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1. Abelian Higgs Vortices

I A vortex is a two-dimensional static soliton on a flat or
curved surface.The fields are a complex Higgs field φ and
an electromagnetic potential a.

I The background is a Riemann surface M, with metric

ds2
0 = Ω0(z, z̄) dzdz̄ .

z = x1 + ix2 is a (local) complex coordinate, and Ω0 the
conformal factor.

I We consider N > 0 vortices. φ and a are a section and
connection of a U(1) bundle over M, with first Chern
number N.



Self-dual vortices

I The vortex equations are

Dz̄φ ≡ 1
2

(D1φ+ iD2φ) = 0 ,

1
Ω0

f12 = 1− φφ .

I 1
Ω0

f12 is the physical magnetic field strength on the curved
surface.

I A zero of φ is a vortex centre.



I We solve Dz̄φ ≡ ∂z̄φ− iaz̄φ = 0, finding

az̄ = −i∂z̄(logφ) , az = i∂z(logφ) .

I Then

f12 = −2i fzz̄ = −2∂z∂z̄ logφφ = −1
2
∇2 logφφ .

and the second equation reduces to

− 1
2Ω0
∇2 logφφ = 1− φφ .

Setting |φ|2 = φφ = e2u, we find

− 1
Ω0
∇2u = 1− e2u ,

the Taubes vortex equation.
I u has logarithmic singularities at the zeros of φ, so there

are additional delta functions here.



2. Exotic Vortices

I A more general vortex equation is

− 1
Ω0
∇2u = −C0 + Ce2u .

The constants C0 and C can be scaled to −1,0 or +1.
I For N > 0, the RHS needs to be positive for some u.
I The five surviving vortex types are

(i) Taubes vortices (C0 = −1, C = −1);
(ii) “Bradlow” vortices (C0 = −1, C = 0);
(iii) Ambjørn–Olesen vortices (C0 = −1,C = 1);
(iv) Jackiw–Pi vortices (C0 = 0, C = 1);
(v) Popov vortices (C0 = 1, C = 1).

I Vortex centres are where e2u vanishes. For C = −1 the
magnetic field is maximal there (Meissner effect); for C = 1
it is minimal (antiMeissner effect).



Integrable vortices

I The vortex equations are integrable on backgrounds with
Gaussian curvature K0 = C0. Locally,

Ω0 =
4

(1 + C0|z|2)2 .

Integrable backgrounds include
(i) hyperbolic plane for Taubes vortices (Witten),
(ii) flat plane or torus for Jackiw–Pi vortices (Horvathy and
Zhang),
(iii) sphere for Popov vortices (NSM).



I In integrable cases, the vortex equation reduces to
Liouville’s equation, and solutions are constructed using a
holomorphic function f (z).

I The solution is

|φ|2 = e2u =
(1 + C0|z|2)2

(1 + C|f (z)|2)2

∣∣∣∣ df
dz

∣∣∣∣2 .
and one may fix the gauge by choosing

φ =
1 + C0|z|2

1 + C|f (z)|2
df
dz

.

I Globally, f is a map from M, with curvature C0, to a surface
with curvature C. |φ|2 is the ratio of metrics.



I Vortex centres are at ramification points of f , where df
dz = 0.

I For Popov vortices on a sphere, f is a rational function of
degree n. df

dz then has N = 2n − 2 zeros, so N is even.



3. Vortices as Conical Geometry

I Consider the original metric ds2
0 = Ω0 dzdz̄ and the

conformally rescaled Baptista metric

ds2 = Ω dzdz̄ = e2u Ω0 dzdz̄ .

The Baptista metric defines an intrinsic geometry of the
vortex.

I ds2
0 and ds2 are different Riemannian geometries on M.

The complex structure and topology are unchanged. But
ds2 has conical singularities. A basic vortex has cone
angle 4π (conical excess = 2π), because locally

ds2 = r2 (dr2 + r2dθ2) = dρ2 + ρ2dχ2

with ρ = 1
2 r2 and χ = 2θ.



Baptista curvature relation

I The Gaussian curvatures of ds2
0 and ds2 are

K0 = − 1
2Ω0
∇2 log Ω0 ,

and

K = − 1
2Ω
∇2 log Ω = − 1

2e2uΩ0
∇2(2u + log Ω0) .

Therefore (Kazdan and Warner, Troyanov)

− 1
Ω0
∇2u = −K0 + Ke2u .

a purely geometric identity.



I In addition there is the vortex equation, so

−C0 + Ce2u = − 1
Ω0
∇2u = −K0 + Ke2u .

I Baptista wrote this as a kind of curvature conservation law
between the metrics with and without vortices,

(K − C)Ω = (K0 − C0)Ω0 .

(Not algebraic because of formulae for curvatures.)
I K0 = C0 is the integrable case. Then K = C, and the

background and Baptista metrics both have constant
curvature. The Baptista metric is a 2-d Einstein metric with
cosmological constant. The singularities of cone angle 4π
imply that there are particles with negative mass present.



Gauss–Bonnet and vortex number

I The Gauss–Bonnet formula taking account of conical
singularities constrains the vortex number N.

I Integrating Baptista’s conservation law gives

CA = C0A0 + 2πN

and the requirement A > 0 places bounds on N (Bradlow).
I E.g. for Taubes vortices, 2πN < A0. More vortices can be

squeezed on to M, but not satisfying the Taubes equation.
I For Ambjørn–Olesen vortices, 2πN > A0.



4. Vortices on the Bolza Surface

I Taubes vortices are integrable on surfaces with K0 = −1.
The Baptista metric also has curvature K = −1, with
conical singularities.

I If M has genus g, then A0 = 2π(2g− 2), so N < 2g− 2.
I R. Maldonado and NSM constructed an explicit N = 1

Taubes vortex on the highly symmetric g = 2 Bolza surface.
I The Bolza surface is metrically a regular hyperbolic

octagon, with opposite sides identified. The vertex angle is
π
4 , so the glued, compact surface is smooth.



Bolza surface double covers the Riemann sphere



{8,8} tessellation of H2 by Bolza octagons



I For the N = 1 Taubes vortex at a vertex or centre of the
Bolza octagon, |φ|2 = e2u depends on Schwarz triangle
functions (hypergeometric functions).

I The Baptista geometry has half the area of the Bolza
surface, and one cone angle 4π.

I There is a (coincident) N = 2 Bradlow vortex on the Bolza
surface. The Baptista metric is now flat, with one cone
angle 6π.

I There is an N = 6 Ambjørn-Olesen vortex on the Bolza
surface. The vortices are at the branch points of the double
covering of the sphere, and the Baptista metric is the
double sphere metric.



Contours of |φ|2 = e2u for Bolza vortex at vertex.



Contours of |φ|2 = e2u for Bolza vortex at centre.



Bolza octagon (outer) superimposed on the Poincaré disc;
Baptista octagon (middle) of an N = 1 Taubes vortex; flat
Baptista octagon (inner) of an N = 2 Bradlow vortex. In all

cases, opposite edges are identified.



5. Energy and Dynamics

I The static energy function for all the vortex types we have
considered is

E =

∫
M

{
1

Ω2
0

f 2
12 −

2C
Ω0

(
D1φD1φ+ D2φD2φ

)
+
(
−C0 + C|φ|2

)2

}
.

E is positive definite for C ≤ 0, but not otherwise. Not all
vortex types are stable.

I The Bogomolny argument (completing the squares in E)
shows that vortices are stationary points of E , but not
necessarily minima.



I The static energy extends to a Lagrangian for fields on
R×M (metric dt2 − Ω0 dzdz̄)

L =

∫
M

{
−1

2
fµν fµν − 2CDµφDµφ−

(
−C0 + C|φ|2

)2
}
.

I The kinetic energy is exotic if C ≥ 0, as the time derivative
of φ contributes with a minus sign. But the electric field
contribution always has standard form.

I This Lagrangian is a dimensional reduction of pure
Yang–Mills theory in 4 + 1 dimensions (F. Contatto and M.
Dunajski). The gauge group may be non-compact (e.g.
SU(1,1) or E2) and this leads to minus signs.



I I have started (with E. Walton) to study the moduli space
dynamics of these five vortex types. The kinetic energy of
moving vortices simplifies to localised contributions from
the vortex centres (Strachan/Samols localisation).

I For exotic vortices the kinetic energy may be zero or
negative. Geodesic motion could be along null curves.

I E.g. A Popov vortex at z = 0 is described by the rational
function f (z; t) = c(t)z2. The fields vary as c varies, but
the kinetic energy is zero. This follows from the localisation
formula, and can be checked by direct integration.



6. Summary

I There are five variants of Abelian Higgs vortices. They are
nicely understood using the Baptista metric
Ω dzdz̄ = e2u Ω0 dzdz̄, where a vortex becomes a conical
singularity with cone angle 4π.

I On constant curvature backgrounds, vortex equations
reduce to Liouville’s equation, and solutions are found
using holomorphic maps f (z).

I The metric on the vortex moduli space simplifies using
Strachan/Samols localisation. Question: For integrable
vortices, is this metric a Weil–Petersson metric for moving
conical singularities on a surface?

I It would also be interesting to study exotic vortex motion
numerically.
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