

Laboratoire de Physique des Solides - UMR 8502, Université Paris Saclay, Bât. 510, 91405 Orsay cedex

How far can one boost Lorentz... in Dirac matter Mark Oliver Goerbig

Sergueï Tchoumakov, Xin Lu (PhD), Dibya Kanti Mukherjee (postdoc)

<u>Prehistory:</u> Frédéric Piéchon, Gilles Montambaux, Jean-Noël Fuchs

Collaborators (exp): Jan Wyzula, Milan Orlita, and... (LNCMI-Grenoble) Andreas Inhofer, Bernard Plaçais, and... (LPENS) Gautier Krizman, Joaquín Bermejo-Ortiz, Yves Guldner, ...

Le Studium Workshop, Tours, 05/07/2023

Emergence of relativistic (Dirac) electrons in graphene (2D graphite)

Chuan Li, physique mésoscopique, LPS, Orsay

 $-iq_y)$

Dirac Hamiltonian (massless fermions):

$$H_{\xi}(\mathbf{q}) = \begin{pmatrix} \mathbf{0} & \hbar v_F(\xi q_x) \\ \hbar v_F(\xi q_x + i q_y) & \mathbf{0} \end{pmatrix}$$

Emergence of relativistic (Dirac) electrons in graphene (2D graphite)

Dirac (relativistic) matter :

Electrons (in the vicinity of the Fermi level) are described in terms of a

3t

Energy

-31

Dirac equation or *variants* of it instead of a *Schrödinger equation*.

speed of light \rightarrow Fermi velocity

$$c \to v_F$$

Dirac Hamiltonian (massive fermions):

$$H_{\xi}(\mathbf{q}) = \begin{pmatrix} \Delta & \hbar v_F(\xi q_x - iq_y) \\ \hbar v_F(\xi q_x + iq_y) & -\Delta \end{pmatrix}$$

Emergence of relativistic (Dirac) electrons in graphene (2D graphite)

 \rightarrow relativistic quantum mechanics beyond the spectrum ?

→ what about Lorentz covariance ?

Outline of the talk

- (Pseudo-)relativity in condensed matter: the example of electrons in crossed magnetic and electric fields
- Tilted Dirac cones and relation with pseudorelativity and Lorentz boosts
- Unveiling Lorentz boosts in magneto-optical spectroscopy
- Pseudo-relativity in surface states of topological matter

Outline of the talk

- (Pseudo-)relativity in condensed matter: the example of electrons in crossed magnetic and electric fields
- Tilted Dirac cones and relation with pseudorelativity and Lorentz boosts
- Unveiling Lorentz boosts in magneto-optical spectroscopy
- Pseudo-relativity in surface states of topological matter

2D electrons in crossed magnetic and electric fields

Lukose et al., PRL (2007)

Hamiltonian for 2D electrons in crossed fields $\mathbf{B} = B\mathbf{u}_z = \nabla \times \mathbf{A}(\mathbf{r})$ and $\mathbf{E} = E\mathbf{u}_y$

 $H_0(\hbar \mathbf{q}) \to H_0(\mathbf{p} + e\mathbf{A}(\mathbf{r})) - eEy$

2D electrons in crossed magnetic and electric fields

Lukose et al., PRL (2007)

Hamiltonian for 2D electrons in crossed fields $\mathbf{B} = B\mathbf{u}_z = \nabla \times \mathbf{A}(\mathbf{r})$ and $\mathbf{E} = E\mathbf{u}_y$

 $H_0(\hbar \mathbf{q}) \to H_0(\mathbf{p} + e\mathbf{A}(\mathbf{r})) - eEy$

→ Non-relativistic (Schrödinger) fermions: Galilei transformation to comoving frame of reference with velocity $v_D = E/B$

→ Landau levels:

$$\epsilon_{n,k_x} = \hbar \frac{eB}{m} \left(n + \frac{1}{2} \right) - \hbar v_D k_x$$

2D electrons in crossed magnetic and electric fields

Lukose et al., PRL (2007)

Hamiltonian for 2D electrons in crossed fields $\mathbf{B} = B\mathbf{u}_z = \nabla \times \mathbf{A}(\mathbf{r})$ and $\mathbf{E} = E\mathbf{u}_y$

 $H_0(\hbar \mathbf{q}) \to H_0(\mathbf{p} + e\mathbf{A}(\mathbf{r})) - eEy$

2D electrons in crossed magnetic and electric fields

Cyclotron resonance (theory and exp) in narrow-gap semiconductors (InSb)

Lukose et al., PRL (2007) ► <u>Zawadzki et al., PRL (1985)</u> + even some papers before

Outline of the talk

- (Pseudo-)relativity in condensed matter: the example of electrons in crossed magnetic and electric fields *(just overture)*
- Tilted Dirac cones and relation with pseudorelativity and Lorentz boosts
- Unveiling Lorentz boosts in magneto-optical spectroscopy
- Pseudo-relativity in surface states of topological matter

Beyond graphene: tilted Dirac cones in α -(BEDT-TTF)₂I₃

- \rightarrow hopping parameters $t_i \sim 20...140 \text{ meV}$
- → *Tilted* Dirac semimetal under pressure

Katayama et al., JPSJ (2006)

α -(BEDT-TTF)₂I₃ bands under pressure

Katayama et al., JPSJ (2006)

Pseudo-covariance in tilted Dirac and Weyl cones

Generalised Dirac/Weyl Hamiltonian:

$$H_{\xi} = \xi \hbar v \left(q_x \sigma_x + \xi q_y \sigma_y + q_z \sigma_z \right) + \xi \hbar \mathbf{w}_0 \cdot \mathbf{q} \sigma_0$$

 \mathbf{W}_0 : tilt velocity σ_0 : 2x2 one matrix

Energy dispersion:

 $\epsilon_{\xi}(\mathbf{q}) = \xi \hbar \mathbf{w}_0 \cdot \mathbf{q} \pm \hbar v |\mathbf{q}|$

Criterion for maximal tilt or how not to spill your glass of Martini

 $w_{0x}^2 + w_{0y}^2 + w_{0z}^2 < v^2$

 $w_{0x}^2 + w_{0y}^2 + w_{0z}^2 > v^2$

type-I Dirac/Weyl semimetal

type-II Dirac/Weyl semimetal

Pseudo-covariance in tilted Dirac and Weyl cones

M.O.G. et al., EPL (2009)

Generalised Dirac/Weyl Hamiltonian (2D):

 $H_{\xi} = \xi \hbar v \left(q_x \sigma_x + \xi q_y \sigma_y + \tilde{w}_0 q_x \sigma_0 \right)$

Pseudo-covariance in tilted Dirac and Weyl cones in a magnetic field M.O.G. et al., EPL (2009)

Generalised Dirac/Weyl Hamiltonian (2D):

$$H_{\xi} = \xi \hbar v \left(q_x \sigma_x + \xi q_y \sigma_y + \tilde{w}_0 q_x \sigma_0 \right)$$

in a magnetic field: $A_x = -By$ $A_y = 0$

 $H_{\xi} = \xi \hbar v \left((q_x - eBy/\hbar)\sigma_x + \xi q_y \sigma_y + \tilde{w}_0 (q_x - eBy/\hbar)\sigma_0 \right)$

Pseudo-covariance in tilted Dirac and Weyl cones in a magnetic field M.O.G. et al., EPL (2009)

Generalised Dirac/Weyl Hamiltonian (2D):

$$H_{\xi} = \xi \hbar v \left(q_x \sigma_x + \xi q_y \sigma_y + \tilde{w}_0 q_x \sigma_0 \right)$$

in a magnetic field: $A_x = -By$ $A_y = 0$

 $H_{\xi} = \xi \hbar v \left((q_x - eBy/\hbar)\sigma_x + \xi q_y \sigma_y + \tilde{w}_0 (q_x - eBy/\hbar)\sigma_0 \right)$

covariant part

$$\begin{aligned} H_{\xi}^{cov} &= \xi \hbar v \left((q_x - eBy/\hbar) \sigma_x + \xi q_y \sigma_y \right) - eE_{\text{eff}} y \sigma_0 \\ E_{\text{eff}} &= w_0 B \quad \to \qquad w_0 = \tilde{w}_0 v = v_D \quad : \text{ tilt = drift velocity } \end{aligned}$$

Pseudo-covariance in tilted Dirac and Weyl cones: Landau levels

 $H_{\xi} = \xi \hbar v \left((q_x - eBy/\hbar)\sigma_x + \xi q_y \sigma_y + \tilde{w}_0 (q_x - eBy/\hbar)\sigma_0 \right)$

Diagonalisation yields Landau-level spectrum: M.O.G. et al., Phys. Rev. B (2008)

$$\epsilon_{\pm n,q_x} = \pm \hbar \frac{v^*}{l_B} \sqrt{2n}$$

with renormalised velocity:

$$v^* = v[1 - (w_0/v)^2]^{3/4}$$

see also: Morinari et al., JPSJ (2009)

maximally

Outline of the talk

- (Pseudo-)relativity in condensed matter: the example of electrons in crossed magnetic and electric fields
- Tilted Dirac cones and relation with pseudorelativity and Lorentz boosts
- Unveiling Lorentz boosts in magneto-optical spectroscopy
- Pseudo-relativity in surface states of topological matter

Implications for LL spectroscopy

Motivation: **color shift** in relativity (optical Doppler effect)

Implications for LL spectroscopy

Motivation: **color shift** in relativity (*optical Doppler effect*)

- → Peierls substitution: $\mathbf{q} \rightarrow \mathbf{q} + \frac{e}{\hbar} [\mathbf{A}(\mathbf{r}) + \mathbf{A}_{rad}(t)]$ magnetic field radiation field
- \rightarrow expansion of Hamiltonian to linear order in radiation field:

$$H(\mathbf{q}) \to H_B + e\mathbf{v} \cdot \mathbf{A}_{\mathrm{rad}}(t)$$

with velocity operator $\mathbf{v}=
abla_{\mathbf{q}}H(\mathbf{q})/\hbar$

 \rightarrow (magneto-)optical selection rules (matrix elements):

$$\psi^{\dagger}_{\lambda n} \mathbf{v} \psi_{\lambda' m}$$

Light-matter coupling for straight cones (comoving frame)

(magneto-)optical selection rules (matrix elements):

 $\psi^{\dagger}_{\lambda n} \mathbf{v} \psi_{\lambda' m}$

 \rightarrow graphene (no tilt, no electric field): $m = (n \pm 1)$

dipolar selection rules (in comoving frame):

 $\lambda n \to \lambda'(n+1)$ for right – handed light \circlearrowright

 $\lambda n \to \lambda'(n-1)$ for left – handed light (

Light-matter coupling for tilted Dirac cones

ightarrow Lorentz boost in x direction, with $w_0=E_{
m eff}/B$ $ilde w_0=w_0/v$

$$x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu} \qquad x' = (w_0 t + \tilde{w}_0 x) / \sqrt{1 - \tilde{w}_0^2}$$

(Lorentz transformation of a 4-vector)

 \rightarrow transformation of wave function, with $\tanh \theta = \tilde{w}_0$:

 $\psi'(vt', x', y' = y) = S(\Lambda)\psi(vt, x, y)$ with $S(\Lambda) = e^{\theta\sigma_x/2}$

 \rightarrow selection rules known in co-moving frame

$$\psi_{\lambda n}^{\prime\dagger}\mathbf{v}\psi_{\lambda^{\prime}(n\pm1)}^{\prime}$$

WANTED: selection rules in lab frame !

Light-matter coupling for tilted Dirac CONES Sári, M.O.G. and Töke, PRB (2015)

• selection rules in comoving frame v_D (field E = 0)

 $\lambda n \rightarrow \lambda' (n \pm 1)$

 \Rightarrow new transitions in lab frame ($E \neq 0$)

 $\beta = \tilde{w}_0 = w_0/v$

10

8

Light-matter coupling for tilted Dirac CONES Sári, M.O.G. and Töke, PRB (2015)

• selection rules in comoving frame v_D (field E = 0)

 $\lambda n \to \lambda'(n \pm 1)$

 \Rightarrow new transitions in lab frame ($E \neq 0$)

Generalization to 3D Weyl semimetals : Tchoumakov, Civelli, MOG, PRL (2017)

Wyzula, Lu, et al., Adv. Sci. (2022)

 \rightarrow nodal-line semimetal with a (small) SO gap

<u>Faraday geometry</u> : B-field perpendicular to facets ~ **probing band structure in different planes in k-space**

Wyzula, Lu, et al., Adv. Sci. (2022)

 \rightarrow nodal-line semimetal with a (small) SO gap

<u>Faraday geometry</u> : B-field perpendicular to facets ~ probing band structure in different planes in k-space

Wyzula, Lu, et al., Adv. Sci. (2022)

Interband LL transitions : for $\,B
ightarrow 0\,$ extraction of $\,2\Delta^*$

Theory-experiment relation

Theory

Experiment

(c) (a) (e) 0.8 1.00.0 0.0 0.5 0.2 0.2 0.5 0.8 1.0 125.0 95.0 (20 - 1)(40 - 1) $\theta_{\rm D} = 61$ 120.0 Band (10 - 1)90.0 (100)(20-1)(20-3)(100) /alence 2ΔF^{eff} (meV) 2Δ^{eff} (meV) (201)115.0 85.0 (403)001)Z-I1 80.0 (101110.0 (4 0 -1) 607 (10 - 1)5 75.0 Conduction Band Conduction Band 105.0 $2\Delta_{\rm F}^{\rm eff} = 113 \, {\rm meV}$ (f) 70.0 0.991.00 1.02 0.961.02 2Δ 2∆∟ 200 100.0 E 20 40 60 80 0 0 20 40 60 80 20 $\theta_{\rm D}(\rm deg)$ $\theta_{\rm F}(\rm deg)$ (d) 180 6.0 Kline (20-1) k^Dline 6.5 160 **k**Fine (10-1) 5.5 (20 - 1)(40 - 1)(20 - 3)6.0 (40 - 1)Energy (meV) 5.0 0 0) 140 (10 - 1) $v_{\rm D}^{\rm eff}(10^5\,{\rm m\cdot s}^{-1})$ v_F^{eff}(10⁵m·s⁻¹) 5.5 $\frac{w^2}{v^2} \tan^2 \theta$ 4.5 0 0) (403)5.0 (10)120 4.0 2Δ, 4.5 1(00) 100 3.5 relativistic 4.0 $v_D \sqrt{\cos(\Theta)}$ renormalization 3.0 3.5 $= v_{F} \sqrt{\cos(\theta)}$ 80 (3/2) 2.5 Lorentz boosts 3.0 60 60 40 80 0 20 80 0 20 40 60 $\theta_{\rm D}(\rm deg)$ 15 $\theta_{\rm F}(\rm deg)$ 0 5 10 15 0 5 10

:)

Energy

Wyzula, Lu, et al., Adv. Sci. (2022)

Outline of the talk

- (Pseudo-)relativity in condensed matter: the example of electrons in crossed magnetic and electric fields
- Tilted Dirac cones and relation with pseudorelativity and Lorentz boosts
- Unveiling Lorentz boosts in magneto-optical spectroscopy
- Pseudo-relativity in surface states of topological matter

Bulk-edge correspondence in topological materials – in a nutshell

(topological chocolate bar) OPINEL

Bulk-edge correspondence in topological materials – in a nutshell

(topological chocolate bar)

Berry curvature for insulating graphene

("topological invariant" = sum of contributions from both Dirac points)

Haldane model (broken timereversal symmetry, 1988)

Broken TR symmetry : $E(\mathbf{k}) \neq E(-\mathbf{k})$

modify Dirac points independently from one another

Haldane model (broken timereversal symmetry, 1988)

Broken TR symmetry : $E(\mathbf{k}) \neq E(-\mathbf{k})$

→ topological phase transition

Haldane model (broken timereversal symmetry, 1988)

Change in total Chern number: $\Delta C = \Delta C_K = \pm 1$ The gap is closed only in one (active) valley, while the other one is a pure spectator of the (topological) transition.

Topological phase transition

valley $-\xi$: \rightarrow **gap must** pure spectator

О

 \rightarrow gap must close at the topological phase transition

 \rightarrow in the vicinity of a topological phase transition: emergence of a (massless) Dirac fermion (sign change in mass)

How can we use this to describe an interface ?

Simplified 2D model of a smooth interface (*topological heterojunction*)

$$H = \begin{pmatrix} \Delta \frac{x}{\ell} & \hbar v (q_x - iq_y) \\ \hbar v (q_x + iq_y) & -\Delta \frac{x}{\ell} \end{pmatrix}$$

Sign change in an interface of size ℓ

Simplified 2D model of a smooth interface (*topological heterojunction*)

Change of "quantization axis" (unitary trafo)

$$\begin{aligned} \sigma_z &\to -\sigma_y, & \sigma_y \to \sigma_z \\ H &= \hbar \begin{pmatrix} vq_y & v(q_x + i\frac{x}{\ell_S^2}) \\ v(q_x - i\frac{x}{\ell_S^2}) & -vq_y \end{pmatrix} \end{aligned}$$

With characteristic (~"magnetic") length: $\ell_S = \sqrt{\ell \hbar v / \Delta} = \sqrt{\ell \xi}$ (intrinsic length: $\xi = \hbar v / \Delta$)

solution via ladder operators of harmonic oscillator:

$$\hat{a} = \frac{\ell_S}{\sqrt{2}}(q_x + ix/\ell_S^2) \qquad \hat{a}^{\dagger} = \frac{\ell_S}{\sqrt{2}}(q_x - ix/\ell_S^2) \qquad [\hat{a}, \hat{a}^{\dagger}] = 1$$
Tchoumakov et al., PRB (2017)

Surface (edge) states

Surface states in 3D materials

≻e.g. PbTe/SnTe and HgTe/CdTe interfaces : gap switches sign

S. Tchoumakov et al., PRB 96, 201302 (2017) Volkov and Pankratov, JETP Lett. 42, 4 (1985)

Special relativity in surface states

S. Tchoumakov, V. Jouffrey et al., PRB 96, 201302 (2017)

Experimental evidence (transport) Electrical resistance and capacitance of HgTe bulk Δ_1 Qualitative agreement [10¹² cm⁻²] V_{g} STAT S[fF/µm²] Electrode (Au) [mS] \mathcal{E}_{T}^{ins} $+Q_c$ c $\underline{-Q_c}$ Insulator (oxide) d**«NORMAL** V_s 20 DP MSS1 MSS2 SS- $Q_s + Q_z$ surface E 5 -2 0 2 4 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 n_{TSS} -n₀ [10¹² cm⁻²] E^{ins} [10⁸ V/m] 60 topological DP AMSS insulator 50 TAT [10¹² cm⁻²] 40 [fF/µm²] **NORMAL**» د [ms] ع 20 $V_m = 0$ $-Q_s - Q_z$ Electrode (Au) S 20 10 -10-15 -10 -5 0 5 10 15 -6 -2 0 n_{TSS} -n₀ [10¹² cm⁻²] E^{ins} [10⁸ V/m]

A. Inhofer et al., PRB 96, 195104 (2017)

Magneto-optical signatures of surface states in 3D (B field in Surface) x. Lu, MOG, EPL 126, 67004 (2019)

Magneto-optical signatures of surface states in 3D (magnetic field perpendicular to surface)

Summary

- Relativistic renormalization of LL spectrum due to Lorentz boosts (in crossed magnetic and electric fields)
- Tilt in materials with tilted Dirac cones analogous to an effective electric field if material submitted to a magnetic field
 - in 2D Dirac materials (organics)
 - in type-I and type-II Weyl semimetals

Goerbig et al., EPL (2009) Sári et al., PRB (2015) Tchoumakov et al., PRL (2017)

 – Experimental evidence for relativistic renormalization in (gapped) nodal-line semimetals → tilt depends on orientation of B-field

Wyzula et al., Adv. Sci. (2022)

- Bulk-edge/surface correspondence in topological matter
 - → Volkov-Pankratov states in smooth interfaces
 (a) in transport
 Tchoumakov et al., PRB 96, 201302 (2017)
 - Exp: Inhofer et al., PRB 96, 195104 (2017)
 - (b) in MO spectroscopy *Lu*, *MOG*, *EPL* **126**, 67004 (2019)

Exp: Bermejo-Ortiz et al., PRB 107, 075129 (2023)