
Arthur Braida, Simon Martiel, Ioan Todinca 

Guaranteed approximation algorithms 
through quantum annealing

Tours, July 2023, Chiral Matter colloquium

1



“Typical” results in quantum algorithms:  

• Based on quantum circuits (quantum gates) 

• Improve upon the time complexity of classic algorithms
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This work : quantum annealing.  

• Universal model for quantum computation 

• Adiabatic theorem: if the process is slow enough, an 
optimal solution is obtained with high probability 

• What can we do in short running time?  

• Seeking for theoretical guarantees, not for quantum 
advantage
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Computing with quantum annealing
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Computing with quantum annealing
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Convergence of QA
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Adiabatic Theorem : if  is large enough, then the 
system stays in the eigen subspace from which it 
started the evolution. 

In practice : if , where  is the  minimum 

spectral gap of , then measuring  
gives, w.h.p., the state  which minimizes .  

Typically,  should be exponential w.r.t. input size
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 with 
 and , e.g.,  

H(t) = (1 − s(t))H0 + s(t)HC
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Concrete application: MaxCut
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1. Input: graph . 

2. Output: a bipartition of  

3. Objective: maximize the number of crossing edges  

Alternatively: color the vertices in red/green, maximize the number of 
bicolored edges 

MaxCut is NP-hard. There exists a polynomial approximation algorithm 
with approximation factor  [Goemans, Williamson 1995]. 

I.e., for any input, the output cuts at least  edges

G = (V, E)

V

ρGW = 0.878

ρGW × OPT



MaxCut through QA
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 where  is a bicoloration of the nodes   

(0 and 1 in the computational basis)  

 for  (so  equals +1 or -1). 

 counts the number of edges bicolored edges. 

 = -adjacency matrix of the hypercube 

 , counts the bicoloured edges 
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MaxCut through QA: approximation ratio
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At the end of the process , the measure gives one sample  of the final 
superposition  with probability . 

For any probabilistic algorithm  that solves MaxCut , we define the 
approximation ratio as the ratio of the expected output of  and the optimal value: 

. 

For , .
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Our result
Theorem: QA at  achieves a 0.5933 approximation of 
MaxCut on cubic graphs, i.e., where all vertices have degree 3.  

• better than the naive algorithm, which achieves 0.5… 

• but weaker than other classic algorithms 

Tools 

• Short-time QA is “almost local” 

• Cubic graphs: constant number of local configurations 

• Lieb-Robinson type bound on the “difference” to locality

T = 1.63
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Take-away: LR-type 
bounds are “good 
enough” to guarantee 
approximation ratios for 
bounded degree graphs



Some details
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Let  be a quantum algorithm, by linearity . Assume : 

(H1) Local Algorithm:  where  is the ball of radius 1 around the edge . 

(H2) Focus on cubic graphs: any edge  has one of the following possible :

𝒜 𝔼𝒜(C) = ⟨HC(G)⟩G = ∑e∈E ⟨Oe⟩G
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e e e

𝔼𝒜(C) = ∑e∈E ⟨Oe⟩G =
(H1)

∑e ⟨Oe⟩Be

=
(H2)

S⟨Oe⟩Ω1
+ (4S+3F)⟨Oe⟩Ω2

+ ( 3n
2 − 5S−3F)⟨Oe⟩Ω3

 where S is the number of squares and F is the number of isolated triangles .



Some details
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After optimization over possible values  and , the worst ratio is achieved for , and 
the approximation ratio itself corresponds to .

S F S = F = 0
⟨Oe⟩Ω3

Ω1 Ω2 Ω3

e e e

This only works under the assumption that the algorithm is local! Not quite true… but true up to 
 for our short (constant) running time.10−3



Lieb-Robinson “like” bounds
QA is a priori non local, the unitary is mixing all qubits. 
Lieb-Robinson bound (1972): bound on the speed of information flow.

If  is small enough  

 Corollary (almost local) :  

      

See article for explicit computation of LR.
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Theorem: QA at  achieves a 
0.5933 approximation of MaxCut on 
cubic graphs.

T = 1.63
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Conclusion and discussion
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Quantum annealing in short (constant) time: guaranteed approximation for several 
optimization problems, for graphs of bounded degree. 

Tools: pseudo-locality through Lieb-Robinson type bounds, limitation: bounded degree 

See article for comparisons with QAOA (quantum approximate approximation algorithms), 
which is local 

Personal frustration: MaxCut on cubic graphs has (exponentially) many solutions close to OPT. 
No tools for studying the probability that QA remains in the “lowest” states, for reasonable . 

Ongoing work: better bounds, study of “anti-crossings”, inputs on which QA can be efficient

T



Thank you!
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