

15 - 17 June 2021 Challenges and opportunities in materials for green energy production and conversion

LOCATION

VIRTUAL MEETING

CONVENORS

Dr Edurne Serrano-Larrea

FORMER LE STUDIUM RESEARCH FELLOW / ARD 2020 - LAVOISIER PROGRAMME

Mineralogy and Petrology Department, UPV/ EHU - ES

Dr Conchi Ania & Dr Encarnacion Raymundo-Piñero

Extreme Conditions and Materials: High Temperature and Irradiation (CEMHTI) / CNRS - FR

LE STUDIUM Loire Valley Institute for Advanced Studies

CONVENORS

Dr Edurne Serrano-Larrea

FORMER LE STUDIUM RESEARCH FELLOW / LAVOISIER ARD 2020 PROGRAMME FROM: Mineralogy and Petrology Department, UPV/EHU - ES

Dr Conchi Ania Extreme Conditions and Materials: High Temperature and Irradiation (CEMHTI) / CNRS - FR

Dr Encarnacion Raymundo-Piñero Extreme Conditions and Materials: High Temperature and Irradiation (CEMHTI) / CNRS - FR

ORGANIZING COMMITTEE

Sophie Gabillet, General Secretary

Dr Aurélien Montagu, Scientific Relations Manager

Maurine Villiers, Communication & Events Manager

LE STUDIUM Loire Valley Institute for Advanced Studies • Région Centre-Val de Loire • FR

ABSTRACTS

Challenges and opportunities in materials for green energy production and conversion

Created in 1996 on the CNRS campus in Orleans La Source, LE STUDIUM has evolved to become the multidisciplinary Loire Valley Institute for Advanced Studies (IAS), operating in the Centre-Val de Loire region of France. LE STUDIUM has its headquarters in the city centre of Orleans in a newly renovated 17th century building. The amazing facilities are shared with the University of Orleans. In 2014 new developments and programmes linked to the smart specialisation of the Centre-Val de Loire region came to strengthen existing IAS collaborative relationships with the local and the international community of researchers, developers and innovators.

LE STUDIUM IAS offers to internationally competitive senior research scientists the opportunity to discover and work in one of the IAS's affiliate laboratories from the University of Tours, the University of Orleans, National Institute of Applied Sciences (INSA) Centre Val de Loire and ESAD Orléans, as well as of nationally accredited research institutions located in the region Centre-Val de Loire (BRGM, CEA, CNRS, INSERM, INRAE). Our goal is to develop and nurture trans-disciplinary approaches as innovative tools for addressing some of the key scientific, socio-economic and cultural questions of the 21st century. We also encourage researchers' interactions with industry via the IAS's links with Poles of Competitiveness, Clusters, Technopoles, and Chambers of Commerce etc.

LE STUDIUM has attracted two hundred and thirty experienced researchers coming from 47 countries for long-term residencies. In addition to their contribution in their host laboratories, researchers participate in the scientific life of the IAS through attendance at monthly interdisciplinary meetings called LE STUDIUM THURSDAYS. Their presentations and debates enrich the regional scientific community at large (researchers of public and private laboratories, PhD students, research stakeholders' representatives, etc...)

For the period 2015-2021, LE STUDIUM operates with an additional award from the European Commission in the framework of the Marie Skłodowska-Curie Actions (MSCA)-COFUND programme for the mobility of researchers. Since 2013, LE STUDIUM is also an official partner of the Ambition Research and Development 2020 programmes initiated by the Centre-Val de Loire Regional Council to support the smart specialisation strategy (S3) around 5 main axes: biopharmaceuticals, renewable energies, cosmetics, environmental metrology and natural and cultural heritage. New programmes are currently designed to include all major societal challenges.Researchers are also invited and supported by the IAS to organise, during their residency and in collaboration with their host laboratory, a two-day LE STUDIUM CONFERENCE. It provides them with the opportunity to invite internationally renowned researchers to a cross-disciplinary conference, on a topical issue, to examine progress, discuss future studies and strategies to stimulate advances and practical applications in the chosen field. The invited participants are expected to attend for the duration of the conference and contribute to the intellectual exchange. Past experience has shown that these conditions facilitate the development or extension of existing collaborations and enable the creation of productive new research networks.

The present LE STUDIUM CONFERENCE named is "Challenges and opportunities in materials for green energy production and conversion" the 110th in a series started at the end of 2010 listed at the end of this booklet.

We thank you for your participation and wish you an interesting and intellectually stimulating conference. Also, we hope that scientific exchanges and interactions taking place during this conference will bring opportunities to start a productive professional relationship with presenting research laboratories and LE STUDIUM Loire Valley Institute for Advanced Studies.

Yves-Michel GINOT Chairman LE STUDIUM

INTRODUCTION

The production of green and renewable energy plays a key role in all future energy scenarios towards the zero-emission transition that has to be tackled in the next 30 years. The rapid inter-conversion of electricity into chemical energy offers an important avenue for the use of renewable energy to replace fossil fuels. The generation of electricity in fuel cells from the electrochemical reaction of H_2 and O_2 , coupled with the photoelectrochemical water splitting to produce oxygen and hydrogen gases and the valorization of CO₂ through its conversion into solar fuels are also strongly related with the concepts of circular economy. Hence, the study of materials able to efficiently harvest and transform solar energy is highly necessary. Moreover, due to the intermittent character of the solar energy, adequate energy storage and conversion strategies are also needed. This conference, organized by LE STUDIUM Loire Valley Institute for Advanced Studies, in collaboration with CEMHTI (UPR 3079 CNRS), Conditions Extrêmes et Matériaux: Haute Température et Irradiation, has the aim to gather international and national experts in the field of materials science whose works are contributing to electrochemical and photoelectrochemical approaches for clean energy production and conversion.

This international conference is organised in the framework of the LAVOISIER ARD 2020 Programme.

PROGRAMME

TUESDAY 15TH OF JUNE 2021 - 14:30 - 18:10 (GMT+2:00 - PARIS)

14:30 Welcome and introduction

14:40 Prof. Hermenegildo García - Getting closer to a large scale process. Photocatalysts for light-assisted CO₂ hydrogenation

15:20 Dr Jesus Iniesta - Electrochemical and structural characterization of mixed matrix membrane coated electrodes for CO₂ electroreduction

15:50 Geyla Dubed Bandomo - CO_2 conversion with {Mn(CO)₃Br} molecular sites into Covalent-Organic Frameworks

16:20 Beatriz Avila - CO₂ electroreduction to formate on Sn, Bi and Sb nanostructured electrodes: from fundamental studies to practical devices

16:50 Break

17:00 Dr Joaquim Faría - Carbon geometries as the base concept for developing efficient photocatalysts

17:40 Dr Carlos Sanchez - Electrolyte engineering for electrochemical CO_2 reduction

WEDNESDAY 16TH OF JUNE 2021 - 14:30 - 18:10 (GMT+2:00 - PARIS)

14:30 Prof. Christel Laberty-Robert - Impact of Electrodes Nanostructuration on Photoelectrochemical Performances

15:10 Dr José Solla - Recent advances and remaining challenges on the use of shape-controlled-metal nanoparticles in Electrocatalysis

15:50 Dr Alejandro Anson - Photoelectrochemical characterization of C/TiO_2 and C/ZnO nanomaterials in aqueous electrolyte

16:20 Dr Conchi Ania - Metal-free nanoporous carbons: possibilities in photo(electrochemical) energy conversion

16:50 Break

17:00 Prof. Giuseppe Marci - Photocatalytic reduction of CO_2 in gas-solid and in liquid-solid regimes

17:40 Prof. Ally Aukaloo - From molecular to nanostructured materials for artificial photosynthesis

THURSDAY 17TH OF JUNE 2021 - 14:30 - 18:40 (GMT+2:00 - PA-RIS)

14:30 Prof. Olivier Joubert - Brief Overview of Current French Hydrogen Research Activities, Focus on Materials

15:10 Dr Pascal Brault - Reactive molecular dynamics simulations of H_2 production and conversion

15:50 Prof. Sixto Malato - Solar photocatalytic hydrogen production at pilot scale

16:20 Prof. Athanasios G. Konstandopoulos - Material and Reactor Technologies for Solar Fuels

16:50 Break

17:00 Prof. Juan Matos - H_2 production on 1D and 2D Carbon-containing Fe-, Co, and Ni-based foamy catalysts.

17:40 Prof. Bruno Pollet - Ultrasound-Assisted Electrolytic Hydrogen Production unknowns

18:10 Round Table

8

TABLE OF CONTENTS

CONVENORS

Dr Edurne Serrano-Larrea	12
Dr Encarnacion Raymundo-Piñero	12
Dr Conchi Ania	13
Metal-free nanoporous carbons: possibilities in photo(electrochemical conversion) energy

SPEAKERS

Dr Alejandro Anson	14
Photoelectrochemical characterization of C/TiO ₂ and C/ZnO nanomaterials in	
aqueous electrolyte	

Prof. Ally Aukaloo
From molecular to nanostructured materials for artificial photosynthesis
Beatriz Avila
$\mathrm{CO}_{\rm 2}$ electroreduction to formate on Sn, Bi and Sb nanostructured electrodes: from fundamental studies to practical devices
Dr Pascal Brault17
Reactive molecular dynamics simulations of $\mathrm{H_2}$ production and conversion.
Geyla Dubed Bandomo
CO ₂ conversion with {Mn(CO) ₃ Br} molecular sites into Covalent-Organic Frameworks

Dr Joaquim Faría
Prof. Hermenegildo García
Dr Jesus Iniesta21 Electrochemical and structural characterization of mixed matrix membrane coated electrodes for CO ₂ electroreduction
Prof. Olivier Joubert
Brief Overview of Current French Hydrogen Research Activities, Focus on Mate- rials
Prof. Athanasios G. Konstandopoulos
Material and Reactor Technologies for Solar Fuels
Prof. Christel Laberty-Robert
impact of Electrodes Nanostractaration of Photoelectrochemical Performances
Prof. Sixto Malato
Solar photocatalytic hydrogen production at pilot scale
Prof. Giuseppe Marci
Photocatalytic reduction of CO_2 in gas-solid and in liquid-solid regimes
Prof. Juan Matos
H ² production on 1D and 2D Carbon-containing Fe-, Co, and Ni-based foamy catalysts.
Prof. Bruno G.Pollet
Ultrasound-Assisted Electrolytic Hydrogen Production

Dr Carlos Sanchez	29
Electrolyte engineering for electrochemical CO ₂ reduction	

Dr José Solla-Gullon
Recent advances and remaining challenges on the use of shape-controlled-metal
nanoparticles in Electrocatalysis

CONVENORS

Dr Edurne Serrano-Larrea Former LE STUDIUM RESEARCH FELLOW ARD 2020 - LAVOISIER Programme Mineralogy and Petrology Department, UPV/EHU - ES Barrio Sarriena, s/n, 48940 Leioa, Biscay - SP

Email: edurnesl@gmail.com

Edurne Serrano Larrea received her PhD in Chemistry in 2009 from the University of the Basque Country (UPV-EHU). Her thesis work was focused on the search of open inorganic-organic compounds based on the vanadate oxoanion, involving the crystal structure resolution and analysis, and the study of their thermal, spectroscopic, and magnetic properties. She was specialized on the study of the catalytic properties of inorganic-organic materials ana Metal-Organic Frameworks (MOFs). During her post-doctoral phase at the UPV/EHU (20010-2019) she focused to obtain porous crystal frameworks with open metal sites for enhanced catalytic activity. In 2009, received a Le Studium Fellowship to do an internship as invited researcher at CEMHTI-CNRS hosted by Conchi O. Ania and Encarnación Raymundo-Piñero in the project "Electrochemical energy conversion based on metal-free nanoporous electrocatalysts" and her research was centered in the electro and photo(electro) catalytic transformation of CO2 by nanoporous carbon materials. Currently she is Senior Innovation Scientist at microLIQUID S.L. and she is in charge of the materials surface functionalization area for the manufacturing of microfluidic point-of-care devices.

Dr Encarnacion Raymundo-Piñero

CNRS-CEMHTI (UPR 3079), Site Haute Température

1D Av. de la Recherche Scientifique CS 90055 45071 - Orléans Cedex 2 - FR

Email: encarnacion.raymundo@cnrs-orleans.fr

Encarnación Raymundo-Piñero is Research Director at the CEMHTI-CNRS UPR3079 laboratory at Orléans (France). She got a PhD in Materials Science at the University of Alicante (Spain) in 2000 and after a post-doc in the USA she moved to France in 2002 with a Marie Curie fellowship and joined the CNRS as permanent staff in 2006. She received the Science Thesis Award of the University of Alicante in 2001 and in 2009 she was awarded with the CNRS bronze medal. Her research activity is devoted to porous materials for their use as electrodes in energy storage devices and as adsorbents for environmental applications. She has experience on synthesis and modification of nanotextured carbon materials and composites, their physico-chemical characterization and their electrochemical characterization. She is inventor of 13 patents in electrode materials for electrochemical applications, energy storage devices and depolluting materials. She has an H index of 40, with over 9200 citations.

Dr Conchi Ania

CNRS-CEMHTI (UPR 3079), Site Haute Température

1D Av. de la Recherche Scientifique CS 90055 45071 - Orléans Cedex 2 - FR

Email: conchi.ania@cnrs-orleans.fr Phone: +33 238 25 55 13

She received her PhD degree in 2003 by Univ. Oviedo (Spain) and performed postdoctoral stays in USA and France. In 2009 she became Tenured Scientist at Agencia Estatal CSIC (in leave of absence), and in 2017 she joined CNRS as Directrice de Recherche. She received the national L'Oreal-Unesco Research Fellowship "For women in Science" (2008), and the Excellence Research Award by University of Granada (2008). She is a grantee of the European Research Council since 2016 and editor of Carbon journal (Elsevier) since 2020.

She has a long-standing interest on nanoporous materials for high-tech applications. Current research interests focus on environmental remediation, gas adsorption/separation, and solar energy conversion. She is co-inventor of two patents (one transferred to industry for 2 years). She has an H-index of 47 with over 6000 citations.

Metal-free nanoporous carbons: possibilities in photo(electrochemical) energy conversion

Co-authors: Edurne S. Larrea, Encarnacion Raymundo- Piñero

Evidences on the photochemical activity of semiconductor and metal-free nanoporous carbons upon irradiation in aqueous environments have opened new opportunities for these materials in photocatalytic applications, beyond their conventional use as inert supports of semiconductors. The aim of this work is to review the recent progress on the photocatalytic performance of nanoporous carbons under different illumination conditions, discussing the photochemical quantum yield of carbons of varied nature and physicochemical features towards energy conversion applications covering water splitting (ORR, OER) and CO_2 photoreduction. The tight confinement inside the nanopores is important for the stabilization of the charge carriers, to minimize surface recombination and promote transfer reactions involving chromophoric surface moieties. Some progress is yet to be done towards the understanding of the fundamentals of the light/carbon/molecule interactions to design photoactive nanoporous carbons with optimized features for an enhanced photocatalytic response under solar light.

LE STUDIUM CONFERENCES

12 Challenges and opportunities in materials for green energy production and conversion 15-17 June 2021

SPEAKERS

Dr Alejandro Ansón Casaos

Institute of Carbochemistry, Higher Council for Scientific Research (ICB-CSIC)

Miquel Luesma Castán 4 50018 Zaragoza, Spain

Email: alanson@icb.csic.es Phone: (+) 34 976733977

Dr. Alejandro Ansón Casaos (Zaragoza, 24 June 1978) is a research scientist at ICB-CSIC since August 2012. He got a PhD in Physical Chemistry in 2005 from the University of Zaragoza. His PhD grant was financed by the CSIC Fuel Cell Network. He was a postdoctoral fellow in the Department of Chemical and Materials Engineering, University of Alberta, Edmonton (Canada), between 2005 and 2007. He is the co-author of 104 indexed scientific documents, with h-index of 33. He is the co-inventor of 2 international patents under the property of Nova Chemicals, and a recently disclosed Spanish patent. He has contributed to 110 conference communications.

Photoelectrochemical characterization of C/TiO, and C/ZnO nanomaterials in aqueous electrolyte

Carbon nanostructures, including single-walled carbon nanotubes, reduced graphene oxide, and carbon dots, are inserted in TiO₂ and ZnO photoanodes with the aim of improving their activity. For the electrode assembly, TiO, or ZnO nanoparticles, as well as carbon nanomaterials, are dispersed in a liquid and deposited on FTO by spray coating. Various mixed and layer-by-layer electrode configurations are considered. As-prepared electrodes are evaluated by photoelectrochemical (PEC) techniques, mostly cyclic voltammetry and transient photocurrent measurements.

The insertion of the carbon component improves the photocurrent response depending on the measurement conditions, specifically the electrolyte pH and the presence of methanol as a hole scavenger. Therefore, hybrid carbon/semiconductor metal oxide nanomaterials can be applied in PEC processes for the production of hydrogen and the degradation of organic pollutants in water.

Prof. Ally Aukaloo

Université Paris-Saclay

3 rue Joliot Curie, Bâtiment Breguet 91190 Gif-sur-Yvette - FR

Email: ally.aukauloo@universite-paris-saclay.fr Phone: + 33 1 69 15 47 49

I am professor in Bioinorganic and Coordination Chemistry at the Université Paris-Saclay and scientific collaborator at the CEA-Saclay in the field of Artificial Photosynthesis. We are dedicated to the development of molecular metal catalysts for the activation of H₂O, CO₂ and O₂. Using light to convert these small molecules to energy rich compounds is a main thrust of our research. We are also developing nanostructured conjugated polymers as photocatalysts for the phot-splitting of water, a major theme in finding new ways to produce a solar fuel

From molecular to nanostructured materials for artificial photosynthesis

Inspired by chemical subtleties at the active sites of enzymes dealing with the CO₂ management in our biosphere, we will discuss on how hydrogen bonding and electrostatic effects may thrive the catalytic power molecular catalysts. Photosystem II is the only enzyme that can capture sunlight to extract electrons and protons from water that are expelled in the form of reduced quinones. We have developed nanostructured conjugated polymers that can act as photocatalysts to replicate the functions of Photosystem II.

Conjugated nanostructured polymers for the complete photo drive water splitting

We have been interested in the development of conjugated nanostructured polymers (CNP) to manage the PSW. Our strategy was to keep the synthetic segment of the starting building block minimal and to control the degree of polymerization of commercially available monomers that usually lead to extended conjugated organic polymeric materials. We have for this target used surfactants' assemblies to provide a soft template matrix to confine a selected number of monomers within the inner space provided by the soft matrices. Our first incursion in this field was to take profit of the polymerization of diphenylbutadiyne (DPB:) in the confined oil domain of the mesophase to give conjugated poly diphenylbutadiyne (PDPB) nanowires. Upon polymerization in soft templates under radiolysis, we have been able to isolate short oligomers of DPB, we termed as nano-PDPB. We have demonstrated that these conjugated polymer nanostructures are very active photocatalysts under visible light. When dispersed in water without the addition of any co-catalyst nor any sacrificial agent and submitted to visible light irradiation, O₂ was detected reaching the saturation solubility in water within minutes. The electrons were recovered as reduced forms of guinones.

Ref: Visible light-driven simultaneous water oxidation and quinone reduction by a nano-structured conjugated polymer without co-catalysts. J. Patel, X. Yuan, S. M. Marinho, W. Leibl, H. Remita A. Aukauloo, Chem. Sci., 2020. 11, 7324.

Figure : a) time courses of O₂ evolution in absence of an electron acceptor (EA), in presence of a quinone as a reversible EA and S2O822 as an irreversible EA b) stepwise irradiation in presence of S2O822 c) reduction of quinone to form quinhydrone after photocatalysis

LE STUDIUM CONFERENCES Challenges and opportunities in materials for green energy production and conversion 15-17 June 2021 LE STUDIUM CONFERENCES

Beatriz Ávila Bolívar

Institute of Electrochemistry, University of Alicante

Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante - SP

Email: beatriz.bolivar@ua.es Phone: + 34 965909132

PhD student in the Research Group in Electrocatalysis, ascribed to the Department of Physical Chemistry and to the Institute of Electrochemistry at the University of Alicante (Spain).

$\mathrm{CO}_{_2}$ electroreduction to formate on Sn, Bi and Sb nanostructured electrodes: from fundamental studies to practical devices

The electrochemical reduction of CO, into chemical products of interest has been considered as an interesting route not only to mitigate climate change but also to store renewable energy in the form of value-added chemicals. Among other possible chemicals, formic acid (HCOOH) or formate (HCOO-) (depending on pH value) is one of the most attractive carbon-based products due to its potential uses and its high world demand including its use as a fuel for low-temperature fuel cells and as a renewable hydrogen carrier molecule. In this contribution, we will summarize our most recent and relevant results on the use of Tin (Sn), Bismuth (Bi), and Antimony (Sb) nanostructured based electrocatalysts for the selective conversion of CO₂ into formic acid/ formate. This summary will cover from fundamental studies, including the synthesis, characterization and electrochemical behaviour of these nanostructured materials on conventional H-type electrochemical cells, to practical applications, focused on the development and testing of a process for the electrocatalytic reduction of CO₂ to formate (HCOO-) operating in a continuous way, with different electrochemical reactor configurations, such as Gas Diffusion Electrodes (GDE), or Catalyst Coated Membrane Electrodes (CCME), and under different operating conditions. The results obtained will demonstrate the potentialities of this electrochemical technology for the valorisation of CO₂ into formic acid/ formate.

Dr Pascal Brault

GREMI CNRS Université d'Orléans

14 rue d'Issoudun BP6744 45067 ORLEANS CEDEX 2 - FR

Email: pascal.brault@univ-orleans.fr Phone: + 33 2 38 41 71 25

Pascal Brault (60 years old) got is PhD in 1987 in theoretical atomic and molecular physics. He is now CNRS senior scientist at GREMI laboratory, University of Orléans. He is specialist of plasma deposition and treatments of materials, especially relevant for energy applications, nanocatalysts for fuel cells. For 10 years, he is focusing on reactive molecular dynamics simulations of plasma processing. He is co-author of more than 140 publications, 200 communications among them 47 invited. He is co-inventor of 7 patents. In 1992-1993, he was granted as Alexander von Humboldt fellow (Max-Planck-Institut für Strömungsforschung, Göttingen, Germany).

Reactive molecular dynamics simulations of H₂ production and conversion

Since H_2 production and conversion efficiencies can be improved and monitored at the molecular scale, reactive molecular dynamics simulations (rMDS) are expected to be of great promise for understanding associated basic mechanisms. Basically, rMDS is a technique aiming at solving full trajectories of a set of atoms, molecules, nanoparticles, with the only ingredient of force fields driving interactions between relevant species.

Due to the recent growth of improved and reactive force fields such as ReaxFF and COMB3 families, it become possible to address complicated reactive process such as H_2 production and conversion from various sources. Moreover, these force fields are including variable charges and thus electrochemical processes such as electron transfers become tractable by rMDS.

The present talk will review the works carried out on both production and conversion of H_2 . This will cover a broad range of mechanisms such as H_2 production from water splitting, aluminium water interactions, PEM electrolysis as well nanocatalysts for PEM fuel cells, oxygen reduction reactions, etc. In all cases, the frame, performances and limitations of the simulations will be addressed.

Geyla Dubed Bandomo

Institute of Chemical Research of Catalonia

Avda. Països Catalans, 16 43007 Tarragona - SP

Email: gdubed@iciq.es Phone: + 34 642970679

- PhD (postgraduate study) in Chemical Science and Technology (ICIQ/URV). Institut Català d'Investigació Química.

- MSc. in Electrochemistry. Synthesis, photochemical and photoelectrochemical characterization of TiO2 nanotubes membrane modified with electrocatalytic materials. Center of Research and Technological Development in Electrochemistry, Querétaro, México

- BSc. in Radiochemistry (Cum laude). Synthesis of neuromarkers as potential precursors for the radiodiagnosis of Alzheimer's disease. Higher Institute of Technologies and Applied Sciences, Havana, Cuba

$\rm CO_2$ conversion with $\rm \{Mn(CO)_3Br\}$ molecular sites into Covalent-Organic Frameworks

Effective large-scale CO_2 conversion to fuels or value-added chemicals using renewable energies is critical to reduce our environmental impact [1]. To this end, better understanding of the CO_2 mechanism is needed to develop efficient and selective catalysts that operates in water controlling H₂ evolution. Covalent Organic Frameworks (COFs) are reticular materials, which can be used to combine the advantages of the well-defined molecular catalysts and the heterogeneous ones [2]. In this work, we present the first COF based on tricarbonyl Mn units, that by n-n stacking is attached to MWCNTs form electrocatalytic electrodes active for CO_2 reduction in neutral water. The activity of these catalysts was evaluated by electrochemical techniques with stability in aqueous solution. With these materials we have integrated the classical Mn(bpy)CO3Br catalyst into a heterogeneous material which clearly enhances its catalytic activity (FE-50%) at low overpotentials (~450 mV) in pure water. COF/MWCNTs/Nafion leds higher faradaic efficiency than molecular system. The encapsulation of tricarbonyl Mn active sites with a reticular covalent organic structure plays an important role by favouring the electrocatalytic CO_2 reduction over competitive H₂ evolution reaction. The spectroelectrochemical studies evidence the formation of five-coordinate species in the catalytic cycle for CO formation.

References :

[1] Alessandro Sinopoli, Nathan T. La Porte, *Coord. Chem. Rev.*, 365, **2018** pp 60–74.
 [2] Lin S, O. M. Yaghi, *Science*, *349*, **2015** pp 1208-1213.
 [3] B. Reuillard, E. Reisner, *J. Am. Chem Soc.*, 169, **2017** pp 14425-14435.
 [4] James J. Walsh, Alexander J. Cowan, *Phys. Chem.*, *20*, *2018* pp 6811-6816.

Prof. Joaquim Faría

Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM). Faculty of Engineering, University of Porto

Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal

Email: jlfaria@fe.up.pt Phone: + 220 413 683

Joaquim L. Faría (PhD Physical Organic Chemistry – 1993) is currently Associate Professor with habilitation at Faculty of Engineering of the University of Porto (FEUP), Board Member of the Department of Chemical Engineering, Scientific Committee member of the MSc in Chemical Engineering, Director of the PhD Program in Chemistry at FEUP and Vice President of the Portuguese Chemical Society. Head of the Materials research line of the Associated Laboratory in Chemical Engineering (FEUP). Published over 200 articles (ORCID: 0000-002-6531-3978; h-index >50) on catalysis and catalysed reactions with thermal and photo-activation for environmental applications, energy, and fine chemical synthesis. He received the Scientific Prize of the Portuguese Association of PhD Studies in France (APDF).

Carbon geometries as the base concept for developing efficient photocatalysts

During the past several decades' new carbon allotropes have been accounted for and synthesised. Many notable breakthroughs include exciting works on synthesis, functionalisation, characterisation and applications of carbon nanotubes, graphene, and graphene-like structures, like graphitic carbon nitrides.

The exciting progress made since the initial use of carbons as modifiers of optical semiconductors has stimulated many types of research in different fields of the immediate and relevant application. Apart from the obvious applications in water treatment and remediation, there are compelling examples in photocatalytic synthesis, assisted conversion with the production of valuable chemicals or fuels, photocatalytic production of solar fuels, and photo-assisted purification of compounds of biological and health relevance.

Such materials also prompted the development of new integrated and technological solutions, including new photoreactors and combined systems for engineering processes, including microfluidics and additive fabrication.

The duality between fundamental and applied, as well as between theory and practice, will be used to present some of our latest progress in the field of conversion of hazardous chemicals in aqueous streams with the in-situ generation of added value compounds, selective photocatalytic synthesis, photo-assisted enzyme purification, and solar fuel production.

18 LE STUDIUM CONFERENCES Challenges and opportunities in materials for green energy production and conversion 15-17 June 2021

Prof. Hermenegildo Garcia Technical University of Valencia

Av. de los Naranjos s/n, 46022 Valencia, Spain

Email: hgarcia@upv.es Phone: + 34 96 387 7807

Hermenegildo Garcia is Professor at the Instituto de Tecnologia Quimica of the Technical University of Valencia, a joint centre of the Technical University of Valencia and the Spanish National Research Council. Prof. Garcia has been active in the field of heterogeneous catalysis and photocatalysis, has published over 800 papers with an H index 105. Prof. Garcia is Doctor Honoris Causa from the University of Bucharest, Honorary Professor of King Abdulaziz University and the recipient of the 2016 Rey D. Jaime I award in New Technologies.

Getting closer to a large scale process. Photocatalysts for light-assisted CO_{2} hydrogenation

There is an urgent need to diminish atmospheric CO_2 emissions to meet with the International agreements on global warming and climate change. One of the possible strategies is the utilization of CO_2 as feedstock of fuels and chemicals. Among the possible reactions, CO_2 hydrogenation can give a wide variety of products from methane to light hydrocarbons and alcohols of high added value. However, due to its high chemical stability, CO_2 transformation requires a considerable amount of energy to run the reaction at temperatures above 450 oC and high pressure. In this context, the use of solar light as primary energy source and development of selective photocatalysts to promote the reaction becomes highly relevant. The presentation will summarize the contribution of the group to develop efficient solar photocatalysts for selective CO_2 hydrogenations, indicating the targets to be achieve to be competitive with conventional thermal catalytic processes and the possibility to achieve these goals in short term.

Dr Jesús Iniesta University of Alicante, Spain

Department Chemical and Biomolecular Engineering 39005 Santander, and Institute of electrochemistry 03690 San Vicente del Raspeig, Alicante

Email: jesus.iniesta@ua.es Phone:+34 965909850

Dr. Jesus Iniesta is member of the research group of Applied Electrochemistry and Electrocatalysis. Dr. Iniesta completed his PhD at the University of Alicante in 1999. He received a Marie Curie Fellowship (2001-2003, Coventry University) and enjoyed several postdoc positions in Birmingham University and Manchester Metropolitan University. Full Professor at the Physical Chemistry Department since 2020.

Electrochemical and structural characterization of mixed matrix membrane coated electrodes for CO₂ electroreduction

Co-authors : Dr. Clara Casado-Coterillo¹, Dr Aitor Marcos-Madrazo²

¹Department Chemical and Biomolecular Engineering, University of Cantabria, 39005 Santander, Spain

²University of Cantabria

The need for novel membrane coated electrodes (MCE) for the electrochemical reduction of carbon dioxide (CO₃RR) may offer advantages in terms of control of reaction, catalytic activity and stability of the electrode. The study of the possibilities of mixed matrix membrane (MMM) overlayers with tuneable ion-exchangeable, conductive and transport properties are essential targets for the performance of the MCEs for electrochemical applications. The knowledge on the effect of local pH and CO₂ concentration diffusion to catalyst site, among others, on the selectivity of the CO₂ electroreduction to high added-value products under alkaline conditions, especially when using Cu as catalyst, is still scarce. The communication aims at evaluating the relationship of the synthesis and morphological characterization of the MCEs and the electrochemical characterization of novel based copper-containing MMMCE with high CO₂ permeability, chemical and mechanical stability in alkaline solutions, on the performance, selectivity and stability of electrodes in CO₂RR. Cyclic voltammetry and electrochemical impedance spectroscopy will give insight about the electrochemical behaviour pf MCEs in comparison with the typically used gas diffusion electrodes (GDEs) prepared with commercial ionomers. Preliminary electrolysis for the CO₂RR will reveal the significant impact of the presence of the polymeric membrane overlayer on the efficiency and selectivity of CO₂RR.

Prof. Olivier Joubert

Université de Nantes & CNRS

Institut des matériaux Jean-Rouxel, 2 rue de la Houssinière 44322 Nantes CEDEX

Email: Olivier.Joubert@cnrs-imn.fr Phone: + 33 40 37 39 36

Olivier JOUBERT (1965) is presently full professor in Chemistry of Materials at University of Nantes and is Chair of electrochemical storage and conversion of energy group (ST2E) of "Institut des Matériaux Jean Rouxel (CNRS-IMN)". The major research interests of professor JOUBERT revolve around development of new materials for technological applications such as high and intermediate temperature ceramic Solid Oxide (SO) fuel or electrolyser cells (SOFC and SOEC). He is co-author of 120 publications, 25 invited talks and 5 patents. Olivier Joubert is chairing the French Research Network on Hydrogen Energy which assembles all French academic research groups in the field of electrolysis production and storage of hydrogen and also its conversion to electricity using fuel cell.

Brief Overview of Current French Hydrogen Research Activities, Focus on Materials Development

Twenty years ago, the French scientific community working in the field of hydrogen, started to federate under the leadership of the CNRS. It took the form of successive Research Grouping (GdR) bringing together experts in solid oxide fuel cell (SOFC), proton exchange polymer membrane (PEMFC) fuel cells, hydrogen storage and systems mainly from CNRS but also from CEA. These GdRs promoted and structured an interdisciplinary field of research with excellent results.

Since January 1st of 2020, the CNRS community has formed the Research network on Hydrogen energy (FRH2) based on the active nucleus of the former GDR laboratories (29 laboratories) with about 300 researchers and professors. A new organization, "from material to system", more visible from industries has been set up around four main technical axes, the production of hydrogen, its storage, and its conversion into electricity for mobile and stationary applications and around 2 transversal axes, education and technological platforms. The first part of the presentation will give a brief overview of this french CNRS research network on hydrogen energy including some highligts for each axes.

The second part will be dedicated to the development of materials used in solid oxide fuel cells (SOFC) and more precisely to the ceramic electrolyte: optimization of the microstructure of the material via accurate monitoring of the synthesis and temperature treatment steps.

Prof. Athanasios G. Konstandopoulos

Aerosol & Particle Technology Laboratory, Aristotle University and CPERI/CERTH

PO Box 60361, 57001, Thermi Thessaloniki, GREECE

Email: agk@certh.gr / agk@auth.gr Phone: +30 231 0498211

Dr. Athanasios G. Konstandopoulos, Descartes Laureate, Knight of the Legion of Honour of the French Republic, European Research Council Advanced Grant Holder, Fellow of the Society of Automotive Engineers, Professor of Chemical Engineering, Founder and Director of the Aerosol and Particle Technology Laboratory at CPERI/ CERTH and Aristotle University, is a specialist in nanoparticle technologies, combustion aerosols, carbonneutral solar fuels and structured reactors for catalytic emission control, sustainable mobility, clean energy, circular economy and biotech applications. He is the author of numerous widely cited publications and a former member of the Board of Governors of the European Commission's Joint Research Center.

Material and Reactor Technologies for Solar Fuels

The synthesis of carbon-neutral/zero-carbon footprint fuels via solar thermochemical processes ("Solar Fuels") represents a promising approach for the realization of a sustainable energy future. These high temperature processes (effected by concentrated solar technology) "regenerate" streams of "dead hydrogen" (H₂O) and/or "dead carbon", CO_2 , through thermochemical Water (WS) and/or Carbon Dioxide Splitting (CDS) into H₂ and CO respectively, after contact with oxygen-deficient, "redox" materials that are thus re-oxidized. Subsequently thermal reduction of the material is applied, by raising the temperature at a higher level, thus establishing a two-step cycle. Solar CO and H₂ can be converted into solar fuels through gas-to-liquid catalytic processes. In this work, we summarize Material and Reactor Technologies for the development of solar fuels. The approach entails the identification of attractive candidate material families (exhibiting redox behavior) exploiting the potential of computational chemistry based on ab initio calculations. Subsequently the desired materials are synthesized employing advanced manufacturing methods to generate tailored compositions/architectures. These are shaped into structured reactor forms via various techniques and their performance is assessed under realistic conditions in the lab and at in-house and field-based, solar testing facilities.

We acknowledge support of this work by NSRF project MIS 5002704 PROMETHEUS (Greece & EU ERDF).

Prof. Christel Laberty-Robert

Laboratoire de Chimie de la Matière Condensée de Paris, SORBONNE Université

Sorbonne Université, Campus Jussieu, 4 place Jussieu, 75005 Paris

Email:christel.laberty@sorbonne-universite.fr Phone: + 33 6 33 88 84 75

C. Laberty-Robert is a professor in Materials Sciences at Sorbonne University. She completed her PhD ('96) degrees in Materials Sciences at Toulouse University. Major research fields include nanostructured thin films and hybrid organic-inorganic materials for battery, low temperature fuel cell and water splitting. Noticeable milestones in C. Laberty-Robert's carrier are 2 years in Navrotsky's group at Princeton University, where she conducted research on the thermochemistry of iron and manganese polymorphs and 3 years at Naval Research Laboratory for a specialization in electrochemistry for fuel cell and battery. A special focus is dedicated to the investigation of chemistry and processing [dip-coating, electrospinning] to synthesize nanostructured materials with optimum performances.

Impact of Electrodes Nanostructuration on Photoelectrochemical Performances

Hydrogen is presented by some industrialists and managers as a potential pillar of the ecological transition, particularly in the context of transport (hydrogen-powered cars, hydrogen-powered trains, hydrogen-powered airplanes, etc.), the storage of energy from intermittent renewable sources or in industry (steel and chemical industries). Using hydrogen to decarbonize the economy only makes sense if it is produced in a decarbonized way. In this context, this talk will focus on hydrogen production from renewable sources, solar and water. The performance (absorption of light, creation of photo-charges, their migration and their reactivity with water) of the photoelectrodes depend strongly on the chemistry, structure and microstructure of the materials used. All these physical-chemical parameters can be trigger through a judicious control of processing parameters. This talk will focus primarily on three different processing approaches based on solution chemistry for synthesizing efficient and durable photo-electrodes (Mo-BiVO, TiO, and CuO/Cu₂O). The performance of the photoelectrodes will be discussed as function of structure, microstructure (porosity, particle size, thickness) and hetero-structure. More importantly, for comparing the performance of the three TiO, polymorphs, a judicious photoelectrodes' manufacturing is developed in order to solely measure the impact of the structure keeping all the other parameters (porosity, thickness and particle size) constant.

Prof. Sixto Malato CIEMAT-Plataforma Solar de Almería

Ctra. de Senés km 4.5, E-04200 Tabernas, Almería - SP

Email: sixto.malato@psa.es Phone:+ 34 950387940

Since 1990 he works at the Plataforma Solar de Almeria (PSA-CIEMAT) in all the EU R&D projects linked to the Solar Photocatalysis. He has been involved in 27 International, 31 National R&D Projects related to the development, design and construction of experimental pilot plants for solar photocatalysis in Europe. He has co-authored more than 280 publications in indexed international journals and 5 patents. He has directed 16 PhD Thesis. >22000 cites, h-index (http://www.scopus.com, 2021): 81. Assoc. editor Environmental Chemistry Letters (Ed. Spinger) and Photochemical and Photobiological Sciences (Ed. Spinger Nature). Member of editorial board: Catalysis Today (Elsevier). Director or Co-Director of CIESOL, Joint Research Center (Univ. Almería-CIEMAT). Director of Plataforma Solar de Almeria (www.psa.es). 2012-2017. Jaime I Price (Most important in science in Spain) in Environmental Protection, 2011.

Solar photocatalytic hydrogen production at pilot scale

Solar energy is well-recognized as a sustainable and clean energy source. Among the various approaches to solar energy conversion, solar-driven hydrogen production is one of the most promising ways to convert solar energy into hydrogen, a storable fuel. Hydrogen is undoubtedly one of the most attractive renewable alternatives to fossil fuels for a number of reasons: (i) hydrogen can be safely stored; (ii) it is an excellent energy carrier since it can store 3 times as much energy as conventional natural gas; (iii) its combustion is environmentally friendly (no release of greenhouse gases or hazardous by-products). However, the production of hydrogen currently relies in steam reforming of CH_4 and CO, and thus, involves the consumption of fossil fuel energy and the emission of greenhouse gases. There are efforts to find alternative renewable technologies to produce hydrogen, the so-called green hydrogen.

It is well-known that the efficiency of heterogeneous photocatalysis for hydrogen generation from water splitting is quite low. The efficiency of photocatalysis hydrogen generation can be improved by using aqueous sacrificial agents (organic electron donors) dissolved in water. Industrial wastewater containing high concentrations of methanol/glycerol/formic acid have been used as feedstock. Effluents from municipal wastewaters could also be used, as they would contain dozens of mg/L of organic load. This means that in a simultaneous process, hydrogen generation and contaminants removal can take place. It is important to notice that the application of this technology has a double purpose: first, to produce a clean fuel such as hydrogen and, second, to treat, reduce the organic load and decontaminate wastewater in certain extent.

Prof. Giuseppe Marcì

University of Palermo

Viale delle Scienze, building 6, 90128 Palermo - IT

Email: giuseppe.marci@unipa.it Phone: + 39 09123863737

Giuseppe Marcì was born in 1967 in Palermo (Italy). He graduated in Chemical Engineering in 1992. PhD in Chemical Engineering (1997). He is currently Associate Professor of Chemistry (2015) at the University of Palermo and he has received in 2017 the full professor qualification in Chemistry. His scientific activity has been focused on the field of Heterogeneous Photocatalysis and recently also on catalytic processes for biomass valorisation. He is co-author of ca. 140 scientific papers and 230 abstracts in proceedings of congress. (H index 43, citation 7299 Scopus 2021).

Photocatalytic reduction of CO₂ in gas-solid and in liquid-solid regimes

The increasing CO_2 level in the atmosphere is a global environmental problem; therefore, the development of efficient catalytic processes for CO_2 reduction is a challenge. Heterogeneous photo-catalysis is an attractive technology for this purpose. Literature reports that formic acid, methanale, methanol and methane can be formed by photocatalytic reduction of CO_2 . In this contribution, it will be showed that the CO_2 reduction products and their distribution depend on several factors like the kind of photocatalyst and the presence of water vapor [1]. Moreover, the coupling of different photo-catalyst (GaP/TiO2) and the use of nafion membranes as support of the catalyst can improve the photocatalytic performances [2,3]. In the case of photo-reduction performed in liquid-solid regime, the temperature and the pressure have a positive effect on the productivity. Finally, an investigation into the stability of C_3N_4 used as photo-catalyst for CO_2 reduction will be discussed [4].

References

 M. Bellardita, A. Di Paola, E. García-López, V. Loddo, G. Marcì, L. Palmisano, Curr. Org. Chem. 17 (2013) 2440.

[2] G. Marcì, E. García-López, L. Palmisano, Cat. Comm. 53 (2014) 38.

[3] A. Brunetti, F.R. Pomilla, G. Marcì, E.I. García-López, E. Fontananova, L. Palmisano, G. Barbieri Appl. Catal. B: Environ. 255 (2019) 117779.

[4] F.R. Pomilla, M.A.L.R.M. Cortes, J.W.J. Hamilton, R. Molinari, G. Barbieri, G. Marcì, L. Palmisano, P.K. Sharma, A. Brown, J.A. Byrne, J. Phys. Chem. C 122 (2018) 28727.

Prof. Juan Matos

Autonomous University of Chile

El Llano Subercaseaux 2801, San Miguel, Santiago, Chile

Email:juan.matos@uautonoma.cl / jmatoslale@gmail.com Phone: + 56 9 9379 8340

Prof. Dr. Juan Matos is PhD in Physics and Chemistry of Surfaces through the Franco-Venezuelan Postgraduate Cooperation Program between the Central School of Lyon (France) and the Venezuelan Institute for Scientific Research. He is co-Director of the Chilean Association of Carbon Materials, and he was President (2016-2018) of the Latin American Carbon Federation. He is the Director (2017-2021) together with Dr. Conchi O. Ania of the Franco-Chilean Network of Biochar Upgrading for Energy and Environmental. He is Full Professor of the Faculty of Engineering of the Autonomous University of Chile and Director of the PhD Program in Applied Sciences. His research is aimed to design semiconductors and Carbon-based materials for energy and environmental applications.

$\rm H_{2}$ production on 1D and 2D Carbon-containing Fe-, Co, and Ni-based foamy catalysts.

C-containing Fe-, Co-, and Ni-based catalysts have been synthesized from the controlled pyrolysis of saccharose. The topological properties of the 2D materials were significantly different from other 2D carbon-based cell structures. TEM and STEM showed that catalysts are composed by 1D and 2D morphologies, manly those with Co- and Ni, and these morphologies seems to be remaining from the pristine carbon structures in absence of metals. Carbon seems to play a template role for the growing of the metal-containing structures. Electron microscopy also showed that catalysts are composed by a high compaction on nanoparticles in the range 5-30 nm. XRD showed that graphite is the main crystalline phase; nevertheless, XPS showed important differences with respect to graphite. NEXAFS and RAMAN spectroscopy suggested the formation of graphene oxide. The textural analysis pointed out the formation of a hierarchically pore structure in the present materials. Fe-, Co- and Ni-doped carbon foams were studied in the thermocatalytic H_a production from dry methane reforming under soft experimental conditions. The catalytic assays demonstrated that the metal-containing carbon foams were clearly more active and suffered less deactivation than bulk conventional catalysts prepared by wetness impregnation. It can be concluded then that the controlled pyrolysis of saccharides opens a new, low cost and eco-friendly method for the preparation of graphene-based foams as catalytic membrane reactors.

Prof. Bruno G. Pollet

Hydrogen Energy and Sonochemistry Research group, Faculty of Engineering, Department of Energy and Process Engineering, Norwegian University of Science and Technology

Gløshaugen Kolbjørn Hejes v1B, NO-7491, Trondheim, Norway

Email: bruno.g.pollet@ntnu.no Phone: + 47 92489316

Bruno G. Pollet (h-index = 45) is currently a full Professor of Renewable Energy at the Norwegian University of Science and Technology (NTNU) in Trondheim, Norway. He currently leads "NTNU Team Hydrogen". He is a Fellow of the Royal Society of Chemistry and Board of Directors' member of the International Association for Hydrogen Energy (IAHE). He has recently been elected President of the "Green Hydrogen division" of the IAHE. He is Visiting Professors (VP) at the University of Ulster (UK), the University of the Western Cape (South Africa), the Université du Québec à Trois-Rivières (Canada) and was Professeur des Universités Invité at the Université de Franche-Comté (France) and a VP at the University of Yamanashi (Japan). His research covers a wide range of areas in Electrochemistry and Sono-electrochemistry.

Ultrasound-Assisted Electrolytic Hydrogen Production

In this study, we investigated the effects of power ultrasound (26 kHz, up to ~75 W/cm2, up to 100% acoustic amplitude, ultrasonic horn) on the hydrogen evolution reaction (HER) on a platinum (Pt) polycrystalline disc electrode in 0.5 M H_2SO_2 by cyclic and linear sweep voltammetry at 298 K. We also studied the formation of molecular hydrogen (H_a) bubbles on a Pt wire in the absence and presence of power ultrasound using ultra-fast camera imaging. It was found that ultrasound significantly increases currents towards the HER i.e., a ~250% increase in current density was achieved at maximum ultrasonic power. The potential at a current density of -10 mA/cm2 under silent conditions was found to be -46 mV and decreased to -27 mV at 100% acoustic amplitude i.e., a ΔE shift of ~+20 mV, indicating the influence of ultrasound on improving the HER activity. A nearly 100% increase in the exchange current density and a 30% decrease in the Tafel slope (b) at maximum ultrasonic power, was observed in the low overpotential region, although in the high overpotential region, the Tafel slopes were not significantly affected when compared to silent conditions. In our conditions, ultrasound did not greatly affect the "real" surface area and roughness factor i.e., the microscopic surface area available for electron transfer. Overall, it was found that ultrasound did not dramatically change the mechanism of HER but instead, increased currents at the Pt surface area through effective hydrogen bubble removal.

Dr Carlos Sanchez

Laboratoire Interfaces et Systèmes Electrochimiques (LISE)

Laboratoire Interfaces et Systèmes Electrochimiques (LISE), - UMR 8235 CNRS SORBONNE UNIVERSITÉ, Paris, France

Email: carlos.sanchez@upmc.fr Phone: + 33 (0)1 44 27 41 58

Dr. Sanchez Sanchez is Chargé de Recherche of CNR at Laboratoire Interfaces et Systèmes Electrochimiques of CNRS in France since 2013. He completed his PhD at the University of Alicante in 2004 [European mention] on materials science. His research activities focus on electrocatalysis of nanomaterials, electrochemical energy storage and production (redox flow batteries, fuel cells, batteries), electrochemical scanning electron microscopy applied to electrocatalytic reactions on novel materials, coupling of SECM and STM techniques.

Electrolyte engineering for electrochemical CO, reduction

lonic liquids (ILs) in electrocatalysis have attracted a lot of attention from the seminal work of Rosen et al. [1] where they achieved a relevant overpotential decrease for CO_2 reduction reaction (CO_2RR) on a silver electrode. Moreover, ILs have been proposed as organic promoters for enhancing the catalytic activity by modifying the electrostatic properties at the electrochemical interface. Then, electrolyte engineering has become a powerful way to impact on the stability of reaction intermediates and control reaction selectivity.

The role of different ILs as simultaneous supporting electrolyte and co-catalyst in acetonitrile for CO_2 electroreduction in the presence of a model molecular catalyst [Re[bpy](CO]₃CI] is presented here. [2] In particular, the nature of the cation, anion and cation alkyl chain is varied by a choice of 5 different ILs, including imidazolium and pyrrolidinium cations and their results are compared to conventional benchmark supporting electrolyte. Under catalytic conditions an overpotential diminution of 0.33 V for CO_2 to CO conversion is achieved in the presence of ILs. Finally, a mechanistic explanation is provided to justify this behaviour.

<u>References</u>

[1] Rosen, B.A.; Salehi-Khojin, A.; Thorson, M.R.; Zhu, W.; Whipple, D.T.; Kenis, P.J.A.; Masel, R.I. Science **2011**, 334 (6056), 643.

[2] Vichou, E.; Xu-Li, Y.; Gomez-Mingot, M.; Fontecave, M.; Sánchez-Sánchez, C.M. J. Phys. Chem. C **2020**, 124, 23764.

Dr José Solla- Gullon

Institute of Electrochemistry, University of Alicante

Parque científico-Institutos universitarios (Zona ampliación del Campus) Carretera de San Vicente del Raspeig, s/n. 03690 - San Vicente del Raspeig (Alicante)

Email:jose.solla@ua.es Phone: + 34 96 59 03 864

José Solla Gullón, Ph. D. (2003) University of Alicante, Spain. Currently, he is Assistant Professor in the Physical Chemistry Department of the University of Alicante, and Senior Researcher in the Institute of Electrochemistry, of the University of Alicante. His research is related to the synthesis, characterization and electrochemical properties of different metal nanoparticles. His overall publication record includes about 180 publications. The quality indices of his research are an h-index of 54 and a total number of citations of about 8890 (Google Scholar). His scientific career has been recognized with the Sigma-Aldrich Emerging Investigator Award 2013 provided by the Spanish Royal Society of Chemistry (RSEQ). Since 2016, he is secretary of the Electrochemical Group of the RSEQ.

Recent advances and remaining challenges on the use of shape-controlledmetal nanoparticles in Electrocatalysis

The incorporation of shape-controlled metal nanoparticles in Electrocatalysis is contributing significantly to a better understanding of the correlations between surface structure and electrochemical reactivity at the nanoscale [1,2]. In this communication, some of the basic requirements to properly use these shaped metal nanoparticles in electrochemical reactions including surface cleanness, and correlations between particle shape and surface structure will be reported. Then, some recent advances in the application of these shaped nanomaterials for different electrochemical reactions of interest will be highlighted [3-5]. Finally, some of the most important remaining challenges on this topic will be discussed.

<u>References</u>

[1] Solla-Gullón, J.; Vidal-Iglesias, F. J.; Feliu, J. M. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 107, 2011, 263.

[2] García-Cruz, L.; Montiel, V.; Solla-Gullón, J. Physical Sciences Reviews, 2018, 4, 20170124.
[3] Arán-Ais, R. M.; Solla-Gullón, J.; Herrero, E.; Feliu J. M. J. Electroanal. Chem., 808, 2018, 433.
[4] Solla-Gullón, J.; Feliu, J. M. Curr. Opin. Electrochem., 21, 2020, 65.

[5] Antoniassi, R. M.; Erikson, H.; Solla-Gullón, J.; Torresi, R. M.; Feliu, J. M. ChemElectroChem, 8, 2021, 49.

PAST LE STUDIUM CONFERENCES

2021

Prof. Maxwell Hincke & Dr Sophie Réhault-Godbert

Innate immunity in a biomineralized context: trade-offs or synergies? 23-24 March 2021

Dr Rebecca Tharme & Prof. Karl Matthias Wantzen Managing riverscapes and flow

regimes for biocultural diversity 20-21 January 2021

2020

Dr Magdalena Malinowska & Dr Arnaud Lanoue

Exploring the molecular diversity of grape, a source of natural ingredients 3 December 2020

Dr Jean-François Deluchey & Prof. Nathalie Champroux What are our lives worth to a neoliberal government? Capitalism, War and Biopolitics in the Pandemic Era

18 - 19 November 2020

Prof. Pieter Hiemstra & Dr Mustapha Si-Tahar Novel host- and microbiota-directed strategies for treating respiratory infections

24 - 25 September 2020

Dr Emilio Maria Sanfilippo & Xavier Rodier FAIR Heritage: Digital Methods, Scholarly Editing and Tools for Cultural and Natural Heritage 17-18 June 2020

Dr Margriet Hoogvliet & Prof. Chiara Lastraioli Spatial Humanities and Urban Experiences During the Long Fifteenth Century 11 Mai 2020 Dr Thimmalapura Marulappa Vishwanatha & Dr Vincent Aucagne Challenges and prospects in chemoselectuve ligations: from protein synthesis to site-specific conjugation 27-29 January 2020

Dr Arunabh Ghosh & Prof. Fouad Ghamouss Towards Futuristic Energy Storage; paving its way through Supercapacitors, Li-ion batteries and beyond 22-24 January 2020

2019

Dr Yuri Dancik & Dr Franck Bonnier Skin Models in Cosmetic Science: Bridging Established Methods and Novel Technologies 2 - 4 December 2019

Dr Eric Robert, Dr Jean-Michel Pouvesle & Dr Catherine Grillon International Meeting on Plasma Cosmetic Science 25-27 November 2019

Prof. Richard Freedman & Prof. Philippe Vendrix Counterpoints: Renaissance Music and Scholarly Debate in the Digital Domain

14-16 November 2019

Prof. Manuela Simoni, Dr Frédéric Jean-Alphonse, Dr Pascale Crépieux & Dr Eric Reiter Targeting GPCR to generate life, preserve the environment and improve animal breeding: technological and pharmaco logical challenges

16-18 October 2019

Prof. Akkihebbal Ravishankara & Dr Abdelwahid Mellouki Climate, air quality and health: longterm goals and near-term actions 28 June 2019

PAST LE STUDIUM CONFERENCES

Dr Wolfram Kloppmann N and P cycling in catchments: How can isotopes guide water resources management?

18 June 2019

Dr Carmen Díaz Orozco & Dr Brigitte Natanson Forging glances. Images and visual cultures in XIXth century Latin America 28-29 May 2019

Dr Tijen & Dr Gülçin Erdi Rebel streets : urban space, art, and social movements 28 - 29 May 2019

Dr Marcelo Lorenzo & Prof. Claudio Lazzari New avenues for the behavioral manipulation of disease vectors 21-23 May 2019

Dr Agnieszka Synowiec & Dr Christophe Hano Biological Activities of Essential Oils

13 - 15 May 2019

Prof. Yiming Chen & Prof. Driss Boutat 2019 International Conference on Fractional Calculus Theory and Applications (ICFCTA 2019) 25-26 April 2019

Prof. Temenuga Trifonova & Prof. Raphaële Bertho On the Ruins and Margins of European Identity in Cinema: European Identity in the Era of Mass Migration 2-3 April 2019

Dr Patrizia Carmassi & Prof. Jean-Patrice Boudet Time and Science in the Liber Floridus of Lambert of Saint-Omer 27-28 March 2019

Dr Guillermina Dalla-Salda & Dr Philippe Rozenberg Adapting forest ecosystems and wood products to biotic and abiotic stress 12 - 15 March 2019 Dr Vincent Courdavault & Prof. Nathalie Guivarc'h Refactoring Monoterpenoid Indole Alkaloid Biosynthesis in Microbial Cell Factories (MIAMi) 5-6 February 2019

D-0 February 2013

Dr Denis Reis de Assis & Prof. Hélène Blasco Induced Pluripotent Stem Cells (iPSCs): From Disease Models to Mini-Organs 28-30 January 2019

2018

Prof. Igor Lima Maldonado & Prof. Christophe Destrieux Frontiers in Connectivity: Exploring and Dissecting the Cerebral White Matter

5-6 December 2018

Dr Marius Secula, Prof. Christine Vautrin-Ul & Dr Benoît Cagnon Water micropollutants: from detection to removal

26-28 November 2018

Prof. Guoxian Chen & Prof. Magali Ribot Balance laws in fluid mechanics, geophysics, biology (theory, computation, and application) 19-21 November 2018

Dr Volodymyr Sukach & Prof. Isabelle Gillaizeau Progress in Organofluorine Chemistry 15-17 October 2018

Jens Christian Moesgaard, Prof. Marc Bompaire, Bruno Foucray & Dr Guillaume Sarah Coins and currency in the 10th and 11th centuries: issuing authorities, political powers, economic influences 11-12 October 2018

Dr Norinne Lacerda-Queiroz & Dr Valérie Quesniaux Malaria – Current status and challenges 27-28 September 2018

PAST LE STUDIUM CONFERENCES

Dr Renaud Adam & Prof. Chiara Lastraioli Lost in Renaissance 20-21 September 2018

Prof. Abdelwahid Mellouki & Dr Véronique Daële The 6th Sino-French Joint Workshop on Atmospheric Environment 10-12 September 2018

10-12 September 2018

Prof. Emre Erdem & Dr Guylaine Poulin-Vittrant Frontiers in Nanomaterials for Energy Harvesting and Storage

27-29 August 2018

Prof. Graeme Boone & Prof. Philippe Vendrix Affective horizons of 'song' in the long fifteenth century

27-28 June 2018

Prof. Bilal Haider Abbasi, Prof. Nathalie Guivarc'h & Dr Christophe Hano Modern aspects of Plant in Vitro Technology 27 June 2018

Prof. Marek Łos & Dr Catherine Grillon Stem cells & cancer stem cells: Regenerative medicine and cancer 11-13 June 2018

Dr Ewa Łukaszyk & Prof. Marie-Luce Demonet Transcultural Mediterranean: in search of non-orthodox and nonhegemonic universalism(s) 30-31 May 2018

Prof. Vladimir Shishov & Dr Philippe Rozenberg Wood formation and tree adaptation to climate 23-25 May 2018

23-25 May 2018

Dr Ján Žabka & Dr Christelle Briois Advances in Space Mass Spectronometry for the Search of Extraterrestrial Signs of Life 16-18 May 2018 Dr Massimiliano Traversino Di Cristo & Prof. Paul-Alexis Mellet From Wittenberg to Rome, and Beyond Giordano Bruno: Will, Power, and Being Law, Philosophy, and Theology in the Early Modern Era 26-27 April 2018

Dr William Horsnell & Dr Bernhard Ryffel Neurotransmitters: non-neuronal functions and therapeutic opportunities 26-28 March 2018

Prof. Eric Goles & Prof. Nicolas Ollinger Discrete Models of Complex Systems 19-21 March 2018

2017

Dr Kristina Djanashvili & Dr Éva Jakab Tóth Is Multimodal Imaging an Invention with a Future? The Input of Chemistry 11-13 December 2017

Dr Emmanuel Saridakis & Dr Marc Boudvillain Structural biology and biophysics of RNA-protein complexes 13-15 November 2017

Prof. Franco Pierno & Prof. Chiara Lastraioli The Runaway Word. Languages and Religious Exile in the Renaissance 7-8 November 2017

Prof. Michiel Postema & Dr Ayache Bouakaz Acoustic bubbles in therapy: recent advances with medical microbubbles, clouds and harmonic antibubbles 23-24 October 2017

Dr Mauro Simonato & Dr Jérôme Rousselet Species spread in a warmer and globalized world 18-20 October 2017

Dr Sophie Heywood & Dr Cécile Boulaire 1968 and the boundaries of childhood 12-14 October 2017

Prof. Mihai Mutascu & Prof. Camelia Turcu Globalization and growth in eurozone: new challenges 28-29 September 2017

......

PAST LE STUDIUM CONFERENCES

Dr Mauro Manno & Prof. Richard Daniellou The role of glycosylation on serpin biology and conformational disease 27-29 September 2017

Prof. Salvatore Magazù, Prof. Francesco Piazza, Dr Sivakumar Ponnurengam Malliappan, Dr Emilie Munnier Recent advances in basic and applied science in cosmetics

3-5 July 2017

Dr Maria Clotilde Camboni & Prof. Chiara Lastraioli The dynamics of the relationship with the more recent past in early modern Europe: between rejection and acknowledgement 20-22 June 2017

Dr Sohail Akhter & Prof. Chantal Pichon Messenger RNA therapeutics: advances and perspectives 22-23 March 2017

Prof. Gary Gibbons & Prof. Sergey Solodukhin GARYFEST: Gravitation, Solitons and Symmetries 22-24 March 2017

2016

Dr Mohammed Ayoub & Dr Eric Reiter Antibodies Targeting GPCRs, Recent Advances and Therapeutic Challenges 24-25 November 2016

Prof. David Koester, Dr Bernard Buron & Dr Jean-Philippe Fouquet Practical Engagements and the Social-Spatial Dimensions of the Post-Petroleum Future

7-9 November 2016

Dr Jorge Gutierrez & Dr Philippe Frank Lipids, Nanotechnology and Cancer 10-12 October 2016

Dr Ferenc Kàlmàn & Dr Éva Jakab Tóth Being Smart In Coordination Chemistry: Medical Applications 26-28 September 2016 Jean-Philippe Bouillon, Mourad Elhabiri, Jiri Kozelka, Laurent Plasseraud, Michèle Salmain & Eva Tóth, Roman Bulánek, Radek Cibulka, Michal Otyepka, Jan Preisler, Vladimír Šindelář & Irena Valterová **7th French-Czech ''Vltava'' Chemistry Meeting**

Advancing Chemistry through Bilateral Collaboration

5-6 September 2016

Dr Satyajit Phadke, Dr Chandrasekaran & Prof. Mériem Anouti Future strategies in electrochemical technologies for efficient energy utilisation 7-9 September 2016

Prof. Peter Bennett & Prof. Philippe Vendrix Sacred/secular intersections in earlymodern European ceremonial: Text, music, image and power 11-13 July 2016

Prof. Leandros Skaltsounis & Prof. Claire Elfakir Olive Bioactives: applications and prospects

4-6 July 2016

Dr Mikhail Zubkov & Dr Maxim Chernodub Condensed matter physics meets relativistic quantum field theory 13-15 June 2016

Prof. Brown-Grant, Dr Carmassi, Prof. Drossbach, Prof. Hedeman, Dr Turner & Prof. Ventura Inscribing Knowledge on the Page: Sciences, Tradition, Transmission and Subversion in the Medieval Book 6-9 June 2016

/ Julie 2010

Prof. Gary Gibbons & Prof. Sergey Solodukhin Classical and quantum black holes 30-31 May 2016

2015

Dr Gyula Tircsó & Dr Éva Jakab Tóth Medicinal flavor of metal complexes: diagnostic and therapeutic applications 7-9 December 2015

PAST LE STUDIUM CONFERENCES

Prof. Erminia Ardissino & Dr Elise Boillet Lay Readings of the Bible in Early Modern Europe 24-26 November 2015

Prof. Kathleen Campbell & Dr Frances Westall Habitats and inhabitants on the early Earth and Mars

17-18 November 2015

Prof. Marion Harris & Dr David Giron Insects, pathogens, and plant reprogramming: from effector molecules to ecology 5-7 October 2015

Dr Arayik Hambardzumyan & Dr Sylvie Bonnamy Bioinspired molecular assemblies as protective and delivery systems 7-9 September 2015

Dr Peter Arensburger & Dr Yves Bigot Analysis and Annotation of DNA Repeats and Dark Matter in Eukaryotic Genomes

8-10 July 2015

Prof. Scott Kroeker & Dr Pierre Florian Nuclear Waste Disposal: Designing Materials For the End of Time 27-29 May 2015

Prof. Gary Gibbons & Prof. Sergey Solodukhin Entanglement, Holography and Geometry 17 April 2015

Prof. Kari Astala & Dr Athanasios Batakis & Prof. Michel Zinsmeister Conformal Methods in Analysis, Random Structures & Dynamics 12 April 2015

z April 2015

Prof. Kari Astala & Dr Athanasios Batakis Loire Valley Workshop on Conformal Methods in Analysis, Random Structures & Dynamics 12-16 April 2015

2014

Dr Natalia Kirichenko & Dr Alain Roques Insect invasions in a changing world 17-19 December 2014

Dr Alejandro Martinez & Dr Philippe Rozenberg Natural and human-assisted adaptation of forests to climatic constraints: the relevance of interdisciplinary approaches 18-19 November 2014

Dr Magnus Williamson & Prof. Xavier Bisaro Reconstructing Lost Spaces: acoustic, spatial, ceremonial contexts 30-31 October 2014

Dr Edouard Asselin & Dr Patrick D'Hugues Copper, a strategic metal? The present and future of resources, processing and recycling 14-15 October 2014

Dr C. Oshman & Dr G. Poulin-Vittrant Piezoelectric micro and nanostructures and their applications 25-26 September 2014

Dr Eric Reiter 3rd International Congress on Gonadotropins & Receptors - ICGRIII 7-10 September 2014

Dr Robin Beech & Dr Cédric Neveu NemaTours: bringing worms together 17-18 July 2014

Prof. Gary Gibbons & Prof. Sergey Solodukhin Gravitation, Solitons & Symmetries 20-23 May 2014

Dr Charles Sennoga & Dr Ayache Bouakaz Targeted ultrasound contrast maging and drug delivery 19-20 May 2014

Dr Igor Leontyev & Dr Louis Hennet Heterogeneous catalysis : recent advances in preparation and characterization 31 March - 1 April 2014

PAST LE STUDIUM CONFERENCES

2013

Prof. Chandani Lokuge & Prof. Trevor Harris Postcolonialism now

4-5 February 2013

Dr Fabrizio Gherardi & Dr Pascal Audigane Geochemical reactivity in CO₂ geological storage sites, advances in optimizing injectivity, assessing storage capacity and minimizing environmental impacts 25-26 February 2013

Prof. Marcos Horacio Pereira & Prof. Claudio Lazzari Vector-borne diseases : a multidisciplinary approach 8-9 April 2013

Prof. Marc Hillmyer & Prof. Christophe Sinturel Bottom-up approaches to Nanotechnology 29-31 May 2013

Dr Svetlana Eliseeva & Prof. Stéphane Petoud Lanthanide-based compounds : from chemical design to applications 11-12 July 2013

Prof. Pietro Roccasecca & Prof. Philippe Vendrix Vision and image-making : constructing the visible and seeing as understanding 13-14 September 2013

Prof. Reuben Ramphal & Prof. Mustapha Si-Tahar Chronic inflammatory lung diseases : The next-generation therapeutic targets to consider 20-21 September 2013

Prof. Sergey Traytak & Prof. Francesco Piazza Macromolecular crowding effects in cell biology : models and experiments 24-25 October 2013

Prof. Mourad Bellasoued & Prof. Le Rousseau Biology and mathematical inverse problems : a new wedded couple ? 14-15 November 2013

2012

Dr Lidewij Tummers & Prof. Sylvette Denèfle Co-housing : born out of need or new ways of living ? 12-14 March 2012

Prof. Clive Oppenheimer & Dr Bruno Scaillet Mount erebus, antarctica : an exceptional laboratory volcano 15-16 March 2012

Prof. Friedrich Wellmer Life and innovation cycles in the field of raw material supply and demand a transdisciplinary approach 19-20 April 2012

Dr Gerard Klaver, Dr Emmanuelle Petelet & Dr Philippe Negrel Rare earth elements in our environment from ores towards recycling through the continental cycle 10-11 May 2012

Prof. Rosalind Brown-Grant & Prof. Bernard Ribémont Textual and visual representations of power and justice in medieval manuscript culture

5-6 July 2012

Dr Agata Matejuk & Prof. Claudine Kieda Defeating Cancer Can non coding small RNAs be new players? 24-25 September 2012

2011

Prof. Nicola Fazzalari & Prof. Claude-Laurent Benhamou Osteocyte Imaging 13-14 January 2011

Prof. Nikolay Nenovsky & Prof. Patrick Villieu Europe and the Balkans : economic integration, challenges and solutions 3-4 February 2011

PAST LE STUDIUM CONFERENCES

Prof. Salvatore Magazù & Dr Louis Hennet Cosmetics and Pharmaceutics : New trends in Biophysical Approaches 14-15 February 2011

Prof. Irène Garcia-Gabay & Dr Valérie Quesniaux Inflammatory and infectious diseases

30-31 May 2011

Prof. Ali Chamseddine, Prof. Alain Connes & Prof. Mickaël Volkov Non commutative geometry, strings and gravity 25-27 May 2011

ZJ-Z/ May ZU

Prof. Jinglin You & Dr Patrick Simon In situ Molecular Spectroscopic Technique and Application 20-21 June 2011

Prof. Valery Terwilliger & Dr Jérémy Jacob Hydrogen isotopes as environmental recorders

15-16 September 2011

Prof. Philip Weller & Prof. Philippe Vendrix Mystères des voix perdues – Polyphonies reconstituées, 1420-1520 24-30 October 2011

Prof. John Brady & Prof. Marie-Louise Saboungi Water in biological systems 5-6 December 2011

2010

Prof. Alfredo Ulloa Aguirre & Dr Eric Reiter New directions in gonadotropin hormones and their receptors 3-4 June 2010

Dr Yossi Maurey & Dr Christine Bousquet-Labouérie Sacred space, sacred memory: bishop saints and their cities 10-12 June 2010

CONTACT

Dr Aurélien Montagu

Scientific Relations Manager +33 2 38 21 14 86 aurelien.montagu@lestudium-ias.fr

LE STUDIUM

Loire Valley Institute for Advanced Studies

www.lestudium-ias.com 1, rue Dupanloup • 45000 Orléans • FR

