
Introduction Geometry Dynamics Conclusions and outlook

The intricate interplay between integrability and
chaos for the dynamics of the probes of extremal

black hole spacetimes

Stam Nicolis
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The simplest black hole

Usually the Schwarzschild black hole is considered the “simplest”.
This is true–for classical effects.
When quantum effects become relevant, however, it is, perhaps,
the most complex–since Hawking radiation is, still, not fully
understood.
The simplest black hole spacetime, where quantum effects can be
consistently described, seems to be the extremal
Reissner–Nordstrom black hole.
There are many ways to define it–but a geometrical way is by the
statement that its “near horizon geometry” is described by the
factorizable metric

ds2 ≈ ds2
AdS2 + ds2

K

where, “classically”, K = S2. The radial-temporal part is the AdS2,
a single–sheet hyperboloid :
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AdS2, the single–sheet hyperboloid
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Geometry and dynamics

SBH =
A
4

<∞⇒ NBH = eS <∞

SBH = lnNBH

SBH ∝ N

A quantum black hole has a finite dimensional space of states.
An extremal, quantum black hole, defines a space of states of
fixed dimension. So the dynamics consists of unitary
transformations, that keep NBH fixed. One way is by
performing operations mod N.
So a probe of such a space must, itself, have N states. The
probe must, also, preserve extremality.
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From classical to quantum geometry

The classical, near–horizon, spacetime geometry, is

ds2 ≈ ds2
AdS2 + ds2

S2

The quantum, near–horizon, spacetime geometry, when the
microstates can be resolved, can be described by

ds2 ≈ ds2
AdS2[N] + ds2

S2N

where

AdS2[N] :
x2

0 + x2
1 − x2

2 ≡ 1modN

S2
N :

y2
1 + y2

2 + y2
3 ≡ 1modN
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Geometry mod N

x2
0 + x2

1 − x2
2 ≡ 1modN ⇒ x2

0 + x2
1 ≡ (1 + x2

2 )modN

The x2 = 0 plane (N = 31, 67, 1031)

The cloud describes non–classical states
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Classical dynamics mod N

Any point (x0, x1, x2), on the hyperboloid, can be represented by a
2× 2 matrix, X

X =

(
x0 x1 + x2

x1 − x2 −x0

)
if detX = −x2

0 − x2
1 + x2

2 = −1.
Moving on the hyperboloid

Xn+1 = AXnA−1 ⇒ Xn = AnX0A−n

where A in the corresponding group :

The points, X ∈ SL(2,R)/SO(1, 1) in the continuum. The
corresponding points mod N, belong to the group
SL(2,ZN)/SO(1, 1,ZN).

A particularly interesting element is the Arnol’d cat map.
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The Arnol’d cat map

A =

(
1 1
1 2

)
= LR−1

where

L =

(
1 0
1 1

)
R =

(
1 −1
0 1

)
The L and R realize motion along the light cone generators of
AdS2. They satisfy the braid group relations

LRL = RLR

and
An = Ll1Rr1Ll2Rr2 · · · LlnRrn

define “random walks” on the hyperboloid.
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The classical dynamics of the Arnol’d cat map modN

A =

(
1 1
1 2

)

An =

(
f2n−1 f2n
f2n f2n+1

)

Xn =

(
f2n−1f2n+1 + f 2

2n −2f2nf2n−1

−2f2nf2n+1 −f2n−1f2n+1 − f 2
2n

)
modN

where {fn} the Fibonacci sequence. This motion is periodic :
There exists T (N) s.t. AT (N) ≡ I2×2 mod N. But T (N) is a
non–trivial function of N and can be much smaller than N. If
N = f2k then T (N) ∼ logN.
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The period T (N)
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The quantum dynamics of the Arnol’d cat map

Quantum dynamics is described by an N × N unitary matrix,
U(A)k,l given by the expression

U(A)k,l =
(−2|N)√

N
ω
− k2−2kl+2l2

2
N

It satisfies
U(A)m = U(Am)

This property is the key for understanding “fast scrambling” and
how quantum black holes saturate the “scrambling time bound”.
Since A can be diagonalized

A = RDR−1

an interesting basis is provided by the eigenstates of U(D).
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The dynamics :
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Thermodynamics and deterministic or molecular chaos

Is the probe in thermodynamic equilibrium with the black hole ?
Do the black hole microstates display molecular chaos, whose
macroscopic, thermodynamic, properties are described by the
appropriate statistics–or do they display deterministic chaos ?
Since the space of states is compact, mod N, deterministic chaos
is possible, since mixing is possible.
To address these questions we study the evolution of wavepackets
under U(A) and focus on the statistical properties of their
amplitude and their phase.
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The ground state
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The Eigenstate Thermalization Hypothesis
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Conclusions and outlook

We have a concrete example for the consistent dynamics,
classical and quantum, of “point–like” probes of the
spacetime of extremal black holes. We can compute transition
amplitudes and probabilities from any initial to any final state
of the probe, as it interacts with the black hole microstates.

The temperature isn’t that of Hawking radiation, that
vanishes in the extremal limit, but of the thermodynamical
description of the deterministically chaotic dynamical system
of the spacetime probe of the extremal black hole. There isn’t
any problem with the laws of theormodynamics.

Since the black hole is extremal, the infalling observer isn’t
bound to encounter the singularity. So it does make sense, in
principle, to compare the measurements of two observers.
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