T., Knappitsch, M., Surulescu, C.: Glioma follow white matter tracts: a multiscale DTI-based model. (2015)
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Kinetic models for cell motion

Chemotaxis-kernels
Consider
, A
ki(x,v,v') = AF(x,v) = m

ko(x,v,V') = aVm- vF,

with constants A and « and a limiter chosen for example as
X

V1t [x2

X =
The kinetic equation is given by
1 A 1 —
O:f + va (vf) = 2 (f—Fp)+ Eame- vF.

Rem.: The chemoattractant concentration m(t, x) is governed by a
reaction-diffusion equation.
Rem.: As ¢ tends to 0 the macroscopic approximation is a flux-limited
Keller-Segel model.
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Balance equations and moment closure approaches

Balance equations and moment closure
approaches

We start with the kinetic equation
0:f +ev - Vif = L1f + eLof.

Multiplication with 1 and v and integrating with respect to v gives the
continuity and momentum equations

€dp+Vx-q=0,
20rq + eVy - P = (VLLF) + € (vLof) .

The pressure tensor P := (v ® vf) contains the second moments of f.
These equations have to be closed by an approximation of P (and
potentially (v.L;f)) using only p and g.
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Balance equations and moment closure approaches

One uses an ansatz function f4(v; p, q) with (fA) = p and (vf*) = q.
Then

P=(v®vf)~ <v®va> = PA.
Resulting system of equations is
€0tp+Vyx-qg=0,

€20:q+ eV - PA(p,q) = <v£1fA(p, q)> +e <v£2fA(p, q)> )

In the following we consider different ansatz functions and the resulting
equations.

Hillen, T.: Hyperbolic models for chemosensitive movement. (2002)
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Balance equations and moment closure approaches

Linear (PI(F)—)closure
One uses the simple linear perturbation ansatz
fA = a(1+ev-b)F(v).
The multipliers a and b are chosen to fulfill the moment constraints
(fA) = p and (vf*) = q. With § = 7 one obtains

PA = pPA(a),
with
<v ® va>

ﬁA(@) = <fA>

=Dr +e(v®w - bF(v)),

where Dr = (v ® vF(v)).
Rem: Closure function might become negative!
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Balance equations and moment closure approaches

Nonlinear (/\/II(F)—)closure

Use the approximating function
fA = aexp(ev - b)F(v) > 0.

Again, the multipliers a and b are determined from the moment
constraints on A

(p,q) = <(1, v)fA> = (1, v)aexp(ev - b)F(v)).

This gives

(v exp(ev - b)F(v))

N v ® vexp(ev - b)F(v))
)= eplev BF (V)

{exp(ev - b)F(v))

and PA(b) = <

Inverting the relation for §(b) one obtains PA(§).
Anile, A.M., Pennisi, S., Sammartino, M.: A thermodynamical approach to Eddington factors. (1991)

Levermore, C.D.: Moment closure hierarchies for kinetic theories. (1996)
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Balance equations and moment closure approaches

Simplified nonlinear closure (Kl(F))

We determine the second moment P# via an interpolation between the
free-streaming value Pree = p% and the equilibrium solution Peq = pDF
and make the ansatz

N §Q G
PA = pPA(G) = p <aDF +(1- a)"|a|2q> ,

where @ = a(§) has to be chosen such that the realizability conditions, i.e.

the fact that the moments can be generated by a non-negative distribution

function, are satisfied.

Kershaw, D.S.: Flux Limiting Nature’s Own Way: A New Method for Numerical Solution of the Transport Equation. (1976)
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Balance equations and moment closure approaches

Realizability
For every p > 0 and |§| < 1 we need (Cauchy-Schwarz and v € S?)
P—§g®§>0 and tr(P)=1.

The trace equality immediately follows for all a € R since
tr(Dg) = tr(‘l’—gg‘l) = 1. Plugging in the definition of PA gives that

N A A@,@
PA—q®q=a&H%1—a—Mﬂ|mz

Q>

is positive semidefinite if > 0 and 1 — a > |§|2. We use
~12
a=1-|4"
Rem.: In the special case D = % the original Kershaw model is recovered.
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Balance equations and moment closure approaches

Higher-order moment models and other
angular bases

Let a(v) = (ao(v), ...ak—1(v)) be the basis of a K- dimensional subspace
of L2(V). The corresponding moments are defined as u := (fa). As before
we get a system of equations for the moments

1 1
Oru + va -(vaf) = <( Li(f) + £2( ))a>
f is approximated by an ansatz function

FAu)(v) = f(v)

which depends on the moments, such that we get a closed form
1 1
. A — A - A
Ot + Vi <vaf > 2 <£1(f )a> + - <£2(f ))a>.
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Balance equations and moment closure approaches

The classical Py and My methods use the ansatz functions
fA=ay-a and fA = exp(ay - a),

respectively. Analogously to the first-order methods we define the modified
P,(VF) and M,(VF) as

fA=(an-a)F(v) and 4 =exp(an-a)F(v),

respectively, in order to incorporate the equilibrium of the reorientation
kernel F(v).
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Balance equations and moment closure approaches

Half moments - Partial moments in one
dimension

Given a density function f(t, x,v) with t € R*, x € R and
v € V =[—1,1], we define half-moments as

(P++ G+, Pt,--+) 52/ (L v, V2, )fdv,
Vi

with V_ :=[-1,0], V4 :=[0,1].
Then one proceeds similarly to the full moment case closing the equations
with different closure functions.

Axel Klar (TU Kaiserslautern) Cell motion in fiber structures 16 / 34



Balance equations and moment closure approaches

Partial moments in higher dimension

@ Similarly to the one-dimensional setting one may define higher order
partial moment equations in higher dimensions, for example,
quarter-moments in 2D. This gives QPy and QMp models.

@ For the minimum-entropy closures one uses suitable lookup tables .

@ A more refined division of angular space and the use of higher order
moments yields a hierarchy of discretizations (~ hp-FE).
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Tumor cell migration

Application: Tumor cell migration

@ The system of moment equations is discretized using second-order
realizability-preserving Finite-Volume schemes with realizability
limiters.

@ The source code for the numerical simulations builds upon DUNE and
DUNE PDELab [4], a C++ numerics framework for PDE'S.

@ Goal: Decision support for cancer treatment

Corbin, G., Hunt, A., Schneider, F., Klar, A., Surulescu, C.: Higher-order models for glioma invasion. (2018)
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Tumor cell migration

Haptotaxis and glioma invasion

We consider a water diffusion tensors D)y from a DTI scan of the human
brain. This is used to obtain the equilibrium fiber distribution as

F(v) = ﬁ (VTDWv) .

We use the following expression to obtain the volume fractions:

. trDyy 2
Q(X)—1_< 4)\1> )

where A1 is the maximum eigenvalue of Dyy .

Engwer, C., Hillen, T., Knappitsch, M., Surulescu, C.: Glioma follow white matter tracts: a multiscale DTI-based model. (2015)
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Tumor cell migration

PE, Diffusion, Kf', e = 0.1.

Yellow: 10 % error, green: 5 % , purple: 1 %
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Tumor cell migration

Volume fraction and domain of

computation.
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Tumor cell migration

PE . Diffusion, KlF.

Yellow: 10 % error, purple: 1 % error
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Cell motion on networks

Application: Cell motion on networks

Consider hierarchy of 1D cell-motion equations on a graph

Crucial point: determine coupling conditions at the nodes
Procedure:

@ define coupling conditions for kinetic equations

@ derive coupling conditions for moment models.
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Cell motion on networks

Coupling condition for kinetic equations

Consider node with 3 outgoing edges.
The coupling conditions should assign on each edge a value to all f(v)
with v > 0. We require:

@ The coupling conditions should be linear and independent of v.
@ The total mass in the system should be conserved.
© The values of f should remain positive all times.

@ In the limit ¢ — 0 the conditions should converge to reasonable
coupling conditions for the limit equations.
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Cell motion on networks

General form
ft=Af",

where £t = f(v) and £, = f;(—v) for v > 0. In order to conserve the
total mass in the system the matrix A € R3*3 has to fulfill

daij=1 Vj=1,..3.

We require also

A typical choice where all edges are treated equally:

it 0 1/2 1/2 i
K|l =112 0 1/2 fy
fy 1/2 1/2 0 fy
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Cell motion on networks

Coupling condition for the linear and
non-linear half-moment model

We define the quantities pf,p,-—, ql-+, g; fori=1,...,N on each edge.
Coupling condition for the half moment model are obtained from the
kinetic ones via integration

[ o1 ] [0 1/2 1/27 [ pp ]
iy = 1/2 0 12 || p,
Ze | /2 1/2 0 | | ps |
[ ay ] 0 1/2 1/27 [ g ]
@ | = -|12 0 12||q
(| 95 | | 1/2 172 0 || g5 |

These are six equations for six outgoing characteristics (2 per edge) of the
half moment system.
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Cell motion on networks

Coupling condition for the linear full
moment equations (Cattaneo)

Problem: Kinetic conditions are given for parts of the velocity domain. No
simple integration over the full velocity domain.

Simple solution: Use the linear full moment closure function and insert it
into the kinetic conditions. This gives

2 -1 -1 P1 3 11 a1
-1 2 -1 P2 —|—6§ 1 21 q> =0.
-1 -1 2 03 11 2 0

Note that for the linear full moment equation we have one characteristic
moving to the right (~ wave equation). This yields 3 conditions for a node
with three edges.
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Cell motion on networks

Remarks

@ For the linear full moment case similar conditions are treated in
Bretti, G., Natalini, R., Ribot, M.: A hyperbolic model of chemotaxis on a network: a numerical study. (2014)

@ A more detailed analysis of the situation near the node based on
kinetic layers leads to more accurate conditions. For a kinetic BGK
model and the wave equation, see

Borsche, R., Klar, A.: Kinetic layers and coupling conditions for macroscopic equations on networks. (2018)

—_ kinetic —— half-moment
—— wave - Maxwell — wave - full
——  wave - half —— wave - equal
T T T T T
1.5 B
14
2
1.3} 1
1.2 1
—
Lip I I I I I
0 0.2 04 06 08 1
x on edge 4
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Cell motion on networks

Remarks

@ To derive coupling conditions for the nonlinear full-moment
approximation from the kinetic ones is a challenging topic: nonlinear
kinetic layers, change of the number of required coupling conditions.
For a similar problem see

Borsche, R., Klar, A.: Kinetic layers and coupling conditions for nonlinear scalar equations on networks. (2018)

@ For theoretical work on the Keller-Segel model on a network see

Camilli, F., Corrias, L.: Parabolic models for chemotaxis on weighted networks. (2017)
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Cell motion on networks

Numerical results on tripod networks

@ Consider the chemotaxis model.

@ We use for the nonlinear half-moment model the Kershaw
approximation.

@ The results of the nonlinear half-moment model with the
corresponding coupling conditions are compared with the results of
the kinetic, linear half and full moment and Keller-Segel model.

Borsche, R., Kall, J., Klar, A., Pham, T.: Kinetic and related macroscopic models for chemotaxis on networks. (2016)

Borsche, R., Klar, A., Pham, T.H.: Nonlinear flux-limited models for chemotaxis on networks. (2017)
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Cell motion on networks

Numerical solutions on a tripod network
attime t =0.2, Ax=0.02, e =1

Ist edge 3rd edge

25

L L L
04 06 08 1
z

2nd edge

—e— Kinetic
—=— Half-moment
—e—pl

——pl[?7]
——plpi = p;)

- - Keller-Segel
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i
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Cell motion on networks

Numerical solutions on a larger network

- I - 1 [r— — 1
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Kinetic, Diffusion, Full-moment , Half-moment at t = 5.
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Cell motion on networks

Total mass over time in large network.

e=1
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Cell motion on networks

Outlook

@ numerical method for kinetic equations based on automatic choice of
moment expansion and subspace for integration, combination with
asymptotic preserving methods for small values of e.

o Calibration and validation of tumor migration models with clinical
data: time resolution before and after surgery??

@ network models: derivation of coupling conditions for more
complicated nonlinear full moment models, e.g. Euler equations, from
underlying kinetic models
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