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Some fact about Dengue fever

Dengue is a tropical vector-borne disease. Infect >100M, kills
20k annually. 4 di�erent serotypes. No e�cient vaccine.

Mosquitoes Aedes Aegypti and Aedes Albopictus are the main
vector (but also for Chikugunya, and Zika).
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Source : Ministère des
Solidarités et de la Santé
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Fight against arboviruses

In absence of vaccine or curative treatment, acting on the
population of mosquitoes Aedes is essentially the only feasible
control method.

Mechanical remove of breeding sites.
Di�cult to implement to have good e�ciency.

Application of insecticides.
Increase of moquito resistance.
Negative impact on the environment.

Sterile insect techniques : release of sterilized (or
incompatible) males.

Population replacement strategies

The two latter techniques have been studied by the HCB (Haut Conseil

des Biotechnologies) in June 2017.
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Main vector : Aedes mosquitoes

Some fact about Aedes mosquitoes, considered as the most
dangerous species of mosquitoes for human :

There are more than 100 species of Aedes among them the
major arbovirus vectors are Aedes aegypti (tropical region) and
Aedes alpopictus (more resistants to low temperature).

Its life cycle is divided into two phases : aquatic (egg,
larva,pupa) and aerial (adult).

Female lays 40-80 eggs by oviposition. Several oviposition per
female during her life.

Only females suck bloods, preferentially from humans, to
maturate their eggs.

Adults can �y and their dispersal is estimated less than 1km
during its life.
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Aedes mosquitoes

Aquatic phase :
egg (few days to several
months)
larvae (3 days to several
weeks)
pupa (1-3 days)
Adult phase (∼ 1 month)
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Wolbachia

Endo-symbiotic bacteria found in most arthropod species.

Maternally transmitted from mother to o�springs.

Causes cytoplasmic incompatibility (CI) and blocks
transmission of some viruses (Dengue, Chikungunya, Zika) by
Aedes mosquitoes.

Several side-e�ects on its host (reduces fecundity, reduces
lifespan, ...).

♀\♂ Infected Sound

Infected I I
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Method under study

Releasing Wolbachia-infected mosquitoes to replace the existing
population.

Figure taken from the eliminate dengue program

http://www.eliminatedengue.com/program
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Method under study

We are dealing with a population replacement problem.

Questions

Is it possible to guarantee the spatial spread of the Wolbachia
infected population thanks to local releases of mosquitoes ?
How ?

What is the in�uence of spatial heterogeneities ?
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Mathematical model

We introduce the following quantities :

ni : density of Wolbachia-infected mosquitoes ;

nu : density of uninfected mosquitoes ;

du, di = δdu : death rate, δ > 1 ;

Fu,Fi = (1− sf )Fu : fecondity ;

sh : cytoplasmic incompatibility parameter (fraction of
uninfected females' eggs fertilized by infected males which will
not hatch) ;

K : carrying capacity ;

Model{
∂tni −∆ni = (1− sf )Funi

(
1− ni+nu

K

)
− δduni ,

∂tnu −∆nu = Funu( nu
ni+nu

+ (1− sh) ni
ni+nu

)
(
1− ni+nu

K

)
− dunu.
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Mathematical model : equilibria

We �rst consider the steady states (equilibria) for the associated
ODE model, with no di�usion.

Steady states

As soon as sf + δ − 1 < δsh, there are four distinct nonnegative
equilibria :

Wolbachia invasion (n∗iW , n
∗
uW ) := (K − du

Fu

δ
1−sf , 0) is stable ;

Wolbachia extinction (n∗iE , n
∗
uE ) := (0,K − du

Fu
) is stable ;

co-existence steady state (n∗iC , n
∗
uC ) :=((

K − du
Fu

δ
1−sf

) δ−(1−sf )
δsh

,
(
K − du

Fu

δ
1−sf

) δ(sh−1)+(1−sf )
δsh

)
is

unstable ;

extinction (0, 0) is unstable.

Nicolas Vauchelet Spread of Wolbachia for Dengue control



Introduction : the case of Wolbachia

Mathematical modeling
Spatial spread of Wolbachia

Blocking waves

Mathematical model : equilibria

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure � Phase portrait representing the equilibria and their stability for
the dynamical system without spatial di�usion
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Large fertility asymptotics

To further reduce this model, we assume that the birth rate is high

and introduce the parameter ε such that Fu = F 0
u
ε ,∂tni −∆ni = (1− sf )F

0
u
ε ni
(
1− ni+nu

K

)
− δduni ,

∂tnu −∆nu = F 0
u
ε nu(1− sh

ni
ni+nu

)
(
1− ni+nu

K

)
− dunu.

We are interested in the limit ε→ 0.

We �rst observe that

ni + nu = K + O(ε).
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Large fertility asymptotics

In order to perform the asymptotics study, we introduce

n =
1

ε
(1− ni + nu

K
), p =

ni
ni + nu

(fraction of infected).

After straightforward computations, we �nd{
∂tn −∆n = −1−εn

ε (F 0
u n(shp

2 − (sf + sh)p + 1)− du((δ − 1)p + 1)),

∂tp −∆p + 2ε
1−εn∇p · ∇n = p(1− p)(F 0

u n(shp − sf ) + (1− δ)du).

Formally, when ε→ 0, we deduce from the �rst equation that

n→ n0 =
du((δ − 1)p0 + 1)

F 0
u (shp02 − (sf + sh)p0 + 1)

.
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Reduction of the model

Injecting this expression into the second equation, we obtain after
letting ε→ 0,

∂tp0−∆p0 = δdush
p0(1− p0)(p0 − θ)

F 0
u (shp02 − (sf + sh)p0 + 1)

, θ =
sf + δ − 1

δsh
.

Notice that for δ ≥ 1 and sf < sh, we have θ ∈ (0, 1) and the
denominator never vanishes on (0, 1).
This is the celebrated model proposed by Barton & Turelli. 1

1. Spatial Waves of Advance with Bistable Dynamics : Cytoplasmic and
Genetic Analogues of Allee E�ects, The American Naturalist, 2011
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Reduction of the model

Theorem

Assuming 'well-prepared' initial data, then when ε→ 0, we have
p := ni

ni+nu
→ p0 strongly in L2loc(R+; L2(Rd)), weakly in

L2loc(R+;H1(Rd)) where p0 is the unique solution to

∂tp0 −∆p0 = f (p0),

f (p0) =
δdush
F 0
u

p0(1− p0)(p0 − θ)

shp
2
0 − (sf + sh)p0 + 1

, θ =
sf + δ − 1

δsh
.

Steps for the proof 2 :

Uniform estimates of n and p and their gradient in L2 ;

Relative strong compactness thanks to a 'Aubin-Lions' Lemma ;

Passing to the limit.

2. M. Strugarek, N. V., Reduction to a single closed equation for 2 by 2
reaction-di�usion systems of Lotka-Volterra type, SIAM J. Appl. Math. (2016)
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Generality for bistable reaction-di�usion equation

General bistable equation for p

∂tp − ∂xxp = f (p),

where f is bistable, i.e. f (0) = 0, f (θ) = 0 and f (1) = 0, f < 0 on
(0, θ) f > 0 on (θ, 1).

We have two stable steady states : 0 and 1.

Question

Can an invasion of the steady state p = 1 (Wolbachia
infected) occurs ?

If an invasion can occur, how to guarantee it with releases of
Wolbachia infected mosquitos ?
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Generality for bistable reaction-di�usion equation

To answer to the �rst question, we study traveling waves.

Traveling waves

Particular solution in translation with a constant velocity c :
p(t, x) = p̃(x − ct), with p̃(−∞) = 1, p̃(+∞) = 0 and p̃′ < 0.

x

p

c
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Generality for bistable reaction-di�usion equation

Considering the reaction-di�usion equation

∂tp − ∂xxp = f (p),

and looking for a particular solution under the form
p(t, x) = p̃(x − ct), we get

−cp̃′ − p̃′′ = f (p̃).

Multiplying by p̃′ and integrating we obtain :

c

∫
R

(p̃′(x))2dx = −
∫
R
f (p̃(x))p̃′(x)dx =

∫ 1

0
f (ξ)dξ.
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Generality for bistable reaction-di�usion equation

Consequence

c > 0 if and only if

∫ 1

0
f (ξ)dξ > 0.

In other words, we can have invasion of the state 1 only if∫ 1
0 f (ξ)dξ > 0.

Fortunately, with the numerical data taken from literature, we have∫ 1
0 f (ξ)dξ > 0 for the above model for Wolbachia.
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Generality for bistable reaction-di�usion equation

Possible shape for f :
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Generality for bistable reaction-di�usion equation

Existence of traveling waves

There exists a decreasing traveling wave with c > 0 for the reduced
model for Wolbachia, ∂tp − ∂xxp = f (p), f bistable as above.

Idea : phase-space method 3

We look for c ∈ R and a decreasing function p̃ to the following
di�erential system thanks to a shooting method :{

− cp̃′ − p̃′′ = f (p̃),

p̃(−∞) = 1, p̃(+∞) = 0.

3. H. Berestycki, B. Nicolaenko, B. Scheurer, SIAM J. Math. Anal. 1985.
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Critical propagule

Critical propagule

How to spatially introduce Wolbachia-infected mosquitoes to
guarantee invasion ? How to initiate a wave ?

Answer

There exists a family of functions (vα)α, compactly supported,
radially symmetric and decreasing, such that if there exists a time
τ > 0, for which we have p(τ) ≥ vα, then p(t)→ 1 uniformly on
every compact as t → +∞. We call them α-bubbles.
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Critical propagule

References :

A. Zlatos. Sharp transition between extinction and propagation of

reaction. J. Amer. Math. Soc., 2006.

P. Polacik. Threshold solutions and sharp transitions for

nonautonomous parabolic equations on RN . Archive for Rational
Mechanics and Analysis, 2011.

Y. Du, H. Matano, Convergence and sharp thresholds for

propagation in nonlinear di�usion problems. J. Eur. Math. Soc.,
2010.

C. Muratov, X. Zhong, Threshold phenomena for

symmetric-decreasing radial solutions of reaction-di�usion

equations, Discrete Contin. Dyn. Syst., 2017.
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Critical bubble in one dimension

Family of initial data (uα) above which invasion occurs (one
dimension, to symmetrize with respect to zero) :
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Numerical results in one dimension

With the same amount of mosquitoes, we consider two di�erent
initial repartitions :

Extinction

inital release

time dynamics
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Spatial distribution is important.
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Numerical results in one dimension

Other examples to emphasize the importance of the spatial
distribution :
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Multiple releases : movie
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Uncertainty quanti�cation of the releases

Using the same idea, with radial symmetry, we may prove that such
result holds also in higher dimension 4.

Consequence

Let Ω be a bounded domain containing the support of one bubble.
Let us assume that we perform some random point releases in Ω.
Then, the probability of success of invasion tends to 1 as the
number of releases goes to +∞.

4. M. Strugarek, N. V., J. Zubelli, Quantifying the survival uncertainty of
Wolbachia-infected mosquitoes in a spatial model, Math. Biosci. Eng.
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Uncertainty quanti�cation of the releases
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Active control

Let us consider the problem of active control with a function u
(which may depend on p : feedback control)

∂tp −∆p = f (p) + u1[0,T ]×Ω, p(t = 0) = 0.

Due to the existence of this bubble, it is easy to prove 5

Theorem

There exist a time T > 0, a bounded open set Ω ⊂ Rd and an
active control u = g(p) such that the solution p to the above
equation converges to 1 as t goes to +∞, locally uniformly on Rd .

5. P.A. Bliman, N. V., Establishing traveling wave in bistable
reaction-di�usion system by feedback, IEEE Control Systems Letter, 2017.
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Blocking waves

The environment is heterogeneous. Can strong variations in the
total density of mosquitoes N stop the propagation ?

x
−L L

N
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Blocking waves

In order to take into account the spatial variation in the total
density of mosquitos, denoted N, the following equation has been
introduced 6

∂tp − ∂xxp − 2∂x(logN)∂xp = f (p),

f is bistable ( i.e. f (0) = f (θ) = f (1) = 0, f < 0 on (0, θ), f > 0

on (θ, 1)), and
∫ 1
0 f (x)dx > 0.

For the sake of simplicity, we assume that we have exponential
variation of the density in a domain [−L, L],

∂x log(N) =

{
C
2 , on [−L, L];
0, on R \ [−L, L].

6. The term ∂x(logN) is usually called the gene �ow.
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Existence of a stationary wave boils down to existence for

− p′′ − Cp′ = f (p), on [−L, L],

− p′′ = f (p), on R \ [−L, L],

p(−∞) = 1, p(+∞) = 0, p > 0.

For C and L given, we call (C , L)-barrier a solution to this system.

Blocking waves

Assume that there exists a (C , L)-barrier, denoted pB . Then any
solution to

∂tp − ∂xxp − 2∂x(logN)∂xp = f (p),

with initial data such that pini ≤ pB , has stopped propagation, i.e.
∀ t ≥ 0, p(t) ≤ pB .
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We recall that, for bistable equation, there exists a unique traveling
wave solution (p̃, c∗) solution to

− p̃′′ − c∗p̃′ = f (p̃), on R,
p̃(−∞) = 1, p̃(+∞) = 0.

Moreover, since we have assumed
∫ 1
0 f (x)dx > 0, we have c∗ > 0.

This is the particular case L =∞ in our blocking wave problem.
It seems then natural to have C ≥ c∗.
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More precisely, we have the following result 7

Theorem

Let C > 0 and L > 0. For C > c∗, there exists L∗(C ) > 0 such
that there exists a (C , L)-barrier if and only if L ≥ L∗(C ).
Moreover, C 7→ L∗(C ) is decreasing and

lim
C→c∗

L∗(C ) = +∞,

L∗(C ) ∼ 1

4C
log
(
1− F (1)

F (θ)

)
, when C → +∞,

where F (x) =
∫ x
0 f (z)dz (thus F (1) > 0 and F (θ) < 0).

7. G. Nadin, M. Strugarek, N. V., Hindrances to bistable front propagation :
application to Wolbachia invasion, J. Math. Biol. 76 (2018), no 6, 1489-1533.
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Proposition

Let C > 0 and L > 0. We have the following characterisation of
(C , L)−barrier :

1 Any (C , L)−barrier is decreasing.
2 Il L > L∗(C ), then there exists at least two (C , L)−barriers

and they are totally ordered. Then we can de�ne a maximal
and a minimal (C , L)−barrier.

3 The maximal (C , L)−barrier is unstable from above and the
minimal (C , L)−barrier is stable from below.
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We can draw the following consequences, if L > L∗(C ) :

The front cannot cross the minimal (C , L)−barrier if it is
initially below it.

The extra cost we have to pay to cross the obstacle is to
create a pro�le above the maximal (C , L)−barrier.

x
−L L

X
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Blocking waves : numerical examples

We assume now that ∂x log(N) =

{
C
2 , on [−L, L];
0, on R \ [−L, L].

Figure � Left : Blocking with L = 6 and C = 0.5 ; Right : Propagation
with L = 6 and C = 0.2.
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Blocking waves : numerical examples

We assume now that ∂x log(N) =

{
C
2 , on [−L, L];
0, on R \ [−L, L].

Figure � Left : Blocking with L = 0.5 and C = 2 ; Right : Propagation
with L = 0.5 and C = 1.
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Conclusion and perspectives

Answering to the questions raised in the introduction :

The success of the spatial propagation of the
Wolbachia-infected population depends strongly on the
position of the releases, which must be done in a su�ciently
large area with a su�cient amount of mosquitoes.

Spatial heterogeneities in the environment may block the
propagation.
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Conclusion and perspectives

Some perspectives :

Critical propagule. Study for the system of two populations.

Blocking. What is the delay ?

Invasion. Comparison of numerical results with what is really
observed ?
Optimization of the releases (ongoing work in
collaboration with Martin Strugarek, Yannick Privat
and Luis Almeida).

Mosquito life cycle. Towards a better understanding of the
mosquito life cycle to model the mosquito dynamics.

Thank you for your attention.
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