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[H . B.G. Casimir, Proc. K. Ned . Acad . Wet. 51 , 793 (1948)]

Simplest setup: Two parallel perfectly 
conducting plates at finite distance R

Casimir effect: occurrence of mechanical forces 
between classical objects due to quantum vacuum 

fluctuations

The Casimir force is considered as a 
possible proof of the reality of quantum 
vacuum fluctuations.



A very small force at human scales. However, at R=10 nm the pressure is 
about 1 atmosphere. (from U. Mohideen and A. Roy, Phys. Rev. Lett. 81, 
4549 (1998), down to 100 nm scale.)

Experimentally CE confirmed in plate-sphere geometries.

 (S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997)):
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In discussions of the cosmological constant, the Casimir effect is often invoked as decisive evidence
that the zero-point energies of quantum fields are ‘‘real.’’ On the contrary, Casimir effects can be
formulated and Casimir forces can be computed without reference to zero-point energies. They are
relativistic, quantum forces between charges and currents. The Casimir force (per unit area) between
parallel plates vanishes as !, the fine structure constant, goes to zero, and the standard result, which
appears to be independent of !, corresponds to the ! ! 1 limit.
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I. INTRODUCTION

In quantum field theory as usually formulated, the zero-
point fluctuations of the fields contribute to the energy of
the vacuum. However this energy does not seem to be
observable in any laboratory experiment. Nevertheless,
all energy gravitates, and therefore the energy density of
the vacuum, or more precisely the vacuum value of the
stress tensor, hT"#i ! "Eg"# [1], appears on the right-
hand side of Einstein’s equations,

R"# "
1

2
g"#R # "8$G$ ~T"# " Eg"#% (1)

where it affects cosmology. ( ~T"# is the contribution of
excitations above the vacuum.) It is equivalent to adding
a cosmological term, % # 8$GE, on the left-hand side.

A small, positive cosmological term is now required to
account for the observation that the expansion of the
Universe is accelerating. Recent measurements give [3]

% # $2:14& 0:13' 10"3 eV%4 (2)

at the present epoch. This observation has renewed interest
in the idea that the zero-point fluctuations of quantum
fields contribute to the cosmological constant, % [4].
However, estimates of the energy density due to zero-point
fluctuations exceed the measured value of % by many
orders of magnitude. Caution is appropriate when an effect,
for which there is no direct experimental evidence, is the
source of a huge discrepancy between theory and
experiment.

As evidence of the ‘‘reality’’ of the quantum fluctuations
of fields in the vacuum, theorists often point to the Casimir
effect [7]. For example, Weinberg, in his introduction to
the cosmological constant problem, writes [6], ‘‘Perhaps
surprisingly, it was a long time before particle physicists
began seriously to worry about (quantum zero-point fluc-
tuation contributions to %) despite the demonstration in the
Casimir effect of the reality of zero-point energies.’’ More
recent examples can be found in the widely read reviews by
Carroll [8], ‘‘. . .And the vacuum fluctuations themselves
are very real, as evidenced by the Casimir effect,’’ and by

Sahni and Starobinsky [9,10] ‘‘The existence of zero-point
vacuum fluctuations has been spectacularly demonstrated
by the Casimir effect.’’

In 1997 Lamoreaux opened the door to precise measure-
ment of Casimir forces [11]. The Casimir force (per unit
area) between parallel conducting plates,

F # " @c$2

240d4
(3)

has now been measured to about 1% precision. Casimir
physics has become an active area of nanoscopic physics in
its own right [12]. Not surprisingly, every review and text
on the subject highlights the supposed special connection
between the Casimir effect and the vacuum fluctuations of
the electromagnetic field [13].

The object of this paper is to point out that the Casimir
effect gives no more (or less) support for the reality of the
vacuum energy of fluctuating quantum fields than any
other one-loop effect in quantum electrodynamics, like
the vacuum polarization contribution to the Lamb shift,
for example. The Casimir force can be calculated without
reference to vacuum fluctuations, and like all other observ-
able effects in QED, it vanishes as the fine structure con-
stant, !, goes to zero.

There is a long history and large literature surrounding
the question whether the zero-point fluctuations of quan-
tized fields are ‘‘real’’ [14]. Schwinger, in particular, at-
tempted to formulate QED without reference to zero-point
fluctuations [15]. In contrast Milonni has recently refor-
mulated all of QED from the point of view of zero-point
fluctuations [14]. The question of whether zero-point fluc-
tuations of the vacuum are or are not real is beyond the
scope of this paper. Instead I address only the narrower
question of whether the Casimir effect can be considered
evidence in their favor.

For a noninteracting quantum field the vacuum (or zero-
point) energy is given by E # & 1

2

P

@!0, where the f@!0g
are the eigenvalues of the free Hamiltonian and the plus or
minus sign applies to bosons or fermions, respectively. In
three dimensions the sum over frequencies diverges quarti-
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The question of negative mass and negative energy

Qualitative effect:
– the Casimir energy between two perfectly conducting plates is negative
→ the gravitational mass and the inertial mass associated with the Casimir

energy are equal and are negative as well:

→ A pure Casimir energy would levitate in a gravitational field due to
existence of an upward “buoyant” force exerted by the outside vacuum
on a “Casimir apparatus”  following a quantum “Archimedes' principle”.

However:
1. The buoyant force will be extremely small;
2. “... the mass energy of the cavity structure necessary to enforce 
the boundary conditions must exceed the magnitude of the negative 
vacuum energy, so that all systems of the type envisaged necessarily 
have positive mass energy.” [J.D. Bekenstein, PRD 88, 125005 (2013)]

→ The Casimir apparatus will anyway be drown in the gravitational field.

[K. A. Milton et al, “How Does Casimir Energy
Fall? I-IV” (2004-2007); J.Phys.A41, 164052
(2008); G. Bimonte et al., Phys.Rev. D76,
025008 (2007);  V. Shevchenko, E. Shevrin,
Mod.Phys.Lett. A31 (2016) no.29, 1650166]



Perturbative Casimir effect

The case of QED:
→ perturbative corrections are very 
small:
For the ideal plates separated at
optimistic R.=10.nm the radiative
correction is 10-7 of the leading term.

→ Unexpected qualitative phenomenon: between the plates, light travels faster 
than light outside the plates (the Scharnhorst effect).

- Despite the Scharnhorst effect formally implies “faster-than-light travel”
it cannot be used to create causal paradoxes.

- The excess of ccavity over the usual c is tremendously small, given by 
a two-loop radiative contribution to a refractive index in between plates.

The Scharnhorst effect gives a 10-24 correction to c at optimistic R.=10.nm.

+

[M. Bordag, D. Robaschik, E. Wieczorek, Ann. Phys. 165, 192 (1985)]

[G. Barton, K. Scharnhorst, J. Phys. A 26, 2037 (1993); K. Scharnhorst, Annalen Phys. 7, 700 (1998)]

[S. Liberati; S. Sonego, M. Visser,  Ann. Phys. 298, 167 (2002); J.-P. Bruneton, Phys. Rev. D, 75, 085013  (2007)]



Does the Casimir force prove the reality of quantum vacuum 
zero-point fluctuations?

The presence of physical bodies changes the structure of the quantum vacuum 

Field theory pure vacuum fluctuations: 

R. L. Jaffe, Phys. Rev. D 72, 021301(R)

cally, E !!4. This contribution does not arise if the fields
in the classical Lagrangian are ordered in a prescribed way
(‘‘normal ordering’’), but the reason for this choice of
ordering is obscure and it is probably more appropriate to
choose the ordering arbitrarily (though consistent with the
symmetries of the theory), in which case the free field zero-
point energy can be canceled by a counterterm. However
comparable contributions reappear when interactions are
introduced: the vacuum energy is related to the sum of all
vacuum-to-vacuum Feynman diagrams, a few of which are
shown (e.g. for QED) in Fig. 1. A counterterm can be
introduced to cancel these contributions to any order in
perturbation theory. However since the leading divergence
is quartic, such fine-tuning is generally regarded as
unacceptable.

In the standard approach [13], the Casimir force is
calculated by computing the change in the zero-point
energy of the electromagnetic field when the separation
between parallel perfectly conducting plates is changed.
The result, Eq. (3), seems universal, independent of every-
thing except @, c, and the separation, inviting one to regard
it as a property of the vacuum. This, however, is an illusion.
When the plates were idealized as perfect conductors,
assumptions were made about the properties of the mate-
rials and the strength of the QED coupling !, that obscure
the fact that the Casimir force originates in the forces
between charged particles in the metal plates. More spe-
cifically,

(i) The Casimir effect is a function of the fine structure
constant and vanishes as ! ! 0. Explicit depen-
dence on ! is absent from Eq. (3) because it is an
asymptotic form, exact in the ! ! 1 limit. The
Casimir force is simply the (relativistic, retarded)
van der Waals force between the metal plates.

(ii) Casimir effects in general can be calculated as
S-matrix elements, i.e. in terms of Feynman dia-
grams with external lines, and without any reference
to the vacuum or its fluctuations. The usual calcu-
lation, based on the change in 1

2

P

@! with separa-

tion, is heuristic. An elementary example of a simi-
lar situation occurs in electrostatics. The energy of a
smooth charge distribution, ""x#, can be calculated
directly from 1

2

R

dxdy$""x#""y#=jx% yj&, or alter-
natively, from the energy ‘‘stored in the electric
field,’’ 1

8#

R

dxj ~E"x#j2. The existence of the latter
formula cannot be regarded as evidence for the
reality of the electric field, which awaited the dis-
covery that light consists of propagating electro-
magnetic waves.

In the following section I review the dependence of the
Casimir effect on the fine structure constant. Next I discuss
the calculation of Casimir effects without mention of vac-
uum energies. Finally I conclude with a brief summary.

II. THE DEPENDENCE OF THE CASIMIR EFFECT
ON THE FINE STRUCTURE CONSTANT

At first sight the Casimir force, Eq. (3) seems universal
and independent of any particular interaction. F depends
only on the fundamental constants @ and c. However, a
moment’s thought reveals that interactions entered when
one idealized the metallic plates as perfect conductors that
impose boundary conditions on the electromagnetic fields.

Actual metals are not perfect conductors. In fact there is
now a large literature dedicated to ‘‘finite conductivity
corrections’’ to the Casimir effect [13]. These treatments
are based on Lifshitz’ theory of the Casimir effect for
dielectric media [16]. A simpler treatment, based on the
Drude model of metals, is sufficient to describe things
qualitatively [17,18]. A conductor is characterized by a
plasma frequency, !pl, and a skin depth, $. !pl character-
izes the frequency above which the conductivity goes to
zero. $ measures the distance that electromagnetic fields
penetrate the metal. Both !pl and $%1 depend on the fine
structure constant, !, and vanish as ! ! 0. In the Drude
model,

!2
pl '

4#e2n
m

;

$%2 ' 2#!j%j
c2

where % ' ne2

m"&0 % i!#

(4)

where n is the total number of conduction electrons per
unit volume, m is their effective mass, and &0 is the damp-
ing parameter for the Drude oscillators. Typically the
frequencies of interest are much greater than &0, so $ (
c=

!!!

2
p

!pl.
The frequencies that dominate the Casimir force are of

order c=d [13]. So the perfect conductor approximation is
adequate if c=d ) !pl, or

! * mc
4#@nd2

: (5)

Typical Casimir force measurements are made at separa-
tions of order 0:5 'm. For a good conductor like copper,FIG. 1. QED graphs contributing to the zero-point energy.
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culation. As in that case, the dependence on the coupling
constant has been obliterated by taking a limit where the
interaction can be idealized as a boundary condition. To
better model the physical situation we replace the bound-
ary condition by a !-function external potential at x !
"a=2. Explicitly, we calculate the force between the sin-
gular points at x ! "a by calculating the derivative with
respect to a of the effective energy of " in the presence of a
background field, ##x$. The interaction is

L int !
1

2
g##x$"2#x$ (7)

and we specify ##x$ ! !#x% a=2$ & !#x& a=2$. The
‘‘boundary condition limit,’’ "#"a=2$ ! 0, is obtained
by sending g ! 1. To regulate infrared divergences that
afflict scalar fields in one dimension, we introduce a mass,
m, for ".

The effective energy is given by the sum of all one-loop
Feynman diagrams with insertions of ##x$—the diagrams
shown in Fig. 3—and its derivative with respect to a gives
the force [13,23],

F#a; g;m$ ! %g2

$

Z 1

m

t2dt
!!!!!!!!!!!!!!!!!

t2 %m2
p

' e%2at

4t2 & 4gt& g2#1% e%2at$ : (8)

This result embodies all the features we desire. It vanishes
(quadratically) as g ! 0, as expected for a phenomenon
generated by the coupling of " to the external field. In the
boundary condition limit, g ! 1, the dependence on the
material disappears,

lim
g!1

F#a; g;m$ ! %
Z 1

m

dt
$

t2
!!!!!!!!!!!!!!!!!

t2 %m2
p

#e2ta % 1$
; (9)

and it reduces to %$=24a2 in the m ! 0 limit.

IV. CONCLUSION

I have presented an argument that the experimental
confirmation of the Casimir effect does not establish the
reality of zero-point fluctuations. Casimir forces can be
calculated without reference to the vacuum and, like any

other dynamical effect in QED, vanish as % ! 0. The
vacuum-to-vacuum graphs (See Fig. 1) that define the
zero-point energy do not enter the calculation of the
Casimir force, which instead only involves graphs with
external lines. So the concept of zero-point fluctuations is a
heuristic and calculational aid in the description of the
Casimir effect, but not a necessity.

The deeper question remains: Do the zero-point energies
of quantum fields contribute to the energy density of the
vacuum and, mutatis mutandis, to the cosmological con-
stant? Certainly there is no experimental evidence for the
reality of zero-point energies in quantum field theory
(without gravity). Perhaps there is a consistent formulation
of relativistic quantum mechanics in which zero-point
energies never appear. I doubt it. Schwinger intended
source theory to provide such a formulation. However, to
my knowledge no one has shown that source theory or
another S-matrix based approach can provide a complete
description of QED to all orders. In QCD confinement
would seem to present an insuperable challenge to an
S-matrix based approach, since quarks and gluons do not
appear in the physical S matrix. Even if one could argue
away quantum zero-point contributions to the vacuum
energy, the problem of spontaneous symmetry breaking
remains: condensates that carry energy appear at many
energy scales in the standard model. So there is good
reason to be skeptical of attempts to avoid the standard
formulation of quantum field theory and the zero-point
energies it brings with it. Still, no known phenomenon,
including the Casimir effect, demonstrates that zero-point
energies are real.
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FIG. 3. Diagrammatic expansion of the Casimir force: The thick (thin) line denotes the full (free) Green’s function; the one-point
function is omitted because it does not contribute to the force.
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Field theory vacuum fluctuations in the 
presence of physical bodies: 

Eq. (5) requires ! to be greater than about 10!5, which is
amply satisfied by the physical value ! " 1=137. Thus the
standard Casimir result can be regarded as the ! ! 1 limit
of a result that for smaller values of ! depends in detail on
the nature of the plates.

Let us examine the ! ! 0 limit. In this limit the scale of
atomic physics, the Bohr radius, @2=me2, grows like 1=!.
Therefore n scales like e6 and both !pl and " vanish like
!2 [19]. So at any fixed separation, d, the Casimir force
goes away quickly as ! ! 0. Also, since " ! 1 as ! ! 0,
the separation, d, becomes ill defined since the fields
penetrate further than the nominal separation of the plates.

The feature that distinguishes the Casimir force from
many other effects in QED is that it reaches a finite limit as
! ! 1. Had that not been the case, the dependence on
material parameters like !pl would have had to be explicit
and the effect would never have been accorded universal
significance. In fact just such a situation occurs in the case
of the Casimir pressure on a conducting sphere. If one
calculates the Casimir pressure for a realistic material,
one obtains a result that diverges as the plasma frequency
(the cutoff on the ! integration) goes to infinity [20].
Therefore it is impossible to define the Casimir pressure
on a conducting sphere independent of the details of the
material [21].

III. THE CASIMIR EFFECT WITHOUT THE
VACUUM

Casimir’s original goal was to compute the
van der Waal’s force between polarizable molecules at
separations so large that relativistic (retardation) effects
are essential. He and Polder carried out this program and
found an extremely simple result [24],

!E # ! 23@c
4#R7 a1a2:

aj is the static polarizability of the jth molecule, ~p # a ~E.
They found a similarly simple result for a polarizable
molecule opposite a conducting plate: !E #
!3@ca=8#R4. These results were derived using the stan-
dard apparatus of perturbation theory (to fourth order in e)
without any reference to the vacuum. They correspond to
the long range limit of the Feynman diagrams of Fig. 2.

Casimir was intrigued by the simplicity of the result, and
following a suggestion by Bohr [25], showed that the
Casimir-Polder results could be derived more simply by
comparing the zero-point energy of the electromagnetic
field in the presence of the molecules with its vacuum
values [26]. He then considered the especially simple
example where both molecules are replaced by conducting
plates [7].

Despite the simplicity of Casimir’s derivation based on
zero-point energies, it is nevertheless possible to derive his
result without any reference to zero-point fluctuations or
even to the vacuum. Such a derivation was first given by

Schwinger [27] for a scalar field, and then generalized to
the electromagnetic case by Schwinger, DeRaad, and
Milton [28]. Reviewing their derivation, one can see why
the zero-point fluctuation approach won out. It is far
simpler.

In more modern language the Casimir energy can be
expressed in terms of the trace of the Green’s function for
the fluctuating field in the background of interest (e.g.
conducting plates),

E # @

2#
Im

Z

d!!Tr
Z

d3x$G%x; x;!& i$'

! G0%x; x;!& i$'( (6)

where G is the full Green’s function for the fluctuating
field, G0 is the free Green’s function, and the trace is over
spin.

On the one hand

1

#
Im

Z

$G%x; x;!& i$' ! G0%x; x;!& i$'( # d!N
d!

is the change in the density of states due to the background,
so Eq. (6) can be regarded as a restatement of the Casimir
sum over shifts in zero-point energies, 12

P%@!! @!0'. On
the other hand, the Lippman-Schwinger equation allows
the full Green’s function, G, to be expanded as a series in
the free Green’s function, G0, and the coupling to the
external field as in Fig. 3 [29]. So the Casimir energy can
be expressed entirely in terms of Feynman diagrams with
external legs—i.e. in terms of S-matrix elements which
make no reference to the vacuum.

As an explicit example, consider the Casimir effect for a
scalar field, %, in one dimension, forced to obey a Dirichlet
boundary condition, % # 0, at x # )a=2. A traditional
calculation, summing over zero-point energies, yields a
Casimir force, F # !@c#=24a2 in this case. This is the
one-dimensional, scalar analog of Casimir’s original cal-

FIG. 2. Feynman diagrams for the Casimir-Polder force.
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Casimir-Polder force: 



• Does the quantum vacuum contribute to the cosmological 
constant?


• Quantum vacuum non-perturbative interaction with 
boundaries 


• Role of the quantum vacuum’s condensates, topology and 
symmetry


• Phase transitions 


• Finite volume effects (example: simple Casimir picture)


• Casimir effect: Is it a quantum vacuum effect or just 
classical forces in a finite volume?   




A popular and simple explanation of the effect: boundaries restrict the 
number of virtual photons inside a cavity so that the pressure of the 
virtual photons from outside prevails is, actually, incorrect.


Boyer: A spherical geometry the 
Casimir force is acting outwards:

[T. H. Boyer, Phys. Rev. 174, 1764 (1968)]

This property is used in the bag models of hadrons: 
A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn,  V. F. Weisskopf, Phys. Rev. D 9, 3471 
(1974);

A. Chodos, R. L. Jaffe, K. Johnson, and C. B. Thorn,

Phys. Rev. D 10, 2599 (1974);  

T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskis, Phys. Rev. D 12, 2060

(1975); K. A. Milton, Phys. Rev. D 22, 1441 (1980)


Сentral no-go theorem on Casimir forces:  The sign of Casimir force does not 
depend on the shape of symmetric boundaries

O. Kenneth and I. Klich, Phys. Rev. Lett. 97, 160401 (2006).   



Example of symmetry importance: effective chiral vacuum 
leads to repulsive Casimir effect 
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Chiral Casimir Forces: Repulsive, Enhanced, Tunable

Qing-Dong Jiang1, Frank Wilczek1234
1Department of Physics, Stockholm University, Stockholm SE-106 91 Sweden

2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA
3Wilczek Quantum Center, Department of Physics and Astronomy,

Shanghai Jiao Tong University, Shanghai 200240, China
4Department of Physics and Origins Project, Arizona State University, Tempe AZ 25287 USA

Both theoretical interest and practical significance attach to the sign and strength of Casimir
forces. A famous, discouraging no-go theorem states that “The Casimir force between two bodies
with reflection symmetry is always attractive.” Here we identify a loophole in the reasoning, and
propose a universal way to realize repulsive Casimir forces. We show that the sign and strength
of Casimir forces can be adjusted by inserting optically active or gyrotropic media between bodies,
and modulated by external fields.

Introduction: The Casimir effect is one of the best
known macroscopic manifestations of quantum field the-
ory, and has attracted interest since its first discovery
[1]. The original version of Casimir effect is an attrac-
tive force between two ideal, uncharged metal plates in
vacuum. Later on, Lifshitz et al., derived a general for-
mula for the Casimir force between between materials de-
scribed by dielectric response functions in this geometry
[2]. In their formula, the Casimir force between material
1 and material 2 across medium 3 is proportional to a
summation of terms with differences in material dielec-
tric functions

−
(

ε1(ω)− ε3(ω)
)(

ε2(ω)− ε3(ω)
)

(1)

over frequency ω, where εi is the dielectric function for
material i (i = 1, 2, 3). Between two like materials,
ε1 = ε2, these terms are always negative and correspond
to attractive Casimir force, regardless the mediating ma-
terial 3. A famous generalization of this result states
that objects made of the same isotropic material always
attract for reflection symmetric geometries (but arbitrary
shapes) in vacuum [4], or for a wide class of intermediate
materials, as we will review presently. This strong theo-
rem appears to rule out many convenient possibilities for
realizing repulsive Casimir forces.

Yet in principle the Casimir force can be repulsive. In
recent years, people have devoted substantial efforts to
realizing repulsive Casimir forces, especially with a view
toward applications to nano-devices and colloids, which
can contain nearby parts that one wants to keep separate.
In fact, repulsive Casimir forces have been proposed in
several special cases [5–7], and have even been observed
experimentally [8]. In this experiment, the authors mea-
sured the Casimir force between gold (solid) and silica
(solid) mediated by bromobenzene (liquid), of which the
dielectric functions satisfy ε1 > ε3 > ε2. In recent years,
the repulsive Casimir force has been also proposed in var-
ious topological and metamaterials [9, 10]. However, all
these proposals give tiny repulsive Casimir forces (com-
pared to the Casimir force between metals), and demand

particular parameters of materials, or particular shapes
of materials, making experimental realization challenging
and somewhat awkward.

In this paper, we do two things. First, we identify
an important loophole in the central no-go theorem [4]
on Casimir forces. It arises when there is an interven-
ing “lubricant” material with no symmetry between left-
and right-circular polarized photons (i.e., a chiral ma-
terial). Optically active materials, which break spatial
parity but preserve time reversal, are not rare, and pro-
vide good candidates. Second, we explicitly calculate the
Casimir force between similar objects separated by a chi-
ral medium (see figure 1). We find that the Casimir force
can, as a function of distance, oscillate between attractive
and repulsive, and that it can be tuned by application of
an external magnetic field.

0 l z
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+
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-

kR

-

chiral material

C

right-circular
    photon

left-circular
    photon

k

k
k

FIG. 1. Schematic illustration of chiral Casimir effect. Two
parallel, uncharged plates (A & B) are placed at a distance l
separated by chiral material C. The red dots and green dots
represent right-circular polarized photons and left-circular po-
larized photons. The arrows indicate the propagating direc-
tions of chiral photons. k±

R(L) represent velocity of chiral pho-
tons, where superscript ± correspond to their propagating
directions, and the subscript R/L correspond to their chiral-
ity.

Identifying the loophole: To begin, we briefly review
the “Casimir” energy in massless free scalar field theory.

Qing-Dong Jiang and Frank Wilczek

Phys. Rev. B 99, 125403 (2019)

The key to realizing repulsive Casimir forces between similar objects is to 
insert an intermediate chiral material between them. The chiral Casimir force 
has several distinctive features: it can be oscillatory, its magnitude can be 
large (relative to the classic Casimir force), and it can vary in response to 
external magnetic fields.
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FIG. 1. Schematic illustration of chiral Casimir effect. Two par-
allel, uncharged plates (A and B) are placed at a distance l sepa-
rated by chiral material C. The red dots and green dots represent
right-circular polarized photons and left-circular polarized photons.
The arrows indicate the propagating directions of chiral photons.
k±

R(L) represent velocity of chiral photons, where superscript ±
corresponds to their propagating directions, and the subscript R/L
correspond to their chirality.

materials A and B, the partition function is Z0, which can be
obtained from Z by setting χ ′

A = χ ′
B = 0. Formally, then, the

energy E of the coupled systems A and B can be obtained from
the reduced partition function, yielding

E = i
T

ln
Z
Z0

=
∫ ∞

0

dξ

2π
ln Det(1 + χ̂ ′(r, iξ )ξ 2Ĝ0). (3)

Here, the integral is evaluated in the complex frequency
plane ξ = −iω. In this formula, T is the time interval in
path-integral formula, and Ĝ0(ξ ) = [χ0(iξ )ξ 2 − ∇2]−1 is the
Green’s function for scalar field in medium C.

Note that χ̂ ′ is an operator, which takes different eigen-
values depending on its eigenfunctions. We divide the whole
Hilbert space into three parts H = HA ⊕ HB ⊕ HC , where
HA,B,C represent the Hilbert space for wave functions in
materials A, B, C. Writing χ̂ ′|ψs〉 = χ ′

s|ψs〉, where |ψs〉 cor-
responds to the wave function in region s (s = A, B,C), the
energy of the coupling dielectric materials can be written in a
matrix form

E =
∫ ∞

0

dξ

2π

× ln Det
(

1A + χ ′
Aξ 2UAA χ ′

Aξ 2UAB

χ ′
Bξ 2UBA 1B + χ ′

Bξ 2UBB

)
, (4)

where Uss′ = 〈ψ (x ∈ s)|Ĝ0|ψ (x ∈ s′)〉 (s, s′ = A, B) is the
propagator between A and B. The diagonal elements in Eq. (4)
correspond to the self-energy of material A and B, which is
independent of their relative distance. The Casimir energy Ec
between A and B (i.e., the coupling energy between A and
B), can be obtained by subtracting the diagonal parts of E ,
yielding

Ec =
∫ ∞

0

dξ

2π
ln Det(1 − TAUABTBUBA), (5)

where Ts = χ ′
sξ

2/(1 + χ ′
sξ

2Uss) (s = A, B). Equation (5) has
a ready interpretation in terms of Feynman diagrams and con-
ventional quantum electrodynamic perturbation theory [3]. In
an isotropic medium, left-circular polarized and right-circular

TA TB TBTA

)b()a(

FIG. 2. Feynman diagrams for normal Casimir energy and chiral
Casimir energy. (a) Shows the Feynman diagram representation for
normal Casimir energy when chiral symmetry of photon is kept.
Black wavy lines represent photon propagator D̂0 and filled bubbles
represent current-current correlation functions TA and TB. (b) Shows
the Feynman diagram representation for Casimir energy when chiral
symmetry is broken, namely, the velocity of photons depend on their
chirality. Red and green wavy lines correspond to Green’s functions
for right-circular polarized photons and left-circular polarized pho-
tons, respectively.

polarized photons are equivalent, so that photon Green’s func-
tion can be represented by a single wavy line [Fig. 2(a)].

Now, let us review the logic of the central no-go theorem
[4]. If there is reflection symmetry between A and B, then
the self-energy operators TA and TB are related by a reflection
operator Jm, according to TB = J †

mTAJm. Moreover, one can
show that UABJm = J †

mUBA is a Hermitian operator. Thus, the
Casimir energy can be expressed as

Ec =
∫ ∞

0

dξ

2π
ln Det(1 − (

√
TAUABJm

√
TA)2). (6)

The integrand has the functional form g(x) = ln [1 − f (x)2],
leading to g′(x) = −2 f (x) f ′(x)/[1 − f 2(x)], so that f (x) > 0
and f ′(x) < 0 imply g′(x) > 0. Within our integrand I (l ) ≡
〈ψ |UABJm|ψ〉 > 0 and ∂l I (l ) < 0. Consequently, the Casimir
force Fc = −dEc/dl < 0 between A and B is attractive.

The foregoing procedures and arguments are readily
adapted to the electromagnetic field case. In the gauge A0 = 0,
one has S = 1

2

∫
dr dω

2π
A∗

ω[−∇ × ∇ × +ε(r,ω)ω2]Aω, which
matches the massless scalar field form. The electromagnetic
Casimir energy for electromagnetic field results from sub-
stituting Ĝ0 -→ D̂0(iξ ) = ( 1

∇×∇×+χ0(iξ )ξ 2 ) in Eq. (4), and in-
terpreting Uss′ appropriately. Thus, the no-go theorem still
applies.

The escape clause appears when we note that in chiral
media, UABJm is not a Hermitian operator, i.e., UABJm /=
J †

mUBA. This arises, physically, because there are different
phase velocities for left-circular polarized photons versus
right-circular polarized photons.

To model chiral media, we assume a chirality-dependent
dielectric function in material C, i.e., χL(R)

0 for left- and
right-circular polarized photons. The Green’s function must
be written in a matrix form in chiral basis (ψL(x),ψR(x)), i.e.,

D̂0 =
(

D̂L
0 0

0 D̂R
0

)
, (7)

where D̂L(R)
0 = [χL(R)

0 (iξ )ξ 2 + ∇ × ∇×]−1 represents the
Green’s function for left- (right-) circular polarized photons.
Figure 2(b) shows the Feynman diagram for chiral Casimir

125403-2

Feynman diagrams for normal Casimir energy and chiral Casimir energy. (a) Shows the Feynman 
diagram representation for normal Casimir energy when chiral symmetry of photon is kept. Black 
wavy lines represent photon propagator Dˆ 0 and filled bubbles represent current-current correlation 
functions TA and TB. (b) Shows the Feynman diagram representation for Casimir energy when chiral 
symmetry is broken, namely, the velocity of photons depend on their chirality. Red and green wavy 
lines correspond to Green’s functions for right-circular polarized photons and left-circular polarized 
photons, respectively.
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energy. To keep track of the chiral degree of freedom, it is
helpful to use a double wavy line to represent the photon
Green’s function. Even when the reflection symmetry is kept
between A and B, through their identical properties and sym-
metric geometry, the material C breaks the symmetry. The
propagators in the Feynman diagram exchange colors (red ↔
green) under the reflection operation Jm. Now, J †

mUBAJm =
IAUABIA "= UAB, where IA is an off-diagonal unit matrix. Thus,
TAUABTBUBA "= (

√
TAUABJm

√
TA)2, and the foregoing argu-

ments fail.

III. CALCULATIONS FOR CHIRAL MEDIA IN PLATE
GEOMETRY

By using a nonreciprocal Green’s function method, we can
derive more tractable expressions for chiral Casimir forces.
The algebra, which is not entirely trivial, is set out in Ap-
pendix A (compare [11–14]).

Specializing to plate geometry, we find the energy per unit
surface area

Ec =
∫ ∞

0

dξ

2π

∫ ∞

−∞

d2k‖

(2π )2
{ln Det(I − RBŨBARAŨAB)}, (8)

where ξ is the imaginary frequency, and k‖ = (kx, ky) repre-
sents momentum in the xy plane (parallel with plates). Here,
RA (RB) represents reflection matrix at plate A (B), and ŨAB
(ŨBA) represents translation matrix from A to B (B to A).
(Note that this Ũ has quite a different meaning from U , which
appeared earlier.)

In a chiral medium, reflection symmetry of photons is
broken, implying that transverse electric (TE) (s-polarized)
wave and transverse magnetic (TM) (p-polarized) wave are
not the eigenstates. In the more convenient chiral basis, ŨAB
and ŨBA are diagonal, as long as chirality itself is a good
quantum number. We have then simply

ŨBA =
(

eik+
zL l 0

0 eik+
zRl

)
, ŨAB =

(
eik−

zL l 0
0 eik−

zRl

)
, (9)

where k±
zR and k±

zR stand for the propagating velocity of right-
circular polarized photons and left-circular polarized photons,
respectively. The superscript ± indicates the propagating di-
rections of photons. (The meaning of k±

zR/L is also shown
in Fig. 1.) However, photons can change chirality at the
boundary A and B due to reflection. In this paper, we only
consider the case where there is reflection symmetry between
A and B, implying the same reflection matrices of A and B:

RA = RB =
(

rRR rLR
rRL rLL

)
, (10)

where ri j represent the reflection magnitude of a photon from
chirality j to i (i, j = L, R).

Equation (8) can be interpreted integrating over round trips
of virtual photons. First imagine that a photon goes from B to
A with translation matrix (ŨAB), and then is reflected at plate
A (RA). After its first reflection, it goes back from A to B with
translation matrix (ŨBA), and then it will be reflected at plate
B (RB) again.

(i) Faraday materials. In a medium displaying the Faraday
effect, the optical rotation angle θ is determined by θ = VBl ,
where V is the Verdet constant (a key parameter in Faraday

FIG. 3. Chiral Casimir force due to Faraday effect, normalized
to the original metallic Casimir force per area F0 = −π 2 h̄c/(240l4).
(a) Shows the Casimir force enhancement in different magnetic field.
The red and blue curves represent Casimir force at magnetic field
B = 4 T and B = 10 T, respectively. The shadow region corresponds
to repulsive Casimir force regime. (b) Shows how the magnetic field
B can control the Casimir force. The solid and dashed lines represent
the Casimir force that is measured at the distance l = 8 and 6 µm,
respectively.

materials), B is the magnetic field in the light propagating
direction, and l is the distance that the light passes through. In
an alternate description, the magnetic field introduces a phase
velocity difference δkz = VB between left-circular polarized
photons and right-circular polarized photons. In order to tune
the effect, one can change the orientation of the applied
magnetic field with respect to the plate alignment (see details
in Appendix B 1). Therefore, the wave vectors of photons
with different chirality satisfy k+

zR = k−
zL = k̄z + δkz and k−

zR =
k+

zL = k̄z − δkz, where k̄z is the average wave vector of right-
circular and left-circular polarized photons [15]. With the
phase velocity expressions of chiral photons, one can obtain
the translation matrices ŨAB (ŨBA) for Faraday materials. For
ideal metal plates, the reflection matrices are simply taken off-
diagonal unit matrices, i.e., rRR = rLL = 0 and rLR = rRL =
−1. The off-diagonal reflection matrix is due to the fact that
photons change their chirality after being reflected at an ideal
metal plate [16].

Recently, experiments have measured very large Verdet
constants in some organic molecules and liquids. We set
Verdet constant as V = 5 × 104 rad m−1 T−1 in the calcu-
lation based on several experimental results [17]. (We will
consider frequency-dependent Verdet constant further below.)
Substituting the expression of reflection matrices and transla-
tion matrices into Eq. (7), one obtains the Casimir energy for
Faraday materials

Ec =
∫ ∞

0

dξ

2π

∫ ∞

−∞

d2k‖

(2π )2
ln[(1 + e−4κl − 2e−2κl cos(2VBl )],

(11)

where κ =
√

ξ 2 + k2
‖ =

√
ξ 2 + k2

x + k2
y . From Eq. (11), one

finds that magnetic field and Verdet constant are embed-
ded within the expression of Casimir energy. Therefore, the
Casimir force can be manipulated by tuning magnetic field.
Moreover, the cosine function in the expression leads to the
repulsive Casimir force. Figure 3 shows the repulsion and
enhancement of Casimir force in different magnetic field.
F0 represents the Casimir force with Verdet constant V = 0,
i.e., no gyrotropic materials inserted between A and B. In
contrast, Fc represents the gyrotropic Casimir force. The ratio

125403-3

Chiral Casimir force due to Faraday effect, normalized to the original metallic Casimir force per area 
F0 = −π2h ̄c/(240l4). (a) Shows the Casimir force enhancement in different magnetic field. The red 
and blue curves represent Casimir force at magnetic field B = 4 T and B = 10 T, respectively. The 
shadow region corresponds to repulsive Casimir force regime. (b) Shows how the magnetic field B 
can control the Casimir force. The solid and dashed lines represent the Casimir force that is measured 
at the distance l = 8 and 6 μm, respectively. 



Non-perturbative Casimir effect within Lattice gauge theories

The Casimir plates  and  are separated by the distance . The space is 
compactified into a torus due to periodic boundary conditions.

l1 l2 R



Check of the approach in a free theory 
(no monopoles, weak coupling regime):

Casimir energy for finite static permittivity 

[V.A. Goy, A.V. Molochkov, M.Chernodub.,  
Phys.Rev. D94, 094504 (2016)]

Take a lattice formulation of the 
theory and impose the appropriate 
conditions via the Lagrange 
multipliers at the boundaries.

Perfectly conducting wires
[= infinite static permittivity ε in (2+1)d]

cos θx,23 = 1

SE[θ; 𝒫S] = ∑
P

βP(ϵ)cos θP

βPx,μν
= β[1 + (ϵ − 1)(δμ,2δν,3 + δμ,3δν,2) ⋅ (δx,l1 + δx,l2)]



Electric charges exhibit a linear confinement in a Coulomb gas of monopoles 

Phase structure: deconfinement transition at T.=.0 

If the wires are close enough, then
  → between the wires, the dynamics of monopoles is dimensionally reduced;
  → the inter-monopole potential becomes log-confining;
  
 
  
 → the monopoles form magnetic-dipole pairs (and are suppressed);
 → the confinement of electric charges disappears (a deconfining transition).

String tension inside and outside wiresExamples of (anti-)monopole configurations
 widely-spaced wires           narrowly-spaced wires

(a Coulomb gas of monopoles)         (a dilute gas of magnetic dipoles )

V.A. Goy, A.V. Molochkov, M.Chernudub., 
Phys.Rev. D95, 074511 (2017); Phys.Rev. D96, 
094507 (2017)] 

A very smooth transition,
a BKT type or crossover?



pseudocritical point (17) coincides, within the error bars,
with the infinite-volume result of Ref. [48].

B. Monopole properties with Casimir plates

Perfectly conducting Casimir plates are introduced via
the inhomogeneous coupling (14) which serves as the
Lagrange multiplier that reduces physical fluctuations of
the gauge field at the plates. In practice, we take the
sufficiently large value of the dielectric constant, ε ¼ 103,

which corresponds to the asymptotically large coupling
constant at the plates, βP → ∞. The coupling constant in
bulk (outside and inside the plates) is fixed to take a
homogeneous value β. We consider the separations R≡
jl1 − l2j ¼ 1;…; 8 between the plates.
We immediately notice that closely separated plates

affect the monopoles between them. The effect is readily
visible in the examples of the typical monopole configu-
rations shown in Fig. 3 for two values of the bulk coupling
constant β. The plates tend to diminish the monopole
density in the volume between them compared to the
monopole density outside the plates. The suppression effect
is enhanced for larger values of the coupling constant β (at
weaker coupling), as one can see from comparisons of
Figs. 3(a) and 3(b). The suppression of the monopole
density suggests that the confining property should be
weakened in between the plates, and therefore, the confine-
ment-deconfinement phase transition should occur at
stronger values of the coupling constant (smaller β’s).
This observation will be confirmed below.
The ratio of the monopole density in between the plates

ρins and the monopole density at the same β in the absence
of the plates, ρnpall (here, the superscript “np” means “no
plates”), are shown in Fig. 4 for various separations R. All
couplings β shown in the plot, the shrinking plates lead to
the diminishing monopole density. At weaker coupling
(larger β), the relative monopole density is affected stronger
than at stronger coupling (smaller β). The relative monop-
ole density, ρins=ρ

np
all, has an inflection point at certain R ¼

R" at fixed β. This point moves towards smaller values of R
as the lattice coupling β decreases. The latter fact indicates
that the model may have a β-dependent transition, which
moves towards smaller R as the coupling β gets larger.
In our paper, we provide the results as the function of the

lattice distance R between the plates. We do not express the

FIG. 2. (a) Monopole density ρ, (b) its susceptibility, and (c) the
Binder cummulant (16) for O ¼ ρ vs lattice coupling β in the
absence of plates. The vertical line marks the position of the
phase transition calculated from these observables.

FIG. 3. Typical examples of monopole configurations in (a) the
confining phase (β ¼ 0.8) and (b) the deconfining phase
(β ¼ 0.9) for the plates separated by the distance R ¼ 3. The
monopoles and antimonopoles are represented by the red and
blue dots, respectively. The plates, positioned vertically in the
middle of the lattice, are not shown.

CASIMIR BOUNDARIES, MONOPOLES, AND DECONFINEMENT … PHYS. REV. D 105, 114506 (2022)

114506-5

Compact U(1) monopole configurations in the presence of Casimir plates

Typical examples of monopole configurations in (a) the confining phase (β = 
0.8) and (b) the deconfining phase (β = 0.9) for the plates separated by the 
distance R = 3. 

The monopoles and antimonopoles are represented by the red and blue dots, 
respectively. The plates, positioned vertically in the middle of the lattice, are 
not shown. 



distance in the physical units since the compact U(1) gauge
theory on a four-dimensional Euclidean lattice does not
possess a well-defined physical scaling towards the con-
tinuum limit. The latter is associated with the absence of the
proper continuum limit in the model since the system does
not possess a second-order phase transition with a divergent

correlation length. The approximate scaling is observed in a
small region of lattice couplings β close to the phase
transition point [50], where the lattice spacing a ¼ aðβÞ
varies, in physical units, in a limited range of lengths. We
study the properties of the model over the full range of the
coupling constant β where the continuum scaling is not
realized.
In Fig. 5, we show the monopole density in between the

plates ρins, its susceptibility, and the corresponding Binder
cumulant for three values of the interplate distance R. One
can immediately make a few qualitative observations from
these figures.
Firstly, we notice that all these quantities behave sim-

ilarly to the case without plates (Fig. 2) implying affinity of
these transitions. Secondly, we notice that for any fixed R,
the monopole density, its susceptibility, and the Binder
cumulant experience the singularities at the same value of
the coupling constant β, highlighting the presence of a
genuine thermodynamic instability. Thirdly, the positions
of these singularities, βc ¼ βcðRÞ, shift towards the strong
coupling region as the distance between R the plates
diminishes. In other words, the closer the plates, the weaker
the monopole component of the vacuum.
The dependence of the critical coupling βc of the inter-

plate distance R is shown in Fig. 6. As we discussed above,

FIG. 4. The ratio ρins=ρ
np
all of the monopole density ρins inside

the Casimir plates to the monopole density in the absence of the
plates, ρnpall, vs the interplate separation R for a fixed set of the
lattice coupling β.

FIG. 5. The monopole density (the left panel), its susceptibility (the middle panel) and the Binder cumulant (the right panel) plotted as
the function of β for three separations between the plates (from top to bottom): R ¼ 2; 4; 8. The corresponding critical coupling
constants, βc ¼ βcðRÞ, are shown in the insets.

CHERNODUB, GOY, MOLOCHKOV, and TANASHKIN PHYS. REV. D 105, 114506 (2022)
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The critical coupling of the confinement-
deconfinement transition as the function of the 
separation between the plates R in the ideal-
metal limit ( ) in physical units. 

(M. N. Chernodub, V. A. Goy, A. V. Molochkov, and 
A. S. Tanashkin Phys. Rev. D 105, 114506)
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Phase structure: deconfinement transition

the smaller R the smaller βc. The dependence can be fitted
by the function,
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0Þν%; ð18Þ
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phase transition line is a rising function of the interplate
distance R. The critical coupling vanishes, βfitc ðRcÞ ¼ 0, at
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The loss of the confinement property of the vacuum

between the metallic plates in (3þ 1)-dimensions, revealed
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each other via the long-range massless photon exchange. In
the absence of the plates, this interaction, in (3þ 1)-
dimensions, decays as jxj−2 as the four-dimensional dis-
tance x between the objects increases. In the presence of the
plates, the system experiences the dimensional reduction
from four- to three-dimensional spacetime. In the latter, the
interaction between the (anti)monopoles strengthens and
decays slower, as jxj−1. These two factors lead to the

breaking of the infrared monopole clusters into smaller
clusters and, consequently, to the disappearance of the
monopole condensate.
In the 2þ 1 dimensional model, the same effect leads to

the pairing of monopoles and antimonopoles into the
magnetically neutral monopole pairs (the lower-dimen-
sional counterparts of the small clusters) and to the decay
of the Coulomb monopole gas (the lower-dimensional
analogue of the monopole condensate). The neutral pairs
(the small clusters) cannot support the confinement and
confining property is lost between the sufficiently close
plates [16,17].

IV. DECONFINEMENT ORDER PARAMETER

We determined the nature of confinement and deconfine-
ment phases in the whole phase diagram of Fig. 6 using the
simple fact that these phases at finite separation R are
smoothly connected to the known phases in the R → ∞
limit. In this section, we quantify this assertion by calcu-
lating the deconfinement order parameter, the expectation
of the Polyakov loop, in between the plates.
Usually, the Polyakov loop is determined at a finite

temperature, where the extension of the lattice in the
imaginary time direction is finite. The same order param-
eter can also be used on the zero-temperature lattice with a
finite extension in the temporal direction, NT .
In the Abelian gauge theory, the Polyakov loop Px at the

spatial space point x is given by a cyclic product of
temporal link variables,

Px ¼
YNT−1

x4¼0

eiθx;x4;μ¼4 : ð19Þ

Due to the property of the temporal cyclicity, this quantity
does not depend on the time slice where it is defined.
The expectation value of this gauge-invariant quantity,

P ¼ hPxi serves as a deconfinement order parameter: at an
infinite-volume lattice, P ≠ 0 in the deconfinement phase,
and P ¼ 0 in the confinement phase. At finite lattice (as in
our case), the expectation value of the Polyakov loop is
nonzero in both phases, being small (large) in the confine-
ment (deconfinement) phase.
We compute the expectation value of the modulus of the

operator (19) averaged over a set of lattice points in a fixed
timeslice of the three-dimensional volume V3,

jPj ¼
!!!!
1

V3

X

x∈V3

Px

!!!!: ð20Þ

The expectation value of the Polyakov order parameter
(20) in the absence of the plate is shown in Fig. 7. We show
the region around the phase transition point (17), where the
change in the behavior is well seen.

FIG. 6. The phase diagram of the vacuum of the compact U(1)
gauge theory in between the perfectly metallic plates separated by
the distance R. The solid line represents the best fit (18) of the
critical coupling βc, which corresponds to the confinement-
deconfinement phase transition at the interplate distance R.
The R → ∞ limit is shown by the dashed horizontal line.
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The order parameter evaluated in the space between the
plates is presented in Fig. 8. We show this quantity, as a
function of the interplate separation R, for the same set of β
values as used in Fig. 4 for the interplate monopole density.
The shrinking plates induce the deconfining phase resulting
in the increase of the Polyakov loop (Fig. 8) in agreement
with the diminishing monopole density (shown in Fig. 4).

The effect appears to work at all values of the coupling
constant β. The similar tendency is seen in Fig. 9, which
shows the same quantity vs β at a set of fixed interplate
separations R.
These results support the phase diagram of Fig. 6.

V. CONCLUSIONS

Using the first-principle numerical simulations, we show
that the structure of the vacuum of confining gauge theory,
the compact U(1) gauge model in (3þ 1)-dimensions, is
affected by closely spaced perfectly conducting parallel
plates. The nonperturbative Casimir effect alternates the
dynamics of Abelian monopoles, modifies the vacuum
state, and leads to the Casimir-induced deconfining phase
transition in between the plates. Our main result, the phase
diagram in the plane “coupling constant”—“distance
between the plates” is given in Fig. 6.
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The approach is easily generalizable to non-Abelian gauge groups.
Conditions at an ideal “chromo–metallic” boundary:

The Casimir potential in (2+1)d for SU(2) gauge theory at T.=.0:

[V.A.Goy, A.V.Molochkov, H.Nguyen, M.Chernodub., 
PRL, arXiv:1805.11887]

Dimitra Karabali and V. P. Nair, Phys. Rev. D 98, 105009 (2019)



- The expectation value of the Polyakov line indicates deconfinement  
                                                                      in between the plates (wires).

The finite Casimir geometry leads to a
very smooth deconfinement transition
in between the plates. The absence of a
thermodynamic transition marks the
difference with the finite temperature case.

In a finite-temperature SU(2) gauge theory the 
phase transition is of the second order (Ising-type)
[M. Teper, Phys.Lett. B313,417 (1993)].

[V.A.Goy, A.V.Molochkov, H.Nguyen, M.Ch., 
arXiv:1805.11887, PRL (2018)]
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vanish at the surface S (in our case, S is the set of two
planes). Conditions (2) are identical, up to the color
index a = 1, . . . , N2

�1, to the conditions imposed on the
Abelian electromagnetic (photon) field at the surface of a
perfectly conducting metal (a mirror) in electrodynamics.
Thus, Eqs. (2) correspond to a chromometallic mirror
plate for gluons.

The Wilson form of the lattice Yang-Mills action is
given by a sum over lattice plaquettes P⌘Pn,µ⌫={n, µ⌫}:

S = �
X

P

(1� PP ) , PP =
1

3
ReTrUP , (3)

where µ and ⌫ label directions, n denotes a site of a 4d
Euclidean lattice, and � = 6/g2 is the lattice coupling.
In continuum limit, the lattice spacing vanishes, a ! 0,
the lattice plaquette Uµ⌫(n) = Uµ(n)U⌫(n + µ̂)U †

⌫ (n +
⌫̂)U†

⌫ (n) = exp(ia2Fµ⌫(n)+O(a3)) reduces to the contin-
uum field-strength tensor Fµ⌫ , and the lattice action (3)
becomes a Euclidean version of Yang-Mills action (1).

The Casimir boundary conditions (2) in the Euclidean
lattice formulation are achieved by promoting the lattice
coupling in Eq. (3) to a plaquette-dependent quantity,
� ! �P , where �P = �� if the plaquette P either touches
or belongs to the hypersurface spanned by the surface S
and �P = � otherwise [26]. The quantity � plays a role
of a Lagrange multiplier which, in the limit � ! 1,
enforces the lattice version of Eqs. (2).

In Minkowski spacetime, the canonical energy-
momentum tensor reads as follows:

Tµ⌫ = Fµ↵F ⌫
↵ �

1

4
⌘µ⌫F↵�F↵� (4)

where ⌘µ⌫ = diag (1,�1,�1,�1) is the metric. The en-
ergy density E is related to its Euclidean counterpart as

E ⌘ T 00 =
1

2

�
B2 +E2

�
! T 44

E =
1

2

�
B2

E �E2
E

�
, (5)

where the superscript “E” labels the Euclidean quanti-
ties. The lattice Casimir energy density per unit area
of the Casimir plates on the zero-temperature lattice of
the volume L4

s is given by the properly normalized lattice
version of Eq. (5):

ECas = �Ls

✓ 3X

i=1

hPi4iS �

3X

i<j=1

hPijiS

◆
, (6)

where average plaquettes are taken over the whole lattice
volume. Quantity (6) represents the difference between
the vacuum expectation values of temporal and spacial
plaquettes in the presence of the mirror plates S. An
additive divergent contribution to the expectation values
of plaquettes, arising from zero-point ultraviolet fluctu-
ations, cancels exactly in Eq. (6). The Casimir energy
density (6) is a finite physical quantity that depends only
on the distance between R the mirrors and vanishes in
their absence (or, at R ! 1).

We perform simulations at zero temperature L4
s lat-

tices of various volumes, Ls = 12, 16, 20, 28, 32 using 13
values of the gauge coupling varying in the range from
� = 5.6924 to � = 6.5. The physical scaling of the lattice
spacing a = a(�) is set via the phenomenological value
of the fundamental string tension,

p
� = 485(6)MeV =

[0.407(5) fm]�1 following Ref. [31]. Values of a
p
� for in-

termediate �’s, which cannot be found in Ref. [31], are
obtained from an accurate spline interpolation. To gen-
erate and update gauge field configurations, we used the
Monte-Carlo heatbath algorithm [32, 33]. For each point,
set by the gauge coupling constant � and the lattice dis-
tance between plates R/a, we generated 6⇥105 trajecto-
ries. The first 105 configurations are omitted to achieve
thermalization. Next, we proceed to the numerical cal-
culation of the Casimir energy (6) on the lattice.

Non-Abelian Casimir energy and the glueton.
Figure 1 shows the Casimir energy density between the
chromometallic plates (6) calculated from first principles
in SU(3) gauge theory. The data for a broad set of lattice
volumes and couplings nicely collapse to a smooth curve,
thus demonstrating the absence of substantial finite-size
and finite-volume effects.

x3
x2

x1, x4

l2
l1

Figure 1. Casimir energy density ECas vs. distance R between
the perfect chromometallic plates in units of the fundamental
string tension � for various values of the lattice coupling �
and several lattice volumes L4. The line shows the best fit by
the phenomenological function (7), representing the Casimir
energy of a massive field. The inset illustrates the Casimir
double-plate geometry on the lattice with R = |l2 � l1|.

The Casimir energy takes a large negative value as the
inter-plate separation R diminishes. This behavior points
to the attractive nature of the non-Abelian Casimir force
expected at short separations, where gluons should expe-
rience the asymptotic freedom and the Casimir interac-
tions should reduce to the one of a free massless vector
field with a color degeneracy factor.

At large inter-plate separations R, the Casimir energy
expectedly vanishes. In theories with a free massless field,
the Casimir energy density per unit plate area drops as
an inverse power R�3 of the distance R, while in field the-

3

ories with a mass m 6= 0, one expects that the Casimir
energy density vanishes exponentially, E(R) ⇠ e�2mR.
The factor 2 implies that the particle has to travel from
one mirror plate to another, then get reflected to close the
path, thus propagating the distance 2R in total. There-
fore, it is crucial to determine how rapidly the energy
diminishes in the large–R limit, as this behavior should
uncover the mass spectrum of excitations in the gluonic
vacuum between the chromometallic mirrors.

In (2+1) dimensional confining theories, closely spaced
chromometallic boundaries are known to affect the vac-
uum structure between them [15, 34]. In SU(2) Yang-
Mills theory, the lowest excitation between the plates
corresponds to a “Casimir particle” with a mass substan-
tially lower than the lowest glueball mass in the same
theory [16]. The Casimir mass is related to the magnetic
mass in 2+1 dimensional Yang-Mills theory [35].

The nonperturbative Casimir energy in (2 + 1)d non-
Abelian gauge theory can successfully be described as the
Casimir energy of a massive scalar particle [35]. Applying
the same idea in (3+1) dimensions, we fit our numerical
results with the Casimir energy of a scalar field [36–38]
with certain mass mgt:

ECas = �C0
2(N2

c � 1)m2
gt

8⇡2R

1X

n=1

K2(2nmgtR)

n2
. (7)

The prefactor takes into account the (N2
c � 1)-fold color

degeneracy (with Nc = 3 in our case) as well as two spin
polarization of (massless) gluons. The mass gap could af-
fect this factor, thus forcing us to include a phenomeno-
logical parameter C0. The sum in Eq. (7) is performed
over a quickly converging series of modified Bessel func-
tions of the second kind K2(x).

The best fit of the Casimir energy by function (7) is
shown in Fig. 1 by the red line. The fit (with �2/d.o.f. '
0.6 highlighting its good quality) provides us with the
following best-fit parameters: C0 = 5.60(7) and

mgt = 1.0(1)
p
� = 0.49(5)GeV . (8)

Strikingly, the mass of the exchange particle (8) is sub-
stantially smaller than the mass of the groundstate glue-
ball M0++ = 3.405(21)

p
� = 1.653(26)GeV [31]. More-

over, the result (8) is surprising because the groundstate
glueball mass M0++ , by its very definition, is identified
with the lowest possible mass in the system. The same
phenomenon has been found for an effective particle that
governs the long-distance limit of the Casimir effect in
two spatial dimensions [16]. Nevertheless, we found an
excitation with the nonzero mass (8), which is substan-
tially lower than the lowest groundstate mass.

The apparent contradiction is resolved by noticing that
the groundstate glueball mass M0++ determines the mass
gap in the bulk of the system (far from eventual bound-
aries) while the mass (8) is associated with a new excita-
tion in Yang-Mills theory that emerges exclusively due to

the presence of a boundary. We call this boundary state
“glueton” interpreting it as a nonperturbative colorless
state of gluons bound to their negatively colored images
in the chromometallic mirror.

The states localized at the boundaries of a system (of-
ten called the edge states) can have lower masses than
the mass gap in the bulk of the same system. In the
condensed matter context, this effect appears at the con-
tacts of semiconductor structures (the Volkov-Pankratov
states [39]) and the boundaries of topological insula-
tors (massless edge modes featuring the spin Hall ef-
fect [40, 41]). However, contrary to the mentioned bound-
ary modes, the glueton has a non-topological origin.

The glueton is a non-Abelian analog of a surface ex-
citon that emerges in electronic systems. The surface
exciton is an electrically neutral quasiparticle that exists
in semiconductors and insulators close to their bound-
aries: an electron (or a hole) in the bulk of the material
couples to its image hole (electron) state in the reflective
boundary and forms a neutral quasiparticle [42]. These
electron-hole states can only move along the boundary of
the material. The physics of surface excitons constitutes
a vast area of research in solid-state physics [43–46].

The glueton should be distinguished from another
gluonic excitation, so-called “gluelump” [47–50]. The
gluelump is a purely gluonic system consisting of a va-
lence gluon connected by an adjoint string to a static
adjoint source which can be associated with an infinitely
heavy gluon. Although the gluelump is not a physical ob-
ject that cannot be directly measured in an experiment,
its theoretical investigation provides valuable insight into
the nonperturbative confining properties of QCD [51].
Furthermore, contrary to the gluelump, the glueton can
propagate along a reflective domain wall in QCD (for ex-
ample, along the vacuum-hadronic interface in an MIT
bag model [22, 23]) and thus can potentially contribute
to the stability of such states and associated physically
measurable quantities.

For completeness of our description, we also mention
that Yang-Mills theory possesses yet another, “torelon”,
excitation which appears in systems with a compact spa-
tial dimension [52]. The torelon corresponds to a con-
fining flux tube that winds around a spatial torus and
has no fixed color sources. It has a numerically calcu-
lable spectrum corresponding to the eigenstates of the
stretched confining string, which cannot collapse due to
geometrical topological reasons [53, 54]. Recently it has
been revealed that the ground state of the torelon corre-
sponds to an axion-type excitation on the world sheet of
the closed flux tube [54, 55].

The glueton (a surface state) is yet another gluonic
excitation in addition to the glueball (a bulk state),
the gluelump (a heavy-light gluon-bound state), and the
torelon (a stretched-string state).

Casimir energy of a scalar field with certain mass mgt: 
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the groundstate glueball mass M0++ determines the mass
gap in the bulk of the system (far from eventual bound-
aries) while the mass (8) is associated with a new excita-
tion in Yang-Mills theory that emerges exclusively due to

the presence of a boundary. We call this boundary state
“glueton” interpreting it as a nonperturbative colorless
state of gluons bound to their negatively colored images
in the chromometallic mirror.

The states localized at the boundaries of a system (of-
ten called the edge states) can have lower masses than
the mass gap in the bulk of the same system. In the
condensed matter context, this effect appears at the con-
tacts of semiconductor structures (the Volkov-Pankratov
states [39]) and the boundaries of topological insula-
tors (massless edge modes featuring the spin Hall ef-
fect [40, 41]). However, contrary to the mentioned bound-
ary modes, the glueton has a non-topological origin.

The glueton is a non-Abelian analog of a surface ex-
citon that emerges in electronic systems. The surface
exciton is an electrically neutral quasiparticle that exists
in semiconductors and insulators close to their bound-
aries: an electron (or a hole) in the bulk of the material
couples to its image hole (electron) state in the reflective
boundary and forms a neutral quasiparticle [42]. These
electron-hole states can only move along the boundary of
the material. The physics of surface excitons constitutes
a vast area of research in solid-state physics [43–46].

The glueton should be distinguished from another
gluonic excitation, so-called “gluelump” [47–50]. The
gluelump is a purely gluonic system consisting of a va-
lence gluon connected by an adjoint string to a static
adjoint source which can be associated with an infinitely
heavy gluon. Although the gluelump is not a physical ob-
ject that cannot be directly measured in an experiment,
its theoretical investigation provides valuable insight into
the nonperturbative confining properties of QCD [51].
Furthermore, contrary to the gluelump, the glueton can
propagate along a reflective domain wall in QCD (for ex-
ample, along the vacuum-hadronic interface in an MIT
bag model [22, 23]) and thus can potentially contribute
to the stability of such states and associated physically
measurable quantities.

For completeness of our description, we also mention
that Yang-Mills theory possesses yet another, “torelon”,
excitation which appears in systems with a compact spa-
tial dimension [52]. The torelon corresponds to a con-
fining flux tube that winds around a spatial torus and
has no fixed color sources. It has a numerically calcu-
lable spectrum corresponding to the eigenstates of the
stretched confining string, which cannot collapse due to
geometrical topological reasons [53, 54]. Recently it has
been revealed that the ground state of the torelon corre-
sponds to an axion-type excitation on the world sheet of
the closed flux tube [54, 55].

The glueton (a surface state) is yet another gluonic
excitation in addition to the glueball (a bulk state),
the gluelump (a heavy-light gluon-bound state), and the
torelon (a stretched-string state).

A new gluonic excitation: the glueton - a colourless bound state of a gluon 
with its image in a chromometallic mirror. 
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The quarkiton: a quark bound by a mirror. We
argued above that the chromometallic Casimir plate, act-
ing as a mirror for gluons, facilitates the creation of a
colorless (glueton) state bound of gluons to their mirror
images. One can question whether a quark can form a
colorless bound state with its negative image in a chro-
mometallic mirror, a “quarkiton”?

This “quark–chromometallic mirror” bound state is ex-
pected to be strengthened by the color confinement phe-
nomenon. Indeed, in the bulk of the confinement phase,
the chromoelectric field of a quark is squeezed into the
confining string, which terminates, in a meson, on an
anti-quark. If we place a quark near the non-Abelian mir-
ror, the confining string should terminate on the mirror,
thus attracting the quark to its negative image. There-
fore, we expect to observe the confinement of a quark
with a neutral chromometallic mirror via the formation
of the confining QCD string.

Since the mirror is a globally color-neutral object, the
induced color charge, which mimics the image anti-quark
at the mirror, should lead to a re-distribution of the color
charge over the surface of an (infinite) mirror. In a confin-
ing system, the redistributed charge can contribute posi-
tively to the total free energy of the quark-mirror system,
and it can, in principle, outweigh the negative contribu-
tion of the quarkiton bound state.

As we study a purely gluonic system, we cannot check
the formation of the quarkiton state by calculating the
mass spectrum with quark degrees of freedom near the
mirror. However, we can calculate the potential VQ|
(which is given by the free energy VQ| ⌘ FQ|(d)) pro-
duced by the mirror “ |” on the heavy quark “Q” separated
by the distance d. Moreover, the slope of the potential
allows us to estimate whether (and how strongly) the
quark is attracted to (or repelled by) the mirror.

Associating the potential of the static quark with its
free energy FQ|(d), we use the Polyakov loop operator,
which places a static heavy quark at the spatial point x:

Px =
1

3
ReTr

 
Lt�1Y

x4=0

Ux,x4

!
, (9)

where the product over the time-like oriented non-
Abelian Ux,x4 matrices is closed via the periodic bound-
ary conditions. The effect of the boundary mirror is iden-
tified via the expectation value of the Polyakov loop:

hPxi|(d) = exp
�
�LTFQ|(d)

 
, (10)

placed at the point x = (x1, x2, d) in the presence of a
single mirror (with fixed x3 = 0) and averaged over the
tangential coordinates x1 and x2. In Eq. (10), LT is the
lattice length in the imaginary time direction which also
serves as an infrared regulator. At finite temperature T ,
the length LT is fixed, LT = 1/T , and the term in the
exponent of Eq. (10) reduces to the familiar ratio F/T .

In the thermodynamic limit at zero temperature,
LT ! 1, the Polyakov loop observable vanishes identi-
cally, making it practically impossible to calculate the po-
tential (10) of the heavy quark at large LT . This property
is of a kinematic rather than dynamical origin, shared by
any (even unconfined) massive particle with a finite free
energy F > 0. Therefore, to prove qualitatively the exis-
tence of an attractive interaction between a single quark
and the mirror, we consider rather a small lattice with
the temporal extension LT = 12a, in which the spatial
correlator is limited to a few lattice steps due to finite-
volume effects.

The expectation value (9) contains unphysical
distance-independent contributions, usually subtracted
via a renormalization procedure. Due to the small vol-
ume of the lattice, it is challenging to renormalize the
quark-free energy via its short-distance behavior, as it
is usually done at finite temperature [56]. We notice,
however, that the free energy should flatten at the point
d = 6a at the middle of the lattice due to the period-
icity of the lattice. The flattening at this point is a
�-independent feature, which we use as a renormaliza-
tion requirement to calculate the renormalized free en-
ergy F ren

Q| (l) = FQ|(l,�) � F0(�) near the mirror. The
distance-independent subtraction term is described by
remarkably simple linear dependence: F0(�) = �15.5 +
2.9�.

Q Q̄� 

Figure 2. The renormalized free heavy-quark energy F ren
Q| (l)

at a distance l from the chromometallic mirror, plotted in
physical units, for various lattice coupling constants � at 123

lattice. The inset visualizes a quarkiton with the quark Q
and its negative image in the chromometallic mirror, the anti-
quark Q̄0, connected by a confining string (the “mirror” part
of the string is shown in blue).

The renormalized free energy of heavy quark near the
mirror, shown in Fig. 2, exhibits reasonable physical
scaling because the points with different lattice cutoffs
a = a(�) collapse to the same smooth curve. We ob-
serve that the flat mirror attracts the quark along the
normal direction, thus supporting the formation of the
quarkiton bound state. The flattening of the free en-
ergy at larger distances l is due to a finite volume effect

Quarkiton: quark colorless bound state with its negative image in a 
chromometallic mirror.

The renormalised free heavy-quark energy at a distance l from the chromometallic mirror, 
plotted in physical units, for various lattice coupling constants β at 123 lattice. The inset 
visualizes a quarkiton with the quark Q and its negative image in the chromometallic 
mirror. The anti-quark  (negative image), connected by a confining string (the “mirror” 
part of the string is shown in blue). 

Q̄′ 
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unrenormalized free energy of a heavy quark calculated
in the space between the plates:

LTF
Cas
Q (R) = � ln |P |V (R) ⌘ � ln

D���
X

x2V (R)

Px

���
E
, (11)

where the expectation value of the Polyakov loop |P |V

is taken only over the volume V = V (R) between the
mirrors separated by the distance R.

Figure 4. Mean free energy of heavy quark in between the
mirrors (11) as function of the inter-mirror separation R/a
(in lattice units) on the lattice 324. The red line is the best
fit by the Cornell potential (12) with the fit parameters c1 =
2.03(4), c2 = 0.044(1), and c0 = 5.55(2). The inset shows the
expectation value of the corresponding Polyakov loop (11).

In the inset of Fig. 4, we show the Polyakov loop in
between the plates |P |V (R). This quantity takes a fi-
nite value at small inter-plate separations R and then
quickly diminishes with increasing distance between the
plates. Such behavior points to an effective deconfine-
ment regime between the closely-spaced plates, which we
interpret as a signal of the formation of (a superposi-
tion of) finite-energy quarkiton states between the test
quark and its antiquark image in the mirrors. As the
distance between the plates increases, the free energy of
long-stretched quarkiton states rises, and the Polyakov
loop vanishes, thus signaling the onset of the confining
regime.

The phenomenological interaction between quarks and
antiquarks is often described by a Cornell-type potential
that combines a linear string behavior at long distances
with a short-distance Coulomb interaction [62]. There-
fore, the mean free energy of a quarkiton, in which a
quark interacts with its antiquark image in the mirror,
should follow a similar behavior with the typical quarki-
ton size set by the inter-plate separation R. This phe-
nomenological expectation is indeed confirmed in Fig. 4,
showing that the free energy (11) is indeed excellently
described by the Cornell potential:

LTF
Cas
Q (R/a) = �

c1
R/a

+ c2
R

a
+ c0 , (12)

where ca (with a = 0, 1, 2) are the fitting parameters.
Equation (12) implies that at short inter-plate separa-
tions, a heavy quark in the space between the mirrors
possesses a finite free energy which we interpret as a de-
confinement of color. As the distance between the plates
R increases, the free energy increases, leading to the ex-
ponential vanishing of the Polyakov loop and the onset
of the color confinement.

Conclusions. Using first-principle numerical simu-
lations, we calculated the nonperturbative non-Abelian
Casimir energy generated by two closely spaced chro-
mometallic mirror plates in SU(3) Yang-Mills theory. We
also revealed the presence of a new gluonic excitation, the
glueton, which we interpret as a colorless bound state of
a gluon with its image in a chromometallic mirror.

The glueton is a non-topological excitation that shares
similarities with a surface exciton in a superconductor.
Unexpectedly, the glueton mass (8) turns out to be lower
than the mass of the groundstate 0++ glueball. This
property of the glueton (“the edge mode is lighter than
the mass gap in the bulk”) is shared by its topologi-
cal analogs in the condensed matter such edge modes in
topological insulators [20] or the Volkov-Pankratov states
at the interfaces of semiconductors [39].

The presence of boundaries also affects the dynamics
of quarks. We show that similarly to confined fractional
vortices in multi-component condensates [58–61], a single
isolated quark can exist in the hadronic phase of QCD
near (and confined to) a large perfect chromometallic
mirror, forming a colorless boundary state: the quarki-
ton. The glueton and quarkiton states can be relevant
near domain walls in QCD and QCD-like theories.
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which should disappear at larger volumes. At shorter
distances, F ren

Q| (l) shows qualitative signs of the expected
linear behavior. Since the system resides far from the
thermodynamic limit, all conclusions drawn from Fig. 2
should be considered qualitative statements.

Quarkiton and color confinement. The color
confinement property of the low-temperature (hadronic)
phase requires that the asymptotic physical states of
QCD must be colorless states of quarks and gluons. It
is always concluded that the quark confinement implies
that an isolated quark possesses infinite free energy and,
therefore, cannot exist in the hadronic phase [57].

Strikingly similar physical properties are shared by
fractional vortices in interacting multi-component Bose-
Einstein condensates in two spatial dimensions as domain
walls (strings in 2d) linearly confine the vortices in bound
states that resemble hadrons in QCD [58]. Consequently,
an isolated vortex, similarly to an isolated quark, cannot
exist in the bulk of the condensate as a long domain wall
attached to the vortex makes its energy infinite. How-
ever, single fractional vortices can still survive near the
edge of the system, forming a bound state with its bound-
ary (for fractionally charged vortices in superconductors
with multi-band condensates and the boundary bound
states, see Refs. [59–61]).

Quarkiton interactions. Our interpretation of the
quarkiton boundary states can also be qualitatively sup-
ported by investigating the interactions of two quarki-
tons near the mirror. Let us consider a quark Q and
an antiquark Q̄ located at the same distance d from the
boundary and at a distance l as shown in the inset of
Fig. 3. Neglecting the short-distance Coulomb interac-
tion via perturbative gluons, we consider the simplest
confining string model, which implies that the energy of
a mesonic, quark-antiquark QQ̄ state is E1 = �l. How-
ever, if Q and Q̄ form quarkiton states with, respectively,
their mirror images Q̄0 and Q0, then the total energy of
this system is E2 = 2Egl = 2�d (we neglect the interac-
tion of the string with the mirror as well as perturbative
gluonic exchanges). Therefore, energy arguments sug-
gest that at short QQ̄ separation, l < 2d, the common
mesonic QQ̄ state gets formed. As the separation in-
creases at l > 2d, the string rearranges, and the meson
decays into two quarkiton states, QQ̄ ! QQ̄0 + Q̄Q0.

The string rearrangement can be seen in Fig. 3, al-
though our relatively small (L = 12) lattice does not
allow us to observe it in detail. At large separation,
d from the mirror, d = 5a, the correlator of Polyakov
loops, Cd(l) = hP (x)P ⇤(x+ l)id as the function of their
mutual distance l, coincides with the same correlator in
the absence of the mirrors. Thus, no quarkiton states
are formed (a quark attracts to antiquark). As the dis-
tance to the mirror diminishes, the correlator increases in
magnitude. At a small distance to the mirror d, the cor-
relator reaches the plateaus in l, implying that the free

energy of quarks does not depend on their separation
l. This physical picture is perfectly consistent with the
formation of the quarkiton: the quark and the antiquark
attract to their images in the mirror. Moreover, again ex-
pectedly, the plateau at d = 1a is higher than at d = 2a,
in agreement with the fact that the string between the
(anti)quark and its image in the mirror is shorter for the
quark which is located closer to the mirror. At short
distances, the perturbative Coulomb interaction prevails
over the string effects [62], but this fact does not change
our conclusions given the monotonic nature of the attrac-
tive QQ̄ potential.

d dl
Q Q̄

chromometallic mirror

Figure 3. Correlator of the Polyakov loops Cd(l) for a quark
and an antiquark located at the fixed distance d from the
chromometallic mirror and separated by the distance l from
each other on the lattice 124 at � = 5.6924 (a

p
� ' 0.4 [31]).

The correlator at d = 1a is scaled by the factor 1/4. The
correlator in the absence of the plates is also shown.

The boundary (glueton and quarkiton) states can also
interact with the bulk (glueball and meson) states. Also,
two quarkiton states, confined to the boundary, can com-
bine by producing a colorless meson state which can then
propagate into the bulk of the system.

A heavy quark between non-Abelian mirrors.
Finally, we address the nature of the vacuum between
two chromometallic mirrors. In Ref. [16], the same ques-
tion has been raised in two spatial dimensions for the
vacuum of SU(2) gauge theory in between two paral-
lel wires (plates in Euclidean spacetime). It was con-
cluded that in the confining low-temperature phase, the
approaching plates generate a deconfinement phase in the
space between them. The deconfinement mechanism in
this non-Abelian theory has been related to an identi-
cal effect in the 2+1 dimensional compact Abelian gauge
model [34] where the Casimir-induced deconfinement can
be explained analytically [63].

We see no pronounced signatures of a phase transition
in the space between the plates in the behavior of the non-
Abelian Casimir energy (6) shown in Fig. 1. To quantify
the effect of the chromometallic mirrors on (de)confining
properties of the vacuum, we study another quantity, the

Quark - antiquark pair in the presence of chromometallic mirror

The correlator of the Polyakov loops for a quark and an antiquark located 
at the fixed distance d from the chromometallic mirror and separated by 
the distance l



• Does the quantum vacuum contribute to the cosmological constant?  It is an 
open question, still.


• Quantum vacuum non-perturbative interaction with boundaries. It plays a 
significant role in the Casimir effect, especially in the case of non-Abelian 
fields: New vacuum quasiparticle states at the boundaries. 

• Role of the quantum vacuum’s condensates, topology and symmetry. 
Condensates and non-trivial symmetry properties can change signs of the 
Casimir energy density.


• Phase transitions. Casimir plate can lead to phase transitions: different 
phases inside and outside of the plates.


• Finite volume effects. The effects are extremely important. They can lead to 
phase transitions, and vacuum structure changes inside the Casimir plates.  

• Casimir effect: Is it a quantum vacuum effect or just classical forces in a finite 
volume?   

Summary


