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Introduction: definitions

A pure (vacuum) state |ψ >=
∑

i,a ψia|A >i |B >a and density matrix

ρ0(A,B) = |ψ >< ψ|

|A > states are inside surface Σ and |B > are outside of Σ

Density matrix ρB = Tr Aρ0(A,B) and entropy SB = −Tr ρB ln ρB

Since Tr ρkA = Tr ρkB entropy SA = SB depends on geometry of separation surface Σ
and space-time geometry near Σ

That is why in earlier years it was called geometric entropy

Bombelli, Koul, Lee and Sorkin ’86; Srednicki ’93; Frolov and Novikov ’93
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Introduction: some properties

In Quantum Field Theory entanglement entropy is UV divergent
(function of UV cut-off ε)

to leading order EE is proportional to area of Σ

S ∼ A(Σ)

εd−2 if d > 2 and S ∼ c
6
ln(1/ε) if d = 2

due to short-distance correlations across Σ

Bombelli, Koul, Lee and Sorkin ’86; Srednicki ’93; Holzhey, Larsen and Wilzcek ’94

In 2d CFT c is central charge < T >= c
48π

R
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Introduction: general structure of EE

More generally, in d-dimensional curved space-time (with no boundary)
EE is a Laurent series

S =
sd−2

εd−2
+

sd−4

εd−4
+ · · ·+

sd−2n

εd−2n
+ · · ·+ s0 ln ε+ s(g)

sd−2−2n =
∑

(l+p)=n

ˆ
Σ
Rlk2p

R is Riemann curvature and k is extrinsic curvature of Σ

Since there are 2 normal vectors to Σ only even powers of k may appear

Logarithmic term s0 is non-zero if d is even

If space-time has boundary ∂M and if Σ intersects ∂M then the story is different: Log
term may appear in any dimension d (odd or even)
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Introduction: replica method

In Quantum Field Theory and in presence of rotational symmetry
(in sub-space orthogonal to Σ)

Tr ρn = Z [Cn]

is partition function on conical space with angle deficit 2π(1− n) at surface Σ
so that EE is computed by differentiating w.r.t. n of effective action
W (n) = − lnZ(n) on conical space

S = (n∂n − 1)W (n)|n=1

Heat kernel method (field operator D = −∇2 + ξR)

W = −
1

2

ˆ ∞
ε2

ds

s
TrK(s) , TrKMn =

1

(4πs)d/2

∑
k=0

(aregk + aΣ
k )sk

aΣ
1 =

π

3

1− α2

α

ˆ
Σ

1

aΣ
2 =

π

3

1− α2

α

ˆ
Σ

(
1

6
− ξ)R −

π

180

1− α4

α3

ˆ
Σ

(Raa − 2Rabab)

McKean and Singer ’67; Cheeger ’83; Dowker ’77; Fursaev ’94
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Introduction: distributional geometry of squashed cones

If no rotational symmetry (extrinsic curvature k of Σ is non-zero) one considers
squashed cones

ˆ
Mn

R = n

ˆ
M

R + 4π(1− n)

ˆ
Σ

1

D.D. Sokolov and A. Starobinsky ’77

ˆ
Mn

R2 = n

ˆ
M

R2 + 8π(1− n)

ˆ
Σ
R

ˆ
Mn

R2
µν = n

ˆ
M

R2
µν + 4π(1− n)

ˆ
Σ

(Raa −
1

2
k2)

ˆ
Mn

R2
αβµν = n

ˆ
M

R2
αβµν + 8π(1− n)

ˆ
Σ

(Rabab − Tr k2)

Rab = Rµνn
µ
a n
ν
a and Rabab = Rαβµνn

α
a n

β
b n
µ
a n
ν
b

Fursaev and SS ’94; Fursaev, Patrushev and SS ’13
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Introduction: distributional geometry of squashed cones

Topological Euler number

χ4[Mn] = nχ4[M] + (1− n)χ2[Σ]

Conformal invariant

ˆ
Mn

W 2 = n

ˆ
M

W 2 + 8π(1− n)

ˆ
Σ

[Wabab − Tr k̂2]

k̂a
µν = ka

µν − 1
2
γµνTr ka , a = 1, 2 is conformal invariant constructed from extrinsic

curvature.

Fursaev and SS ’94; Fursaev, Patrushev and SS ’13
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Entanglement entropy of black holes

Historically the study of EE was motivated by attempts to find a stat. mechanical
explanation of Bekenstein-Hawking entropy

If Σ is black hole horizon then its extrinsic curvature vanishes ka = 0 , a = 1, 2

rotational symmetry is generated by Killing vector

Sd=4 =
A(Σ)

48πε2
−

1

144π

ˆ
Σ

[R(1− 6ξ)−
1

5
(Raa − 2Rabab)] ln ε

SS ’94

EE of the Schwarzschild black hole

SSch =
A(Σ)

48πε2
+

1

45
ln

r+

ε

SS ’94

This is entire entanglement entropy including UV finite part!
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Puzzle of non-minimal coupling

If Riemann curvature appears in field operator (as in D = −∇2 + ξR) should we take
into account its distributional part when consider on conical space Mn?

If we do then (for scalar field) one finds for heat kernel

aΣ
k → aΣ

k − 4πξ(1− n)

ˆ
Σ
aregk−1

and for entropy (SS ’95)

Scon =
A(Σ)

48πε2
(1− 6ξ)−

1

144π

ˆ
Σ

[R(1− 6ξ)2 −
1

5
(Raa − 2Rabab)] ln ε

In Log term no changes if ξ = 1/6 (conformal case) since areg1 = 0 in this case

s0 is invariant under conformal rescaling preserving horizon

Area term is not positive definite in general. That means this entropy does not
correspond to a well defined density matrix.
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Puzzle of non-minimal coupling: Kabat’s contact terms

Similar story for gauge fields (contact terms of D. Kabat ’95)

Scon =
A[Σ]

8πε2
(
d − 2

6
− 1)

is negative in dimensions d < 8
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Why log terms might be interesting: case of black holes?

Log modification of BH entropy (Fursaev ’94; SS ’97)

S(M) = 4π
M2

M2
PL

+ σ lnM

where σ depends on multiplet of fields

σ =
1

45
(N0 +

7

4
N1/2 − 13N1 −

233

4
N3/2 + 212N2 + 91NA)

In Standard Model with graviton σ = 16/5 (without graviton σ = −68/45)

It produces modification in Hawking temperature

1/TH = 8π
M

M2
PL

+
σ

M

so that TH ∼ M for small black holes

Evaporation rate

dM

dt
= −T 4

HM
2

If σ > 0 then black hole evaporation time is infinite (possible consequences for
primordial black holes?)

Sergey Solodukhin Logarithmic terms in entanglement entropy: black holes, anomalies and boundaries



Log terms in EE of a Conformal Field Theory (CFT)

Trace anomaly in d = 4

< Tµµ >= −
A

5760π2
E4 +

B

1920π2
W 2

E4 = R2
µναβ − 4R2

µν + R2 is Euler density

A0 = 1 , A1/2 = 11 , A1 = 62 B0 = 1 , B1/2 = 6 , B1 = 12
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Proposal for Log term in EE (based on conformal invariance and holography)

sCFT0 =
A

180
χ[Σ]−

B

240π

ˆ
Σ

[Wabab − Tr k̂2]

SS ’08

χ[Σ] is Euler number and k̂a , a = 1, 2 is traceless part of extrinsic curvature

Sergey Solodukhin Logarithmic terms in entanglement entropy: black holes, anomalies and boundaries



Log terms in EE of a Conformal Field Theory (CFT)

Applied for black holes this formula gives:

For extremal black holes (with near horizon geometry H2 × S2)

s0 =
A

90

For the Schwarzschild black holes

s0 =
A− 3B

90

Note: for N = 4 SYM in our normalization one has that A = 3B.

also related works of A. Sen and collaborators ’11-’13 on supergravity vs microscopic
entropy
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Log terms in EE of a Conformal Field Theory (CFT)

Two test geometries in Minkowski spacetime (Wabab = 0):

Σ = S2 : χ = 2, k̂a = 0 , a = 1, 2 s0 = A
90

(this case is conformally equivalent to extremal black hole)

Σ = Cylinder2: χ = 0, Tr k̂2 = 1
2R2 s0 = B

240
L
R
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Log terms in EE of a Conformal Field Theory (CFT): 15 years later

Agreement with this proposal:

conformal scalar fields if Σ is sphere
(Lohmayer, Neuberger, Schwimmer and Theisen ’09; Cassini and Huerta ’10; Dowker
’10; SS ’10)

Dirac fermions if Σ is sphere (Dowker ’10)

conformal scalars and Dirac fermions if Σ is cylinder (Huerta ’12)

holographic CFT and its deformations (many papers)
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Log terms in EE of a Conformal Field Theory (CFT): 10 years later

Disagreement with this proposal:

gauge fields if Σ is sphere

s0 =
62

90
(predicted) VS s0 =

32

90
(calculated)

(Dowker ’10; Huang ’14; Eling, Oz and Theisen ’13; Cassini and Huerta ’16; Soni and
Trivedi ’16 )

gauge fields if Σ is cylinder

s0 =
12

240

L

R
(predicted) VS s0 =

7

240

L

R
(calculated)

Huerta and Pedraza ’18

(Note: possibly a mistake (private communication from authors)
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Log terms in EE of a Conformal Field Theory (CFT): 15 years later

Possible explanation of mismatch:

- take into account entropy of edge modes (Donnelly and Wall ’15)

62

90
−

32

90
=

1

3

so that discrepancy may be due to some 2d scalar fields living on Σ (edge modes?)

W2d = −
A[Σ]

8πε2
+

1

3
ln ε

This seems to work for sphere but how it may work for cylinder since for the latter the
discrepancy is not topological?

May be wedge modes know about extrinsic curvature? Indeed

Wwedge = −
1

2

ˆ
Σ

((∇φ)2 + λTr k̂2φ2)

is eligible CFT action.

Any way: The proposal works for strongly coupled N = 4 SYM. Why it should not
work for weakly coupled super-gauge multiplet (scalars, Dirac fermions and gauge
fields)?

Sergey Solodukhin Logarithmic terms in entanglement entropy: black holes, anomalies and boundaries



Log terms in EE of a Conformal Field Theory (CFT): 15 years later

Possible explanation of mismatch:

- take into account entropy of edge modes (Donnelly and Wall ’15)

62

90
−

32

90
=

1

3

so that discrepancy may be due to some 2d scalar fields living on Σ (edge modes?)

W2d = −
A[Σ]

8πε2
+

1

3
ln ε

This seems to work for sphere but how it may work for cylinder since for the latter the
discrepancy is not topological?

May be wedge modes know about extrinsic curvature? Indeed

Wwedge = −
1

2

ˆ
Σ

((∇φ)2 + λTr k̂2φ2)

is eligible CFT action.

Any way: The proposal works for strongly coupled N = 4 SYM. Why it should not
work for weakly coupled super-gauge multiplet (scalars, Dirac fermions and gauge
fields)?

Sergey Solodukhin Logarithmic terms in entanglement entropy: black holes, anomalies and boundaries



Log terms in EE of a Conformal Field Theory (CFT): 15 years later

Possible explanation of mismatch:

- take into account entropy of edge modes (Donnelly and Wall ’15)

62

90
−

32

90
=

1

3

so that discrepancy may be due to some 2d scalar fields living on Σ (edge modes?)

W2d = −
A[Σ]

8πε2
+

1

3
ln ε

This seems to work for sphere but how it may work for cylinder since for the latter the
discrepancy is not topological?

May be wedge modes know about extrinsic curvature? Indeed

Wwedge = −
1

2

ˆ
Σ

((∇φ)2 + λTr k̂2φ2)

is eligible CFT action.

Any way: The proposal works for strongly coupled N = 4 SYM. Why it should not
work for weakly coupled super-gauge multiplet (scalars, Dirac fermions and gauge
fields)?

Sergey Solodukhin Logarithmic terms in entanglement entropy: black holes, anomalies and boundaries



Log terms in EE of a Conformal Field Theory (CFT): 15 years later

Possible explanation of mismatch:

- take into account entropy of edge modes (Donnelly and Wall ’15)

62

90
−

32

90
=

1

3

so that discrepancy may be due to some 2d scalar fields living on Σ (edge modes?)

W2d = −
A[Σ]

8πε2
+

1

3
ln ε

This seems to work for sphere but how it may work for cylinder since for the latter the
discrepancy is not topological?

May be wedge modes know about extrinsic curvature? Indeed

Wwedge = −
1

2

ˆ
Σ

((∇φ)2 + λTr k̂2φ2)

is eligible CFT action.

Any way: The proposal works for strongly coupled N = 4 SYM. Why it should not
work for weakly coupled super-gauge multiplet (scalars, Dirac fermions and gauge
fields)?

Sergey Solodukhin Logarithmic terms in entanglement entropy: black holes, anomalies and boundaries



Log terms in EE of a Conformal Field Theory (CFT): 15 years later

Possible explanation of mismatch:

- take into account entropy of edge modes (Donnelly and Wall ’15)

62

90
−

32

90
=

1

3

so that discrepancy may be due to some 2d scalar fields living on Σ (edge modes?)

W2d = −
A[Σ]

8πε2
+

1

3
ln ε

This seems to work for sphere

but how it may work for cylinder since for the latter the
discrepancy is not topological?

May be wedge modes know about extrinsic curvature? Indeed

Wwedge = −
1

2

ˆ
Σ

((∇φ)2 + λTr k̂2φ2)

is eligible CFT action.

Any way: The proposal works for strongly coupled N = 4 SYM. Why it should not
work for weakly coupled super-gauge multiplet (scalars, Dirac fermions and gauge
fields)?

Sergey Solodukhin Logarithmic terms in entanglement entropy: black holes, anomalies and boundaries



Log terms in EE of a Conformal Field Theory (CFT): 15 years later

Possible explanation of mismatch:

- take into account entropy of edge modes (Donnelly and Wall ’15)

62

90
−

32

90
=

1

3

so that discrepancy may be due to some 2d scalar fields living on Σ (edge modes?)

W2d = −
A[Σ]

8πε2
+

1

3
ln ε

This seems to work for sphere but

how it may work for cylinder since for the latter the
discrepancy is not topological?

May be wedge modes know about extrinsic curvature? Indeed

Wwedge = −
1

2

ˆ
Σ

((∇φ)2 + λTr k̂2φ2)

is eligible CFT action.

Any way: The proposal works for strongly coupled N = 4 SYM. Why it should not
work for weakly coupled super-gauge multiplet (scalars, Dirac fermions and gauge
fields)?

Sergey Solodukhin Logarithmic terms in entanglement entropy: black holes, anomalies and boundaries



Log terms in EE of a Conformal Field Theory (CFT): 15 years later

Possible explanation of mismatch:

- take into account entropy of edge modes (Donnelly and Wall ’15)

62

90
−

32

90
=

1

3

so that discrepancy may be due to some 2d scalar fields living on Σ (edge modes?)

W2d = −
A[Σ]

8πε2
+

1

3
ln ε

This seems to work for sphere but how it may work for cylinder since for the latter the
discrepancy is not topological?

May be wedge modes know about extrinsic curvature? Indeed

Wwedge = −
1

2

ˆ
Σ

((∇φ)2 + λTr k̂2φ2)

is eligible CFT action.

Any way: The proposal works for strongly coupled N = 4 SYM. Why it should not
work for weakly coupled super-gauge multiplet (scalars, Dirac fermions and gauge
fields)?

Sergey Solodukhin Logarithmic terms in entanglement entropy: black holes, anomalies and boundaries



Log terms in EE of a Conformal Field Theory (CFT): 15 years later

Possible explanation of mismatch:

- take into account entropy of edge modes (Donnelly and Wall ’15)

62

90
−

32

90
=

1

3

so that discrepancy may be due to some 2d scalar fields living on Σ (edge modes?)

W2d = −
A[Σ]

8πε2
+

1

3
ln ε

This seems to work for sphere but how it may work for cylinder since for the latter the
discrepancy is not topological?

May be wedge modes know about extrinsic curvature? Indeed

Wwedge = −
1

2

ˆ
Σ

((∇φ)2 + λTr k̂2φ2)

is eligible CFT action.

Any way: The proposal works for strongly coupled N = 4 SYM. Why it should not
work for weakly coupled super-gauge multiplet (scalars, Dirac fermions and gauge
fields)?

Sergey Solodukhin Logarithmic terms in entanglement entropy: black holes, anomalies and boundaries



Log terms in EE of a Conformal Field Theory (CFT): 15 years later

Possible explanation of mismatch:

- take into account entropy of edge modes (Donnelly and Wall ’15)

62

90
−

32

90
=

1

3

so that discrepancy may be due to some 2d scalar fields living on Σ (edge modes?)

W2d = −
A[Σ]

8πε2
+

1

3
ln ε

This seems to work for sphere but how it may work for cylinder since for the latter the
discrepancy is not topological?

May be wedge modes know about extrinsic curvature? Indeed

Wwedge = −
1

2

ˆ
Σ

((∇φ)2 + λTr k̂2φ2)

is eligible CFT action.

Any way:

The proposal works for strongly coupled N = 4 SYM. Why it should not
work for weakly coupled super-gauge multiplet (scalars, Dirac fermions and gauge
fields)?

Sergey Solodukhin Logarithmic terms in entanglement entropy: black holes, anomalies and boundaries



Log terms in EE of a Conformal Field Theory (CFT): 15 years later

Possible explanation of mismatch:

- take into account entropy of edge modes (Donnelly and Wall ’15)

62

90
−

32

90
=

1

3

so that discrepancy may be due to some 2d scalar fields living on Σ (edge modes?)

W2d = −
A[Σ]

8πε2
+

1

3
ln ε

This seems to work for sphere but how it may work for cylinder since for the latter the
discrepancy is not topological?

May be wedge modes know about extrinsic curvature? Indeed

Wwedge = −
1

2

ˆ
Σ

((∇φ)2 + λTr k̂2φ2)

is eligible CFT action.

Any way: The proposal works for strongly coupled N = 4 SYM. Why it should not
work for weakly coupled super-gauge multiplet (scalars, Dirac fermions and gauge
fields)?

Sergey Solodukhin Logarithmic terms in entanglement entropy: black holes, anomalies and boundaries



CFT on manifolds with boundaries: anomaly and entropy

Increasing activity since 2015:

Herzog, Huang, Jensen (’15 and ’17); Fursaev (’15), Jensen, O’Bannon (’15); SS
(’15), Fursaev, SS (’16); Huang (’16); Berthiere, SS (’16); Astaneh, SS (’17),
Astaneh, Fursaev, Berthiere, SS (’17); Herzog, Huang (’17); Chu, Miao, Guo (’17);
Rodriguez-Gomez, Russo (’17 and ’18); Seminara, Sisti, Tonni (’17 and ’18); Berthiere
(’18)
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CFT on manifolds with boundaries: Weyl anomaly

A richer structure (yet to be fully uncovered) of Weyl anomaly:

ˆ
Md

√
g 〈Tµν〉 gµν = aχ(Md ) + bk

ˆ
Md

√
γIk (W )

+a′χ(∂Md ) + b′k

ˆ
∂Md

√
γJk (W , K̂) + cn

ˆ
∂Md

√
γKn(K̂) ,

χ[Md ] is Euler number of manifold Md , Ik (W ) are conformal invariants constructed

from the Weyl tensor, Kn(K̂) are polynomial of degree (d − 1) of the trace-free
extrinsic curvature, Kµν = Kµν − 1

d−2
γK is trace free extrinsic curvature of boundary;

K̂µν → eσK̂µν if gµν → eσgµν .
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CFT on manifolds with boundaries: entanglement entropy

Σ

∂M

P
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CFT on manifolds with boundaries: Weyl anomaly vs entanglement entropy

d = 3 :

ˆ
M3

〈T 〉 =
c1

96
χ[∂M3] +

c2

256π

ˆ
∂M3

Tr K̂2

Charges (c1, c2):

(−1, 1) for scalar filed (Dirichlet b.c.)
(1, 1) for scalar field (conformal Robin b.c)
(0, 2) for Dirac field (mixed b.c.)

A curious observation: for free fields c2 equals to CT (that appears in TT 2-point
correlation function); is there a general proof that c2 = CT ? or a counter-example?

Log term in entanglement entropy:

slog = c1
24
N

N is number of intersections of Σ and ∂M3
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CFT on manifolds with boundaries: Weyl anomaly vs entanglement entropy

d = 4 :
ˆ
〈T 〉 = −

a

180
χ[M4]+

b

1920π2

(ˆ
M4

TrW 2 − 8

ˆ
∂M4

WµναβNµNβ k̂να

)
+

c

280π2

ˆ
∂M4

Tr k̂3

slog =
a

720π

[ˆ
Σ
RΣ + 2

ˆ
P
kp

]
−

b

240π

ˆ
Σ

[Wijij − Tr k̂2
i ] + d Fd + e Fe

where Fd = −
1

40π

ˆ
P
k̂µνv

µvν Fe = −
1

π

ˆ
P

(N · pi )(k̂i )µνv
µvν

Theory a b c d boundary condition

real scalar 1 1 1 1 Dirichlet

real scalar 1 1 7
9

- 2
3

conformal Robin

Dirac spinor 11 6 5 1 mixed

gauge boson 62 12 8 7 absolute/relative

Complete agreement with holographic computation for N = 4 SYM provided
boundary conditions preserve 1/2 SUSY
Astaneh, SS (’17); Astaneh, Berthiere, Fursaev, SS (’17)
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Conclusion: why log terms are interesting after all?

- Log terms are universal, do not depend on regularization

- Log terms are geometrical: topology of entangling surface and conformal geometric
invariants

- Log terms are related to conformal anomaly (still have to understand gauge fields)

- Many interesting future directions: boundaries, interactions, strings..
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Thank you for your attention!
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