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Typical” results in quantum algorithmes: g H
* Based on quantum circuits (quantum gates) @ i - B
» Improve upon the time complexity of classic algorithms '_ : L1

This work : quantum annealing.

cw . * Universal model for quantum computation
\’\ /\ / * Adiabatic theorem: if the process is slow enough, an
\/ optimal solution is obtained with high probability

* What can we do in short running time?

H, |w(T)) o~ =T '

: * Seeking for theoretical guarantees, not for quantum
advantage




Computing with quantum annealing

712 | wC0)) = H(t, G) |wC@), s@) ==
Minimum of a function C(x) ey 1y () . Gy= ). s =7

1. Start with a simple Hamiltonian H,, H(t, G) = (1 = s(t))Hy + s()HA(G)
and a simple ground state |y)

2. Target Hamiltonian H - its ground

state corresponds to min C(x)
X

3. Evolution from H, to H,in time T
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Computing with quantum annealing

Minimum of a function C(x)

1. Start with a simple Hamiltonian H,,
and a simple ground state |y)

2. Target Hamiltonian H - its ground

state corresponds to min C(x)
X

3. Evolution from H, to H,in time T
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Computing with quantum annealing

Minimum of a function C(x)

1.

Start with a simple Hamiltonian H,,,
and a simple ground state |y)

Target Hamiltonian H: its ground

state corresponds to min C(x)
X

Evolution from H to Hin time T

ih=-|wO(t) = H(t,G) lyo(), s(t) =+

H(, G) = (1 —s()Hy + s(t) HAG)
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“tunneling” if speed
ds
| =1 small enough

T T~

t=1T




Convergence of QA

Adiabatic Theorem : if T is large enough, then the
H(?) = (1 — s(t))H, + s(t)H - with

s(0)=0and s(T) =1, e.g., s(t) = %

system stays in the eigen subspace from which it
started the evolution.

In practice : it T ~ O(

Ai ), where A is the minimum

min

spectral gap of H(t, G), then measuring |y(7T))

gives, w.h.p., the state x which minimizes C(x).

L 4
.« tunneling » it
L 4
X

speed |%| small

/\tZT'

Typically, T should be exponential w.r.t. input size ’c

/



Concrete application: MaxCut

1. Input: graph G = (V, E).

2. Output: a bipartition of V
3. Objective: maximize the number of crossing edges

Alternatively: color the vertices in red/green, maximize the number of
bicolored edges

MaxCut is NP-hard. There exists a polynomial approximation algorithm
with approximation factor p;y, = 0.878 [Goemans, Williamson 1995].

l.e., for any input, the output cuts at least py, X OPT edges



MaxCut through QA

Clx)=-), (ii1eE % @ x; where x is a bicoloration of the nodes V

(0 and 1 in the computational basis)

— 5 forz, = (= 1) |
C(x) = —Z{i,j}eE — for z; = (= 1)" (so z; equals +1 or -1).

C counts the number of edges bicolored edges.

x=0101
— -adjacency matrix of the hypercube

[ — 5l =4
S — Z 0, , counts the bicoloured edges
e

H{G)=- )

{i,j}€E 2



MaxCut through QA: approximation ratio

At the end of the process t = T, the measure gives one sample x of the final

superposition |y(7)) with probability | (x|y(T)) \2 .

For any probabilistic algorithm & that solves MaxCut C, we define the

approximation ratio as the ratio of the expected output of & and the optimal value:

_Q[(C)

puc(9f) = min -
G COPt
) o O O

For of = QA, Epy(C) = (WO(T) |HA(G) [y%(D)) = (HA(G))g = T (0,):
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Our result

Theorem: QA at T = 1.63 achieves a 0.5933 approximation of
MaxCut on cubic graphs, i.e., where all vertices have degree 3.

* better than the naive algorithm, which achieves o.5...

* but weaker than other classic algorithms

Tools
* Short-time QA is “almost local”
* Cubic graphs: constant number of local configurations

* Lieb-Robinson type bound on the “difference” to locality
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Take-away: LR-type
bounds are “good
enough” to guarantee
approximation ratios for
bounded degree graphs



Some details

Let & be a quantum algorithm, by linearity E ,(C) = (HAG)) s = ZeeE (O,) ;- Assume :

(H1) Local Algorithm: (O,); = (O,)g where B, is the ball of radius 1 around the edge e.

(H2) Focus on cubic graphs: any edge e has one of the following possible B, :

QZ Q3
e €

_ﬂ(c) — Ze€E<Oe>G (H=1) ze <0€>Be

5 (0a, + (4431)0,)g, 4 (5 = 55=3F)0,)q,

where 5 is the number of squares and F'is the number of isolated triangles .
12




Some details

After optimization over possible values S and F, the worst ratio is achieved for § = F' = 0, and

the approximation ratio itself corresponds to (O, ), .

This only works under the assumption that the algorithm is local! Not quite true... but true up to

107> for our short (constant) running time.
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Lieb-Robinson “like” bounds

QA is a priori non local, the unitary is mixing all qubits.
Lieb-Robinson bound (1972): bound on the speed of information flow.

If is small enough (O,) ~ <Oe>Be

Evolution of the support of (O,)

= Corollary (almost local) :

<Oe>G 2 <Oe>Be o LRgi(t)
o
See article for explicit computation of LR.

Theorem: QA at 7 = 1.63 achieves a

0.5033 approximation of MaxCut on
‘ cubic graphs.
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Conclusion and discussion

Quantum annealing in short (constant) time: guaranteed approximation for several
optimization problems, for graphs of bounded degree.

Tools: pseudo-locality through Lieb-Robinson type bounds, limitation: bounded degree

See article for comparisons with QAOA (quantum approximate approximation algorithms),
which is local

Personal frustration: MaxCut on cubic graphs has (exponentially) many solutions close to OPTT.

No tools for studying the probability that QA remains in the “lowest” states, for reasonable 7.

Ongoing work: better bounds, study of “anti-crossings”, inputs on which QA can be efficient

15



Thank you!

Main contributor: arthur.braida@atos.net

arXiv:2202.01636

On constant-time quantum annealing and guaranteed
approximations for graph optimization problem:s,

Published in Quantum Science and Technology

10


mailto:arthur.braida@atos.net

