LE STUDIUM CONFERENCES

MICROPOLLUTANTS IN GROUNDWATER : FROM RESEARCH STUDIES TO REGULATION

> Benjamin Lopez b.lopez@brgm.fr

Water micropollutants: from detection to removal Orléans 26-28 November 2018

Micropollutants in Groundwater: from research studies to regulation

> Setting the scene:

- What is a micropollutant? What are emerging compounds?
- Different types and sources of pollutants
- Issues regarding micropollutants in groundwater resources

Prioritisation of micropollutants in French groundwater

- Prioritisation: a part of the solution
- Why and how to prioritise chemicals?
- European initiatives

Prospective and regulatory surveillance of micropollutants in groundwater

- The first "exceptional campaign in 2011-2012"
- State of the knowledge
- Future surveillance

SETTING THE SCENE

General definitions

> Pollutant = molecule whose presence in the environment causes problems

- Persistent and / or huge and continuous emission
- Toxic for humans and / or ecotoxic for environment
- May cause adverse effect in humans or ecosystems
- Limit one or several use of water, soil

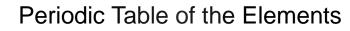
Micropollutants = molecule whose concentration is very weak in water, soil or air

- Microgramme or nanogramme per litre (grain of sugar in an Olympic swimming pool)
- Detection in natural water depends on analytical performances

Setting the scene

Different types of micropollutants – chemical family

> Inorganic pollutants


- 1. heavy metals
- ⇒ Main: Cd, Cr, Cu (copper), Hg (mercury), Ni, Pb (lead), Zn

2. Non-Metalloids
Main: As, Se, ...

« natural » pollutants (non synthetic)

Mining, industrials...

1 H 1.008			5 B	Ма	in no	on-me	etallo	ids p	olluta	ints							2 He 4,00
3 Li 6,94	4 Be 9,01		10,81										10 Ne 20,18				
11 Na 23,00	12 Mg 24,31		Cd 112,40								13 AI 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 CI 35,45	18 Ar 39,95	
23,00	24,51	21	22	23	24	25	26	27	28	29	30	20,30	32	33	34	35	36
К	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,10	40,08	44,96	47,90	50,94	52,00	54,94	55,85	58,93	58,71	63,55	65,38	69,72	72,59	74,92	78,96	79,90	83,80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85,47	87,62	88,91	91,22	92,91	95,94	98,91		102,90		107,90		114,80	118,70		127,60	126,90	131,30
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132,90	137,30	138,90	178,50	181,00	183,90	186,20	190,20	192,20	195,10	197,00	200,60	204,40	207,20	209,00	(210)	(210)	(222)
87	_ 88	89	104	105													
Fr		Ac**	Ku	Ha													
(223)	(226)	(227)	(258)	(260)													
			1	58	59	60	61	62	63	64	65	66	67	68	69	70	71
*Lanthanides			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
Earthandos			140.1	140,9		(145)	150,4	152.0	157.3	158,9	162,5	164.9		168,9	173.0	175,0	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
**Actinides				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			232,00	231,00	238,00	237,0	239,1	(243)	(247)	(247)	(251)	(254)	(257)	(256)	(254)	(258)	

Other inorganics pollutants (synthetic)

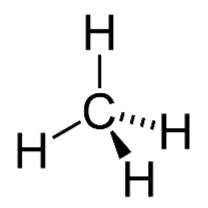
> nitrates and nitrites

- Origin: fertilizer industry; agricultural spreading
- Highly soluble in water

> fluorides

- Origin: chemical industry; aluminium metallurgical plan
- Soluble & stable

> cyanides


- Origin:
 - Undesirable industrial by-products (coking technology, gas plan, organic chemistry) ; washing water from blast furnaces, petrochemical (plastics, pesticides, dyes).
 - Starting materials and/or reagents (surface treatment, ores of gold and silver treatment).
- Soluble, fast degradation by soil acidity

Different types of micropollutants – chemical family

> Organic micropollutants

- Any chemical compound that contains carbon. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known.
- Methane, CH4; it is one of the simplest organic compounds.
- More often « Anthropogenic pollutants »
- \Rightarrow Industrial compounds
- ⇒ Phytopharmaceutical products (PPPs) pesticides
- \Rightarrow Urban pollutants ...

Main organic pollutants families:

Industrial organic pollutants

- Hydrocarbons: gasoline, diesel, fuel, tar... that contain different molecules (VOCs, BTEX, PAHs...)
- Industrial solvents: BTEX, VOCs...,
- PCBs : polychlorobyphenils
- Phenols, Detergents....

> Agricultural organic pollutants

- Nitrates : manure spreading...
- Phytopharmaceutical products PPPs...(fungicides, herbicides, growth hormone....)
- Veterinary products
- Disinfectants...

> Urban organic pollutants

- Pharmaceuticals products
- Personal care products,
- Hydrocarbons (PAHs) gas of cars, pesticides.....

Emerging pollutant = <u>unregulated molecule</u> for which our concern/interest is growing

- New substance on the market
- Newly discovered in the environment
 - Increase of knowledge
 - Increase of sampling methods
 - Increase of analytical methods
- Adverse effects newly discovered

Emerging - compounds can be former molecules!

> No consistency in term of use or chemistry:

- Inorganic and organic industrial pollutants: perchlorates, PFAS...
- Non relevant pesticide metabolites: acetochlor ESA & OXA...
- Personal care products, pharmaceuticals: parabens, antibiotics, carbamazepine...

Introduction into the environment:

> 3 main sources of pollution:

 \implies Industrial activities, that use water for products and emit effluents

⇒ Agricultural activities, when manure, fertilizers and pesticides are spread to the fields – water run off and infiltration into soils toward rivers and groundwater – Leakage of phytopharmaceutical products, tank flushing...

⇒ Urban activities, from the sanitation network, use of pesticides, vehicles, domestic heating, domestic consumption...

> Distinction between

Point source pollution

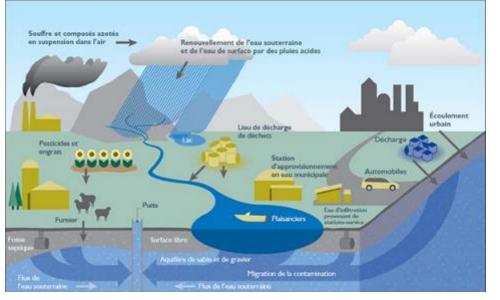
originates from discrete locations whose inputs into aquatic systems can often be defined in a spatially discrete manner

Diffuse pollution

originates from poorly defined, diffuse sources that typically occur over broad geographical scales

Patterns of pollution regarding the type of sources

Sources	Diffuse pollution	Point source pollution				
industrial	+	+++ Industrial wastewater				
agricultural	+++ Pesticides' spreading, manure, fertilizers…	+ Tank leakage				
urban	+ WWTP sludge, storm-water and urban runoff	+++ Waste water treatment plant effluents				
Ubiquitous pollutants	Multi sources, rainfall					


Issues regarding groundwater resources

> An impressive number of chemical products on the market

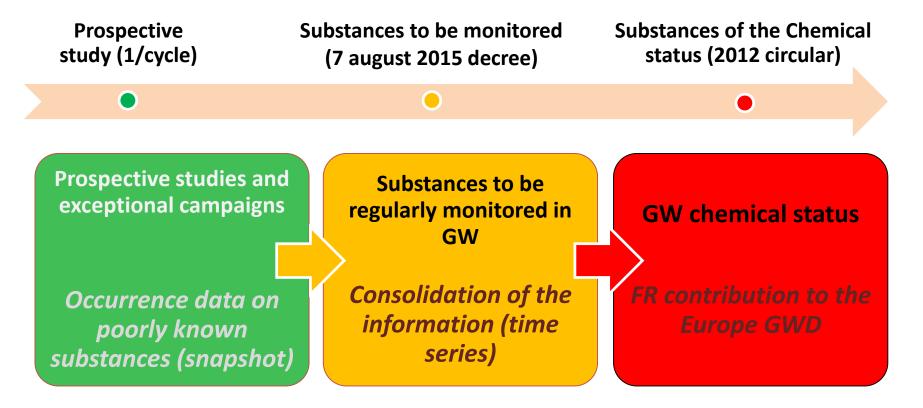
 In 2017, the European Chemical Agency (ECHA) listed <u>106,211 individual chemicals</u> manufactured or imported on the European market since 1971 <u>https://echa.europa.eu/fr/information-on-chemicals/ec-inventory</u>

Large variety of sources, pathways and fate

- In the environment
- In treatment plan systems

Source : Pollution Probe – The Source Eau Protection Primer 2004

- > What are micropollutants of higher concern?
- > Which micropollutants to survey in priority?
- How to reduce emission to the environment?
- > How to remove from water resources?


PRIORITISATION OF MICROPOLLUTANTS IN GROUNDWATER

Prioritisation

<u>A need</u>: To identify micropollutants to be monitored in aquatic systems and groundwater in particular <u>A method</u> organized in a 3 steps cycle

> French groundwater regulatory surveillance

« Cycle » following the River Basin Management Plant definition = 6 years

Prioritisation

Behind the very high and increasing number of manufactured chemicals emitted in the environment it is impossible to assess and monitor all substances

- => <u>Need to prioritise micropollutants</u>
 - Prioritisation = a management solution
 - Conclusion of the « Managing Contaminants of Emerging Concern in Surface Waters"
 OECD Paris Feb. 2018
 - \Rightarrow To target and put plan of measure in practice
 - \Rightarrow To adapt treatment plans
 - \Rightarrow To identify substances to be monitored

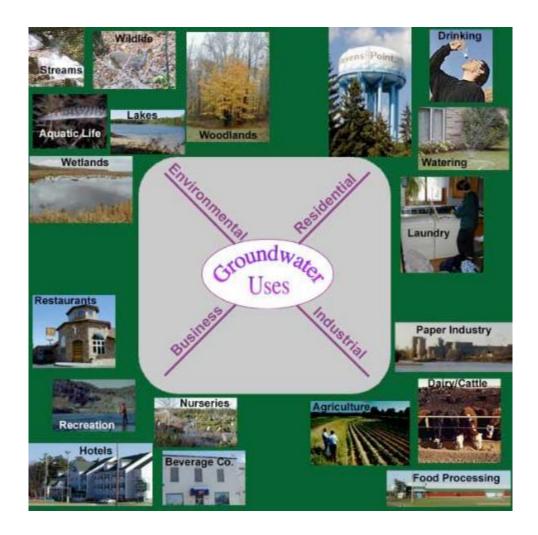
106,211 chemical substances identified in the EU in 2017

ECHA Database contains 13,052 unique substances and contains information from <u>50,405</u> <u>Dossiers</u> (last updated 25 February 2015)

Why to prioritise micropollutants in water resources?

> To conform the regulation (WFD and GWD)

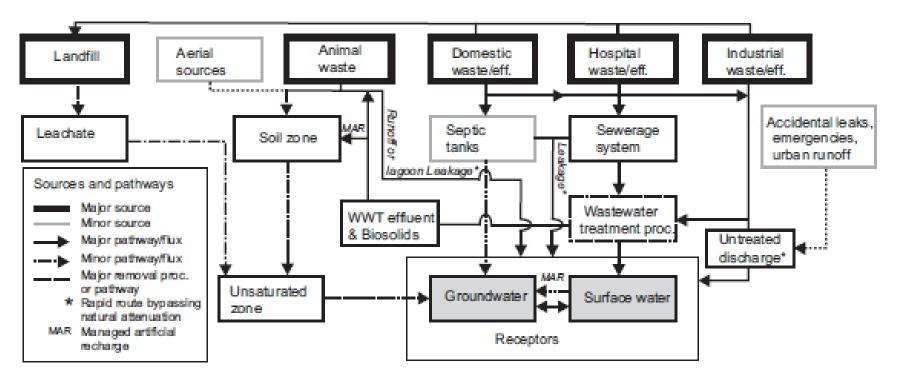
- WFD 2013/39/EU "Review the list of substances designated as Priority Substances and Priority Hazardous Substances"
- Recital (4) of the GWD 2014/80/EU states the need "to obtain and respond to new information on other substances posing a potential risk [...] to groundwater".


Choices have to be made

- to focus on certain substances among all existing chemicals
- to come to consensus about key/priority substances regarding environmental and/or health protection objectives

\Rightarrow Groundwater is a specific middle of the aquatic environment

> There are many different uses of GW resulting in different objectives of resource protection

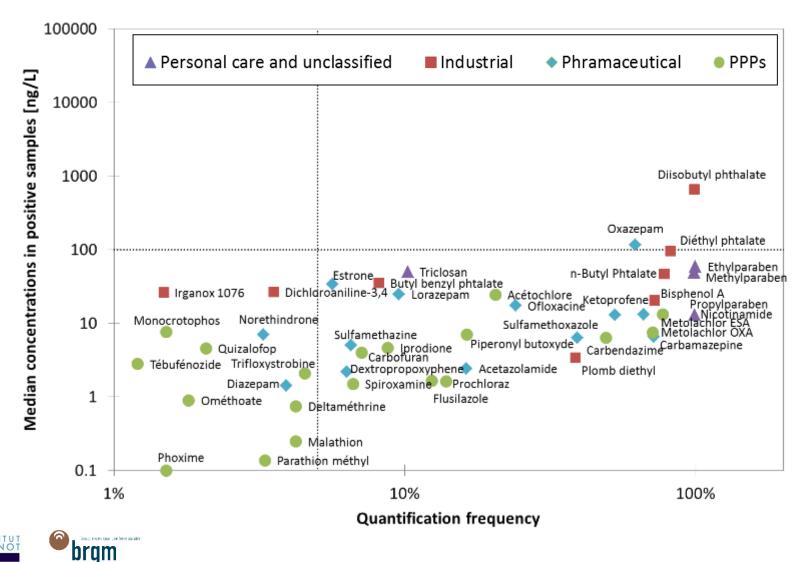

brgm

This collage only represents a few uses of groundwater

- Water supply
- Irrigation
- Industry
- GW Dependent or Associated Ecosystems

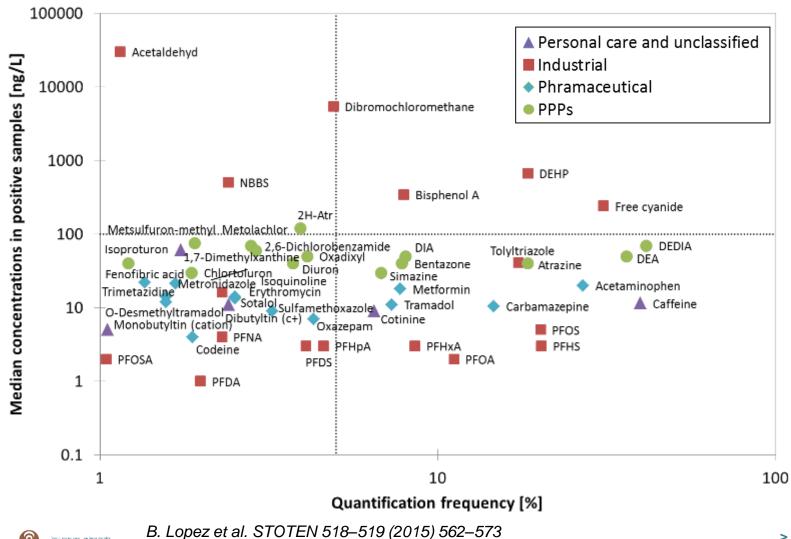
Prioritisation

For many micropollutants there may be multiple pathways to groundwater and associated receptors

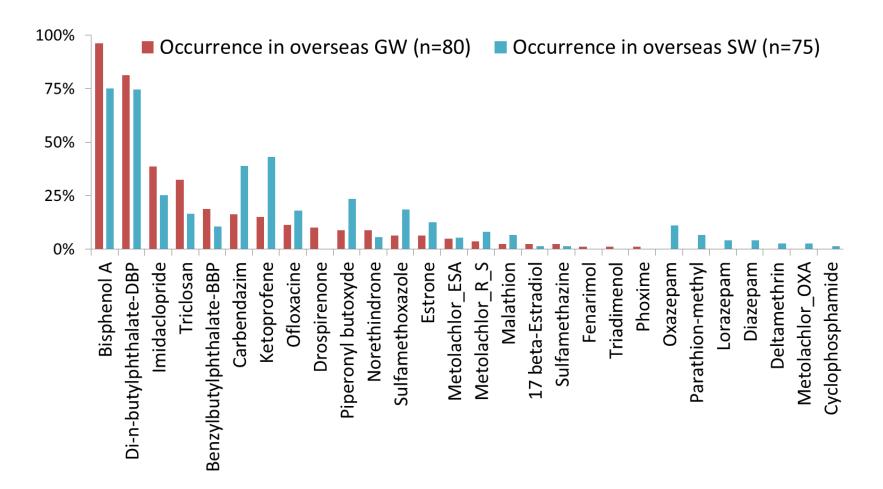


Processes that should affect the nature of groundwater pollutants: Leaching, retention, attenuation, partial degradation, transformation...

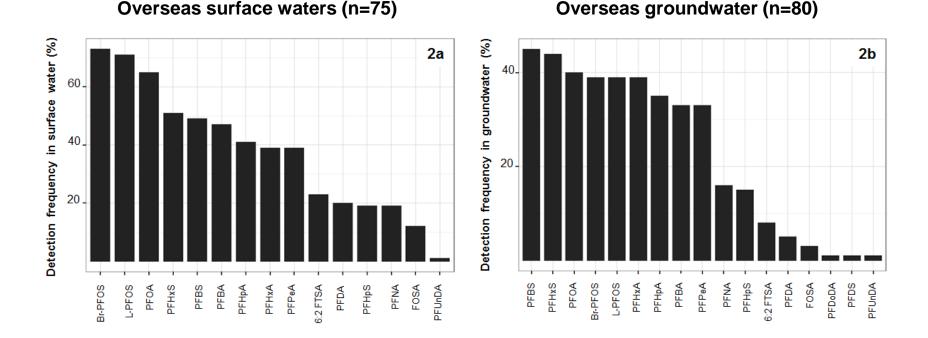
Schematic diagram, using the source-pathway-receptor approach, highlighting potential sources and pathways for groundwater pollution by EOCs (Lapworth et al., 2012)



- Different pathways for GW and SW pollution result in different substances expected in GW and SW
- > Ex. 2012 Screening of ECs in Fr. surface water (n=29,280)


brgm

> 2011 Screening of ECs in Fr. groundwater (n=393,191)



> 20

Ex. French overseas 2012 SW and GW ECs campaigns same labo., same LOQ, same sampling period - 51 common ECs

- Within a same family (same uses), there are not the same compound occurrences in surface and groundwater
- Ex. of poly and perfluoroalkyl substances (PFAS) in Overseas France (Munoz G. *et al.* 2017; STOTEN)

Long-chain PFOS and PFOA prevailed in surface water Vs. short-chain PFBS, PFHxS and PFHxA in groundwater

Prioritisation

Principle of the prioritization of micropollutants in groundwater

Identification of micropollutants of high importance in groundwater

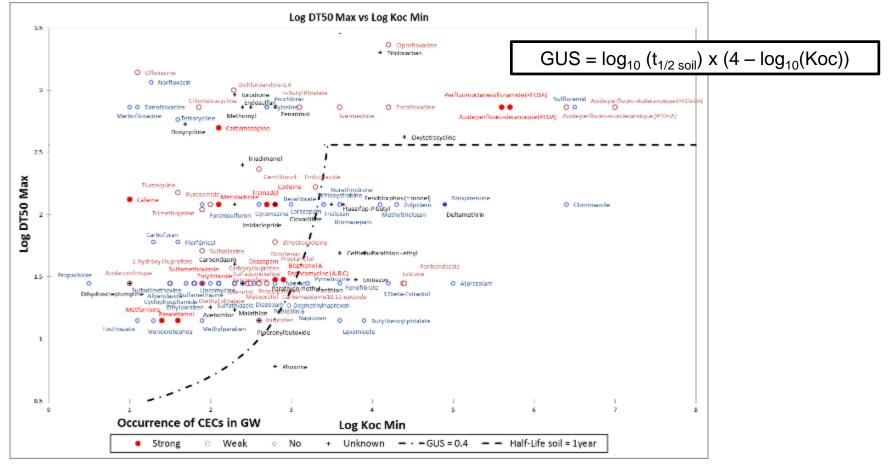
> Criteria:

- Leaching potential to GW
- Health and/or environmental hazard
- Others? Ease of analysis, treatability, possibility to regulate (withdraw from the market, substitution molecules)

> Limit of the method

- Data availability
 - properties (mobility, degradability and toxicity and eco-toxicity)
 - usage at the EU scale (confidentiality of industrial data)
- Estimation of the leaching potential of micropollutants

\Rightarrow Development and test of novel indicators

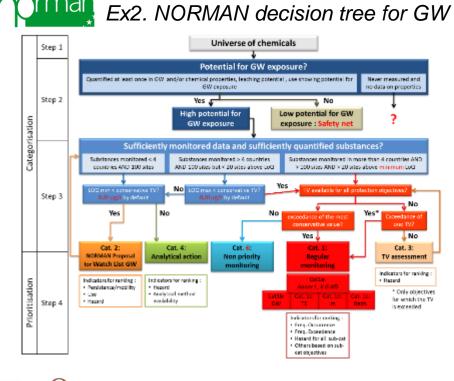

Prioritisation

Exemple: Leaching Potential to GW graphical assessment

Potential leachers = all substances with DT₅₀soil > 1year

and, if not

substances for which GUS > 1.4


log (t1/2 soil) = f(log (Koc) diagram for CECs for which t1/2 soil and Koc properties are available. Occurrence in GW comes from Lopez, B., et al. (2015).

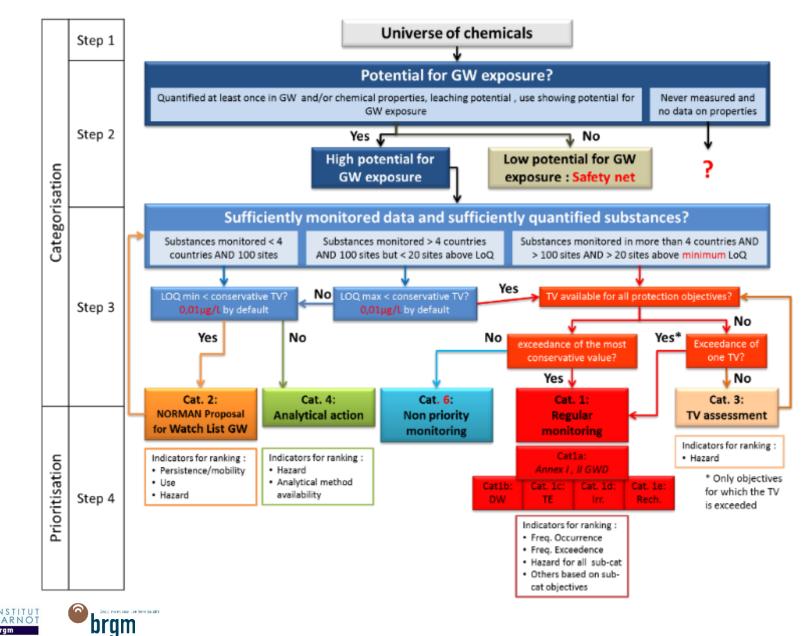
ARNO

brgm

European initiatives

- Methods that combine and aggregate
 - occurrence data
 - chemical properties
- ⇒ prioritisation GW leaching potential and hazard

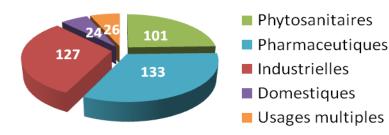
Ex1. GW Watch List concept All substances, except annex I or II substances Prioritisation based on Prioritisation based on existing monitoring data exposure Criteria: theoretical groundwater Criteria: presence in GW leaching potential and extent of Output: ranked list I potential environmental exposure Output: ranked list II All substances found All substances ranked (at least 1 country and 5 sites) according to leaching potential Substances with groundwater leaching potential Prioritisation based on hazard Criteria: toxicological or ecotoxicological hazard Output: ranked list III GWWL monitoring Sufficient monitoring data available? YES NO Limited number No relevant findings (e.g. top 30) -- deselection Groundwater Watch List List facilitating the GWWL annex I and II process


Lapworth et al., ERL 2018, accepted

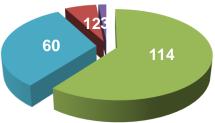
In France: Prioritisation Expert Committee (CEP)

brgm

NORMAN decision tree for GW

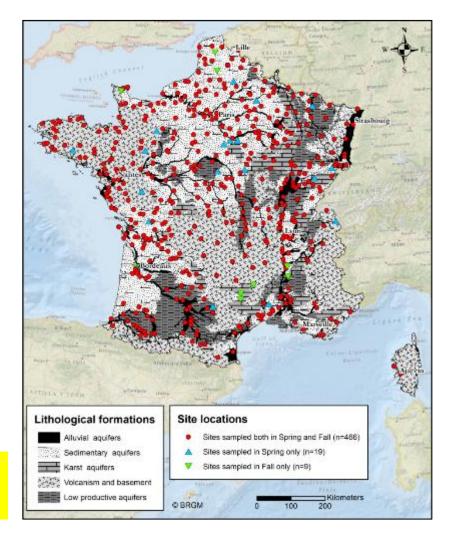


PROSPECTIVE AND REGULATORY SURVEILLANCE OF FRENCH GROUNDWATER



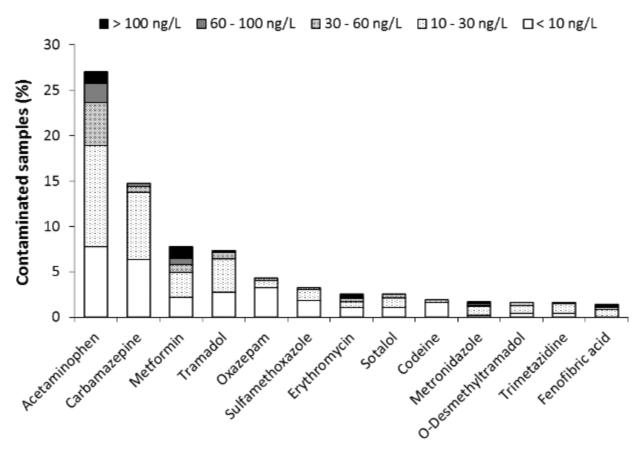
2011-2012 « Exceptional campaigns » in French groundwater

411 substances sought in French metropolis

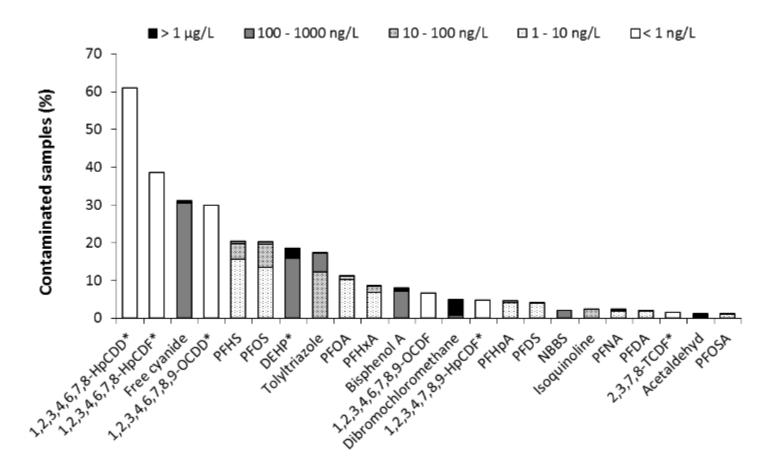


189 substances sought in overseas

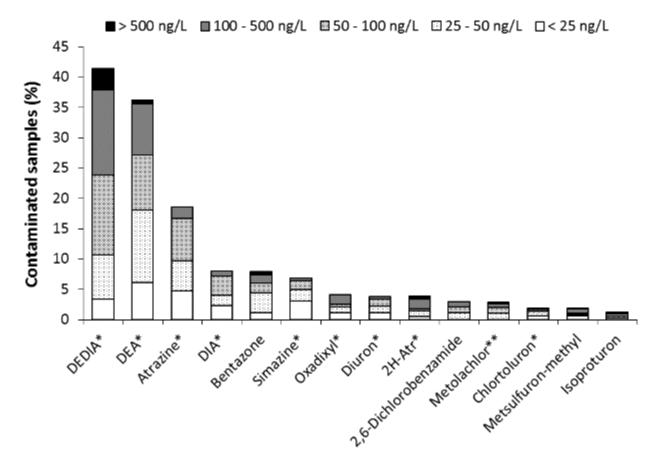
- 494 sampling sites in French metropolis
- 40 sampling sites in overseas
 - 2 sampling campaigns


393 191 results in French metropolis 15 280 results in Overseas

Public results available on the groundwater national portal ADES: <u>http://www.ades.eaufrance.fr/</u>

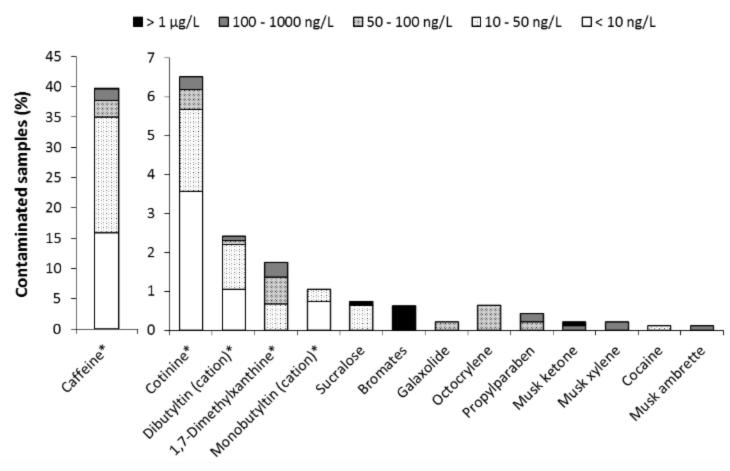

Pharmaceutical products

Frequency of quantification and levels of concentration for pharmaceutical products quantified in more than 1% of overall samples (n = 954)


Industrial compounds

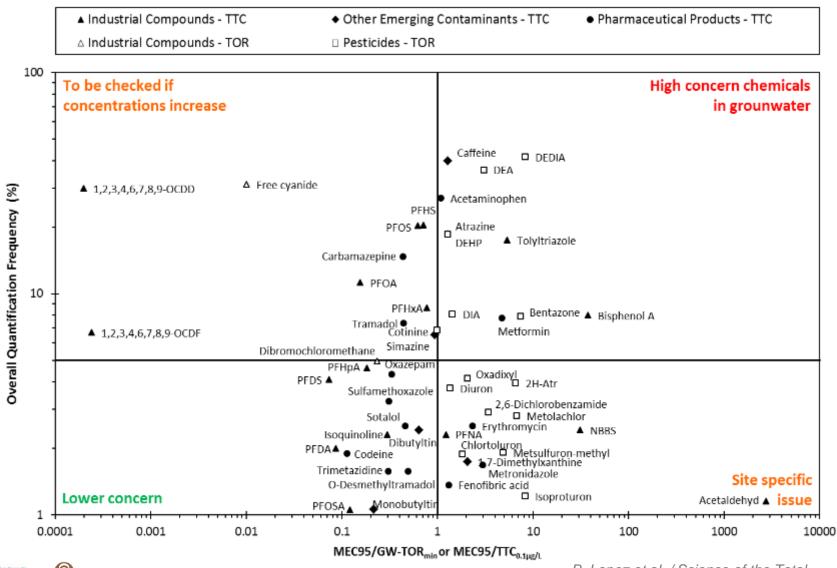
Frequency of quantification and levels of concentration for industrial compounds quantified in more than 1% of overall samples (n = 954); * Mentioned as Priority Hazardous Substances in the WFD (Appendix 2 2013/39/EU)

Phytopharmaceuticals products

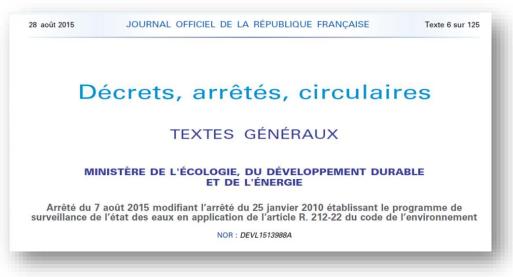

Frequency of quantification and levels of pesticides quantified in more than 1% of overall samples; * Withdrawn or transformation product of a withdrawn parent molecule; ** S-metolachlor isomer approved only

brgm

• Other compounds of emerging concern


Frequency of quantification and levels of concentration for other emerging contaminants quantified in the overall samples (n = 954); * Quantified in more than 1% of samples

Surveillance of Fr. GW

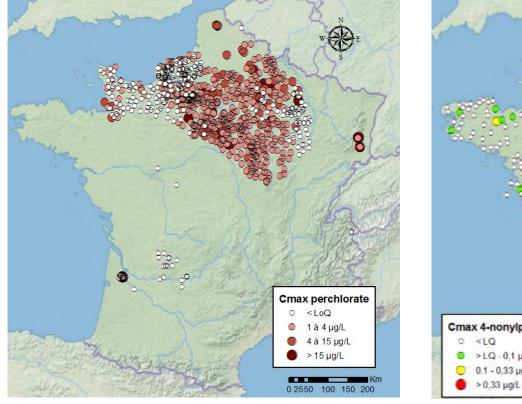

brqm

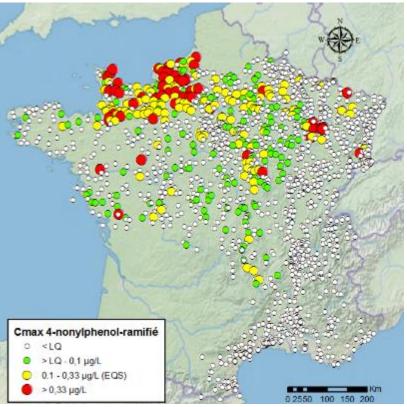
Matrix of quantification frequency and risk of exceedance of toxicological thresholds

B. Lopez et al. / Science of the Total Environment 518–519 (2015) 562–573

After expert and political judgment and based on these results => surveillance Decree of the 7 august 2015

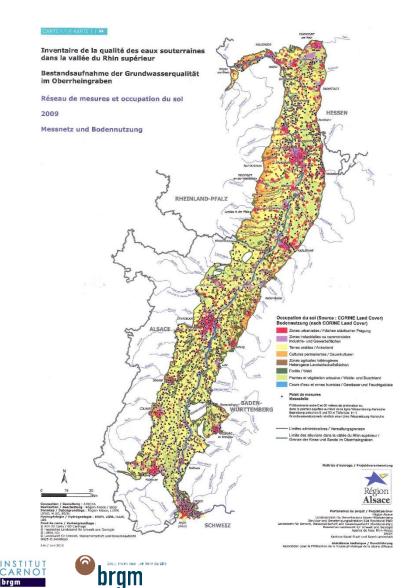
- Final list: 205 organic compounds, 13 metalloids elements (ETM) and 4 others mineral elements
- > => 223 micropollutants to be regulatory monitored in French groundwater
- > 3 levels of analyses for the regulatory surveillance of groundwater
 - Regular analysis (each years) => 23 micropollutants.
 - Photographic analysis (once per RBMP cycle) => 146 micropollutants.
 - Complementary analysis (twice per RBMP cycle on ¼ of sampling sites) => 54 μpol.

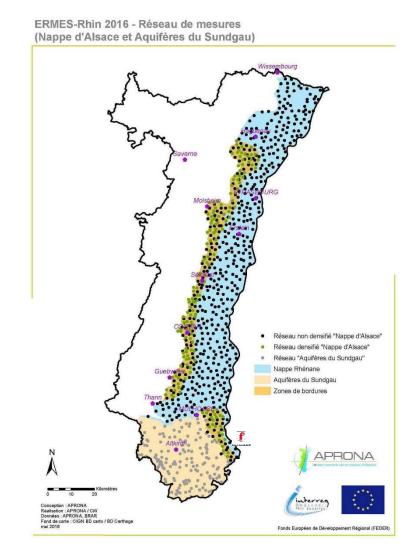


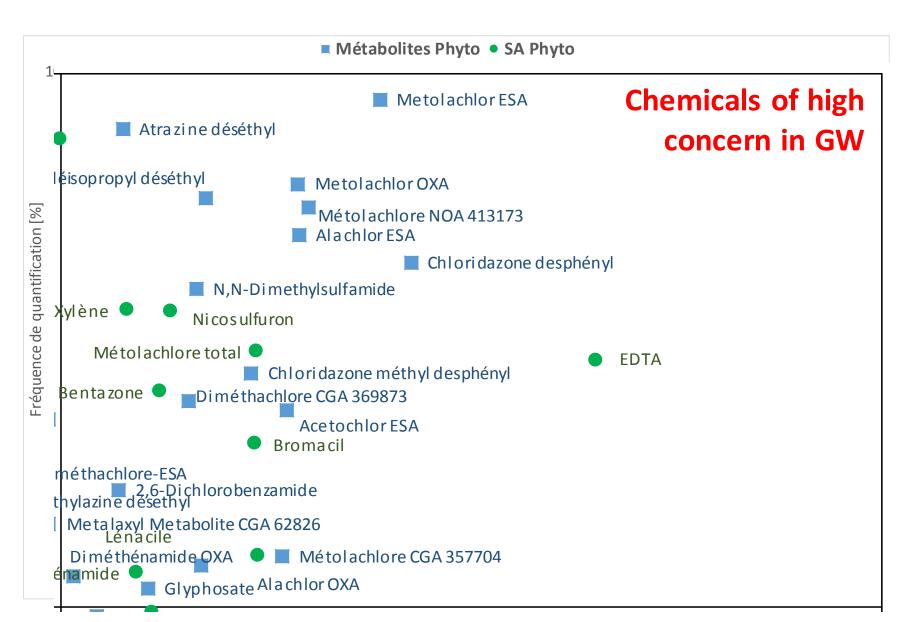

Surveillance of Fr. GW

rqm

Today: first result of the « new » surveillance (7 of august 2015 Decree)


- Implementation depending on the Water agencies market agendas for chemical analyses
- > Ex. perchlorate & 4-nonylphenol ram. max concentrations
- Perchlorates : 8 % of sampling with concentrations > 4 µg/l (toxicological threshold for infant and pregnant)




Surveillance of Fr. GW

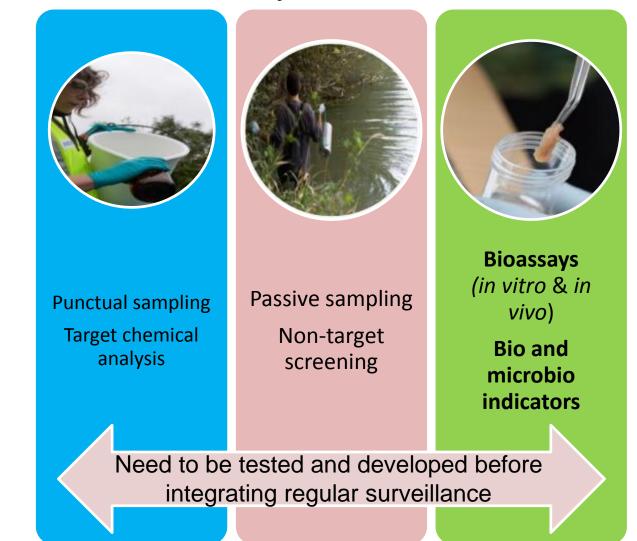
2015-2016: Transboundary study of unregulated and emerging contaminants in Upper Rhine aquifer

Results on pesticides and their metabolites in the Alsace aquifer

Conclusion and perspectives

> Current initiative

- At the European scale: « Watch List » groundwater
 - CIS GW (Com.)
 - NORMAN
 - GeoERA project HOVER WP8 emerging compounds in GW
- At national scale: definition of pesticides relevant metabolites in water supply (ANSES 2019)
- Prospective surveillance
 - 2018-2019: surface water network for prospective surveillance (AFB)
 - 2019: groundwater prospective surveillance (AFB)


> Perspectives

- Reinforce links between healt and environment hazard assessment, threshold values
- Define a robust and relevant scheme for selection and prioritization of micropollutants to be monitored in groundwater to fulfill different objectives
- How to integer in the regulation new sampling, monitoring and chemical analysis tools?

⇒Toward a WFD revision? (2019-...)

Future surveillance: From classical monitoring and chemical analysis to innovative tools

THANK YOU FOR YOUR ATTENTION AND YOUR CONCERN IN MICROPOLLUTANTS