

Guaranteed approximation algorithms through quantum annealing Tours, July 2023, Chiral Matter colloquium

Arthur Braida, Simon Martiel, Ioan Todinca

"Typical" results in quantum algorithms:

- Based on **quantum circuits** (quantum gates)
- Improve upon the time complexity of classic algorithms

- This work : quantum annealing.
- Universal model for quantum computation
- Adiabatic theorem: if the process is **slow** enough, an optimal solution is obtained with high probability
- What can we do in **short** running time?
 - Seeking for theoretical guarantees, not for quantum advantage

Minimum of a function C(x)

- 1. Start with a simple Hamiltonian H_0 , and a simple ground state $|\psi_0\rangle$
- 2. Target Hamiltonian H_C : its ground state corresponds to min C(x)
- 3. Evolution from H_0 to H_C in time T

 $i\hbar\frac{\partial}{\partial t}|\psi^G(t)\rangle = H(t,G)|\psi^G(t)\rangle, \quad s(t) = \frac{t}{T}$

Minimum of a function C(x)

- Start with a simple Hamiltonian H_0 , 1. and a simple ground state $|\psi_0\rangle$
- Target Hamiltonian H_C : its ground 2. state corresponds to min C(x) ${\mathcal X}$
- Evolution from H_0 to H_C in time T 3.

 $i\hbar\frac{\partial}{\partial t}|\psi^G(t)\rangle = H(t,G)|\psi^G(t)\rangle, \quad s(t) = \frac{t}{T}$

Minimum of a function C(x)

- Start with a simple Hamiltonian H_0 , 1. and a simple ground state $|\psi_0\rangle$
- Target Hamiltonian H_C : its ground 2. state corresponds to min C(x) $\boldsymbol{\chi}$
- Evolution from H_0 to H_C in time T 3.

 $i\hbar\frac{\partial}{\partial t}|\psi^G(t)\rangle = H(t,G)|\psi^G(t)\rangle, \quad s(t) = \frac{t}{\tau}$

Minimum of a function C(x)

- Start with a simple Hamiltonian H_0 , 1. and a simple ground state $|\psi_0\rangle$
- Target Hamiltonian H_C : its ground 2. state corresponds to min C(x) ${\mathcal X}$
- Evolution from H_0 to H_C in time T_H 3.

 $i\hbar\frac{\partial}{\partial t}|\psi^G(t)\rangle = H(t,G)|\psi^G(t)\rangle, \quad s(t) = \frac{t}{T}$

Convergence of QA

Adiabatic Theorem : if T is large enough, then the system stays in the eigen subspace from which it started the evolution.

In practice : if $T \sim \mathcal{O}(\frac{1}{\Delta_{min}^2})$, where Δ_{min} is the minimum spectral gap of H(t, G), then measuring $|\psi(T)\rangle$ gives, w.h.p., the state x which minimizes C(x).

Typically, T should be exponential w.r.t. input size H_C

 $H(t) = (1 - s(t))H_0 + s(t)H_C$ with

Concrete application: MaxCut

- Input: graph G = (V, E). 1.
- Output: a bipartition of V2.

Objective: maximize the number of crossing edges 3. Alternatively: color the vertices in red/green, maximize the number of bicolored edges

MaxCut is NP-hard. There exists a polynomial approximation algorithm with approximation factor $\rho_{GW} = 0.878$ [Goemans, Williamson 1995]. I.e., for any input, the output cuts at least $\rho_{GW} \times OPT$ edges

MaxCut through QA

 $C(x) = -\sum_{\{i,j\}\in E} x_i \bigoplus x_j$ where x is a bicoloration of the nodes V

(o and 1 in the computational basis)

$$C(x) = -\sum_{\{i,j\}\in E} \frac{1 - z_i z_j}{2} \text{ for } z_i = (-1)^{x_i} (\text{so } z_i \text{ e})$$

C counts the number of edges bicolored edges.

 $H_0 = -\sum_i \sigma_x^{(i)} = -adjacency matrix of the hypercube$ $H_{C}(G) = -\sum_{i=1}^{n} \frac{1 - \sigma_{z}^{(i)} \sigma_{z}^{(j)}}{2} = \sum_{i=1}^{n} O_{e}$, counts the bicoloured edges *{i,j}∈E e*

- equals +1 or -1).

- x = 0101
- C(x) = -4

MaxCut through QA: approximation ratio

At the end of the process t = T, the measure gives one sample x of the final superposition $|\psi(T)\rangle$ with probability $|\langle x|\psi(T)\rangle|^2$.

For any probabilistic algorithm \mathscr{A} that solves MaxCut C, we define the $\rho_{MC}(\mathscr{A}) = \min_{G} \frac{\mathbb{E}_{\mathscr{A}}(C)}{C_{opt}}.$

For $\mathscr{A} = QA$, $\mathbb{E}_{OA}(C) = \langle \psi^G(T) | H_C(G) | \psi^G(T) \rangle = \langle H_C(G) \rangle_G = \sum_e \langle O_e \rangle_G$.

- approximation ratio as the ratio of the expected output of \mathcal{A} and the optimal value:

Our result

Theorem: QA at T = 1.63 achieves a 0.5933 approximation of MaxCut on *cubic graphs*, i.e., where all vertices have degree 3.

- better than the naive algorithm, which achieves 0.5...
- but weaker than other classic algorithms

Tools

- Short-time QA is "almost local"
- Cubic graphs: constant number of local configurations
- Lieb-Robinson type bound on the "difference" to locality

Take-away: LR-type bounds are "good enough" to guarantee approximation ratios for bounded degree graphs

Some details

Let \mathscr{A} be a quantum algorithm, by linearity \mathbb{E}

(H1) Local Algorithm: $\langle O_e \rangle_G = \langle O_e \rangle_{B_e}$ where B_e is the ball of radius 1 around the edge *e*.

(H2) Focus on cubic graphs: any edge *e* has one of the following possible B_{ρ} :

where S is the number of squares and F is the number of isolated triangles.

$$E_{\mathscr{A}}(C) = \langle H_C(G) \rangle_G = \sum_{e \in E} \langle O_e \rangle_G$$
. Assume :

$$\mathbf{F}\langle O_e\rangle_{\Omega_2} + (\frac{3n}{2} - 5\mathbf{S} - 3\mathbf{F})\langle O_e\rangle_{\Omega_3}$$

Some details

the approximation ratio itself corresponds to $\langle O_e \rangle_{\Omega_3}$.

 10^{-3} for our short (constant) running time.

After optimization over possible values S and F, the worst ratio is achieved for S = F = 0, and

This only works under the assumption that the algorithm is local! Not quite true... but true up to

Lieb-Robinson "like" bounds

QA is a priori non local, the unitary is mixing all qubits. Lieb-Robinson bound (1972): bound on the speed of information flow.

Evolution of the support of $\langle O_{\rho} \rangle_{G}$

If t is small enough $\langle O_e \rangle_G \simeq \langle O_e \rangle_{B_e}$

⇒ **Corollary** (*almost* local) :

$$\langle O_e \rangle_G \ge \langle O_e \rangle_{B_e} - LR_{O_e}^{B_e}(t)$$

 $\langle O_e \rangle_{B_e}^*$

See article for explicit computation of LR.

Theorem: QA at T = 1.63 achieves a o.5933 approximation of MaxCut on cubic graphs.

- Quantum annealing in short (constant) time: guaranteed approximation for several optimization problems, for graphs of bounded degree.
- Tools: pseudo-locality through Lieb-Robinson type bounds, limitation: bounded degree
- See article for comparisons with QAOA (quantum approximate approximation algorithms), which is local
- Personal frustration: MaxCut on cubic graphs has (exponentially) many solutions close to OPT. No tools for studying the probability that QA remains in the "lowest" states, for reasonable T.
- Ongoing work: better bounds, study of "anti-crossings", inputs on which QA can be efficient

Conclusion and discussion

Thank you!

On constant-time quantum annealing and guaranteed approximations for graph optimization problems,

Published in Quantum Science and Technology

Main contributor: arthur.braida@atos.net

arXiv:2202.01636