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BQPExamples of new classes of problems are rare.

Applications are often hard to find because of the
limitations that quantum imposes.

Many examples have been found to be 
dequantizable: (Recommendation Systems, Nearest 
Centroid Classifiers, Quantum PCA, Topological 
Data Analysis??)

We want to understand what makes a problem 
hard to dequantize and in turn understand what 
tasks are true exponential speedups for quantum.



Finding Speedups for Differential Equations

• Nearly everything can be modeled by a linear differential equation.
• Let 𝜌𝜌 be a probability density of N particles in D dimensions.  
• log dim 𝜌𝜌 ∈ 𝑂𝑂(𝑁𝑁𝑁𝑁), meaning distribution is exponentially large
• Dynamics of probability density is given by

•
Classical dynamics can be described by a linear differential eq.

• Awesome!  Does this mean we get an exponential speedup for all 
classical dynamics?



No! No! No! we totally don’t…

• The differential equation for a single trajectory is generically non-
linear but can be solved in time 𝑂𝑂 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑁𝑁𝑁𝑁

𝜖𝜖
.

• Monte Carlo sampling can be used to get samples from distribution.

Initial 𝜌𝜌

Type equation here.



Ok Weird so are there any ODEs 
that give a quantum advantage
• Good News: The answer is totally yes

• Bad News: The most straight forward answer is the Schrodinger 
Equation.

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑖𝑖 𝜌𝜌,𝐻𝐻



Why does this dequantization strategy fail for 
the Schrodinger equation?
• Path Integration is the natural way to find trajectories for quantum 

systems.

• Each path can be computed in polynomial time.
• Phases nearly exactly cancel and variance in monte-carlo estimate is 

exponentially large (sign problem).

It’s Interference!
(IE contextuality to you 

foundations nerds)



Is interference all you need?

• Grover showed that mechanical interference can be used to achieve a 
Grover speedup.

• This speedup is impractical because of engineering constraints / 
inability to error correct.

• Can we argue that mechanical interference is equivalent to quantum?



Intuition for Mechanical Oscillators

• Problem: Assume we have a system of 2𝑛𝑛 oscillators such that
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• The dynamics is given by
• 𝜕𝜕𝑡𝑡𝑥𝑥𝑖𝑖 = ̇𝑥𝑥𝑖𝑖 , 𝜕𝜕𝑡𝑡 𝑥̇𝑥𝑖𝑖 = −∑𝑗𝑗 𝜅𝜅𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗 − 𝜅𝜅𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖

• In one dimension:



Why is this a good match with quantum: 
It’s symplectic just like quantum

• The motion of an oscillator rotates a point in a circle.
• Quantum y-axis rotations do exactly the same thing. 



How do we handle this generically?
• There are many different representations that we could use for the dynamics and they lead to different 

complexity.
• Unitary dynamics preserves the 2-norm of the vector.

• 𝜓𝜓 =
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This unit vector corresponds to a set of oscillators 
with fixed internal energy.

The time evolution of this vector under the classical 
equations of motions preserves the two-norm.



Unitarity
• Equation of motion for 𝑥̇𝑥 can be written as

• This is equivalent to

• If we define 𝑦⃗𝑦 = 𝑀𝑀𝑥⃗𝑥,                                            then
• This implies
• Then in turn we can see that in our encoding we have unitarity:



Simplest Way to Simulate (OG HHL Method)

• Dynamics of Harmonic Oscillators can then be simulated by 
simulating 𝐴𝐴 on an initial quantum state.

• We formally deal with this using 
• Algorithm:

• Prepare initial state 𝜓𝜓
• Apply phase estimation coherently on state using 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 for 𝑡𝑡 ≤ 𝜋𝜋|𝐴𝐴|

2
.

• Let 𝐴𝐴 𝜈𝜈 = 𝜆𝜆𝜈𝜈 𝜈𝜈 , ∑𝜈𝜈 𝑎𝑎𝜈𝜈 𝜈𝜈 0 ↦ ∑𝜈𝜈 𝑎𝑎𝜈𝜈 𝜈𝜈 𝜆𝜆𝜈𝜈
• Apply a square root operation reversibly: ∑𝜈𝜈 𝑎𝑎𝜈𝜈 𝜈𝜈 𝜆𝜆𝜈𝜈 ↦ ∑𝜈𝜈 𝑎𝑎𝜈𝜈 𝜈𝜈 𝜆𝜆𝜈𝜈 | 𝜆𝜆𝜈𝜈⟩.
• Apply phase ∑𝜈𝜈 𝑎𝑎𝜈𝜈 𝜈𝜈 𝜆𝜆𝜈𝜈 𝜆𝜆𝜈𝜈 ↦ ∑𝜈𝜈 𝑎𝑎𝜈𝜈 𝑒𝑒−𝑖𝑖 𝜆𝜆𝜈𝜈𝑡𝑡 𝜈𝜈 𝜆𝜆𝜈𝜈 𝜆𝜆𝜈𝜈 .
• Invert transformations.



Complexity of Algorithm



Special Case with Positive Couplings

• A far simpler algorithm can be employed in the case where 𝜅𝜅𝑖𝑖𝑖𝑖 ≥ 0.
• The central idea behind it is to use a simplified idea for building the 

square root of A.
• Let B be a matrix such that 𝐵𝐵+𝐵𝐵 = 𝐴𝐴. Note B does not need to be 

square.

• We choose 𝐵𝐵 ∈ 𝐶𝐶𝑁𝑁2×𝑁𝑁 such that for 𝑗𝑗 ≤ 𝑘𝑘



Implementing Operator

• An operator of the form
can be block encoded with
error 𝜖𝜖 using 𝑂𝑂 log2 1

𝜖𝜖
operations.  Block encoding const:

• Idea: Construct a large superposition over many ancilla states
• Perform inequality tests to see if

• Store result in qubit, uncompute arithmetic and swap j,k if 1.
• Apply additional Hadamard / Z gates to get mixture.

• Log scaling comes from cost of multiplication.



Full Simulation Algorithm
• Next let
• We then have that 

• This shows that we can simulate the dynamics using Hamiltonian 
simulation ideas.

• Using qubitization (with QSP to remove the arccos) to simulate the 
dynamics through the block-encoding of B, we obtain



Claim: Simulating Exponentially Large Systems 
of Oscillators is BQP-Complete
• Proof: We showed the simulation is in BQP already.

• Next step: show that it is BQP-Hard.
• Strategy: Show that if you had a box that simulates any oscillator system, then 

you could simulate a quantum computer with it.

• BQP Complete Problem: Given an input state 0 , apply a sequence of 
gates from a universal gate set 𝐻𝐻,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∗.

• We choose H,Toff because the gate set is real-valued and can be 
mapped to the oscillators easily.



Feynman-Kitaev Clock

• Idea is to take a Hamiltonian whose dynamics implements this circuit 
and map it to an oscillator.

• Target operator:

Problems



Dealing with negativity

To deal with square-roots we need to come up with a way to address the fact that that elements are negative.
Negative elements prevent us from working with our faster method for square roots.

If we want gate l to be X/TOFF we choose W to be 𝑋𝑋 ⊗ 𝐼𝐼,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ⊗ 𝐼𝐼.

If the gate you want at stage l is a Hadamard choose the gate to be

Ok so clearly something’s up: no negative numbers appear at all.
Trick is that we act on the states 0 − , 1 − .

This means that the “Hadamard” gate above does the correct thing while only involving positive coefficients.

Thus this Hamiltonian corresponds to an oscillator system and can be used to simulate an arbitrary quantum comp.



Conclusions

• We provide a quantum algorithm for simulating systems of coupled 
classical harmonic oscillators.

• We show an exponential speedup relative to classical methods.
• If our method can be dequantized then BPP=BQP.

• Future Work:
• Dissipative Quantum Dynamics
• Non-Quadratic Hamiltonians
• Do practical quantum advantages exist for our algorithm?
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