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Schrödinger & Virasoro

Figure: E. Schrödinger (1933) Figure: M. A. Virasoro (recent)
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Celebration of Gary’s Honoris Causa degree, Tours 2017

Figure: GWG (Wikipedia) Figure: HGD (Tours,2014)

My conference talk is dedicated to Gary Gibbons, “Doctor Honoris Causa”
of the Université de Tours. The work presented here is greatly inspired by
his article “Dark Energy and the Schwarzian derivative” (2014).
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The Schrödinger-Virasoro Lie algebra [Henkel, Roger-Unterberger]

The Schrödinger-Virasoro (SV) algebra, sv(d), introduced and named
by Henkel in 1994 can be presented as the Lie algebra of vector fields
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with f , a i , b smooth functions of the time axis, T, and Ω ∈ so(d).
The SV algebra is an infinite-dimensional overalgebra of (i) the
Schrödinger Lie algebra and (ii) the (centerless) Virasoro algebra,
designed to extend the CFT of statistical mechanics to, e.g.,
symmetries of out of equilibrium systems.
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Outline of the talk

1 Devise geometric origin of the Schrödinger-Virasoro group,
SV(d), via generalized conformal Bargmann structures

2 Reveal SV as symmetry group of the space of
Schrödinger (S) operators
Lévy-Leblond (LL) operator
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The The Schrödinger group, Sch(d)

The free Schrödinger equation
The irreducible unitary representation of Sch(d) of mass m
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The Schrödinger group [Niederer, Hagen, Perroud]

The Schrödinger group, Sch(d), is the maximal group of (projective) Lie
symmetries of the free Schrödinger equation of mass m, namely(

i~
∂

∂t
+
~2

2m
∆Rd

)
ψ(t , x) = 0 (1)

on Galilei spacetime N = T × Rd. Its unitary representation, %, on the
space of solutions ψt ∈ L2(Rd, dx1 . . . dxd) of (1) is given by

[%(Φ)ψ] (t , x) = e
im
~
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(−ft + d)
d
2

ψ

(
gt − e
−ft + d
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−ft + d
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] ) (2)

for all Φ = (A ,b, c, d, e, f , g, h) ∈ Sch(d), where A ∈ SO(d); b, c ∈ Rd;
d, e, f , g, h ∈ R with dg − ef = 1.
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We have the short exact sequence

0→ R→ Sch(d)→ Sch(d)/R = (SO(d) × SL(2,R)) n (Rd × Rd)→ 1

The centerless Schrödinger group is isomorphic to the group of matrices A b c
0 d e
0 f g

 ∈ Sch(d)/R (3)

with (A ,b, c, d, e, f , g) as above. Its projective action on spacetime, N,
reads  x

t
1

 7−→
 A b c

0 d e
0 f g


 x

t
1

 ∼


Ax+bt+c
f t+g
dt+e
f t+g
1


and descends as that of PSL(2,R) on the time axis T � S1. The subgroup
of dilations reveals a “dynamical exponent” z = 2, viz.,

(t , x) 7→ (g−2 t , g−1 x) where g ∈ R×

indicating that time is dilated twice as much as space.
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The The Virasoro group, Vir

The Schwarzian derivative: a tribute to Lagrange
The Bott-Thurston cocycle
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A tribute to Lagrange

If φ is a conformal mapping of C, Lagrange introduces the function

S(φ) = −2
√
φ′

(
1
√
φ′

)′′
in his treatise on the cartes géographiques — Vol IV des œuvres
complètes, cf. [Guieu-Roger, Ovsienko-Tabachnikov].

This Lagrangian is, today, called the Schwarzian (derivative)

S(φ) =
φ′′′

φ′
−

3
2

(
φ′′

φ′

)2

of φ and is an object of projective geometry.
It defines a non-trivial 1-cocycle, S, of Diff+(T) with coefficients in the
module of quadratic differentials Q(T):

S(φ1 ◦ φ2) = φ∗2S(φ1) + S(φ2)

and has kernel PSL(2,R).
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The Virasoro group

The Virasoro group, Vir, is the central extension of Diff+(T), namely

0→ R→ Vir→ Diff+(T)→ 1

defined by the Bott-Thurston 2-cocycle

BT(φ1, φ2) = −
1
2

∫
T
E(φ1 ◦ φ2)A(φ2)

with E(φ) = log φ′ and A(φ) = dE(φ), respectively the Euclidean and
affine 1-cocycles of Diff+(T).
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The Schrödinger-Virasoro group
&

Bargmann structures

The Galilei-Virasoro group and Galilei structures.

Geometric definition of the Schrödinger-Virasoro (SV) group [Henkel,

Roger-Unterberger] in terms of ξ-conformal Bargmann structures.

Nontrivial cohomology classes of SV.
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Galilei & Newton-Cartan structures

Definition [Cartan, . . . , Havas, Künzle, . . . ]

A Galilei structure on a connected oriented (d + 1)-dimensional spacetime
manifold N is a pair (γ, θ) where γ ≥ 0 is symmetric 2-contravariant tensor
field of rank d, and θ ∈ Ω1(N), the “clock”, satisfies dθ = 0 & spans ker(γ).

Locally, we have a fibration π0 : N → T over the absolute Time axis (we
will consider T � S1):

T = N/ ker(θ)

The following definition [Cartan, Trautman, Künzle, . . . ] has been devised for a
geometric formulation of Newton gravitation theory akin to GR.

Definition
A Newton-Cartan (NC) structure is a quadruple (N, γ, θ,∇) where (N, γ, θ)
is a Galilei structure, and ∇ a symmetric affine connection such that
∇γ = 0 and ∇θ = 0.
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Galilei-Virasoro group

The Galilei group, Gal(N, γ, θ,∇), is the (finite-dimensional) group of
automorphisms of (N, γ, θ,∇) [Trautman].

Two Galilei structures are conformally related, (γ, θ) ∼ (γ̂, θ̂), iff γ̂ = λ−1γ

and θ̂ = λθ with λ ∈ C∞(N,R×+); hence dλ ∧ θ = 0 or λ ∈ π∗0 C∞(T,R×+).

Definition
The Galilei-Virasoro group is the group, GV(N, γ, θ), of orientation
preserving automorphisms of the conformal Galilei structure (N, γ ⊗ θ).

Remark [D-Burdet-Perrin]

The (centerless) Schrödinger group of a NC manifold is the group

Sch(N, γ, θ,∇) = GV(N, γ, θ) ∩ Proj(N,∇)

Here Proj(M,∇) is the group of projective transformations of ∇ (that
permute geodesics up to reparametrization, i.e., preserve “free fall”).
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I The GV group structure involves crucially densities. The Diff(T)-module,
Fδ(T), of δ-densities of T can be trivialized via a non-vanishing 1-form,
e.g., as α = α0 |dt |δ where α0 ∈ C∞(T).
As in [Roger-Unterberger] we use the trivial Galilei structure

N = T × Rd, γ = δij∂i ⊗ ∂j , θ = dt , vol = dt ∧ dx1 ∧ · · · ∧ dxd (4)

to work out the group GV(d).

Proposition
Let (N, γ ⊗ θ) be the trivial conformal Galilei spacetime (4), then Φ ∈ GV(d)
iff Φ = (φ; R ,α) with φ ∈ Diff+(T), R ∈ F0 ⊗ SO(d) & α ∈ F

− 1
2
⊗ Rd; the

GV-action is given by

Φ

(
t
x

)
=

(
φ(t)√

φ′(t)R(φ(t)) x + α(φ(t))

)
The group law can be computed, yielding the ∞-dimensional structure

GV(d) = Diff+(T) n
[
(F0 ⊗ SO(d)) n

(
F
− 1

2
⊗ Rd

)]
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Bargmann structures: ambient description

Bargmann structures are natural extensions of Newton-Cartan (NC)
structures. As shown by Eisenhart in 1929 the solutions of Newton
equations of motion are in fact projections of null geodesics of a certain
Lorentz manifold above spacetime. This was further elaborated as follows.

Definition-Theorem [D-Burdet-Künzle-Perrin]

1 A Bargmann manifold is a principal (R,+)-bundle

π : M → N

with fundamental vector field ξ; the total space, M, is endowed with a
metric, g, of signature (d + 1, 1) such that g(ξ, ξ) = 0 and ∇ξ = 0.

2 The base of a Bargmann manifold (M, g, ξ) is a NC manifold
(N, γ, θ,∇N) with γ = π∗g−1, ξ[ = g(ξ) = π∗θ, and ∇N the projection of
the Levi-Civita connection, ∇, of (M, g). We will write Πξ : g 7→ (γ, θ).
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Lifting conformal Galilei structures

Proposition [D-Michel]

Let (N, γ, θ) be a Galilei spacetime and π : M → N a (R,+)-fiber bundle
with fundamental vector field ξ.

1 The Bargmann metrics g ∈ Π−1
ξ (γ ⊗ θ) are of the form

g = λ
(
π∗γ−1 + 2 π∗θ � ω

)
(5)

where λ ∈ C∞(M,R×+) & dλ ∧ ξ[ = 0, and ω is a principal connection.
2 If g ∈ Π−1

ξ (γ, θ), and d = 1, there exists a coordinate system (x, t , s)
and a function U ∈ C∞(N) sth γ = ∂x ⊗ ∂x & θ = dt , with [Brinkmann]

g = dx2 + 2dt ds − 2U(t , x)dt2 & ξ = ∂s (6)

The function U is Newtonian potential; null geodesics of (M, g) project as
solutions of the equations of motion ẍ = −∂xU(t , x) [Eisenhart].
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The Schrödinger-Virasoro group

We know that Bargmann metrics g ∈ Π−1
ξ (γ ⊗ θ) that project onto a given

Galilei conformal structure are of the form (5). This conformal class being
however too large, we propose the following

Definition [D-Michel]

We will call ξ-conformal class of g the class

[g]ξ =
{
λ (g + µ ξ[ ⊗ ξ[)

∣∣∣ λ, µ ∈ C∞(M); λ > 0
}

(7)

- NB The “conformal factor”, λ, is (the pull-back of) a function of T since

dλ ∧ ξ[ = 0

- This extension1 of conformal rescalings is straightforward and natural
since a Bargmann structure is given by a pair (g, ξ).

1See [Bekenstein] for related notion in GR (so-called “disformal” rescalings of the metric).
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Recalling that the group of automorphisms of our principal fibre bundle
π : M → N is the group Aut(M, ξ) =

{
Φ ∈ Diff(M)

∣∣∣Φ∗ξ = ξ
}
, we are now

ready for the following

Definition [D-Michel]

The Schrödinger-Virasoro group of a Bargmann manifold is defined by

SV(M, g, ξ) =
{
Φ ∈ Aut(M, ξ)

∣∣∣Φ∗[g]ξ ⊆ [g]ξ
}

(8)

As an example, we will specialize this general definition to the canonical
flat (d + 1, 1)-dimensional Bargmann structure and reveal the stucture of
its Schrödinger-Virasoro group, SV(d), whose infinitesimal generators can
be shown to span the above Lie algebra sv(d).
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Proposition

For the flat (d + 1, 1)-dimensional Bargmann structure M = (T × Rd) × R,
g = η = δij dx idx j + 2dt ds, ξ = ∂s , we have the group isomorphisma

SV(d) � Diff+(T) n
[
SO(d) n

(
(F
− 1

2
⊗ Rd) ⊕c F0

)]
(9)

Putting Φ = (φ; R ,α, β) ∈ SV(d), and A(φ) = φ′′/φ′, the SV action reads t
x
s

 Φ
7→


φ(t)√

φ′(t) Rx + α(φ(t))

s − ‖x‖
2

4 A(φ)(t) −
√
φ′(t) 〈Rx,α′(φ(t))〉+

(
β − 1

2 〈α,α
′〉
)

(φ(t))


aHere [c] ∈ H2

(
F
− 1

2
⊗ Rd,F0

)
represented by c(α1,α2) =

1
2 [〈α1,α

′
2〉 − 〈α2,α

′
1〉]

I This expands to SV original results of [Gibbons] related to Diff(R). The
centrally-extended SV group is then plainly [Roger-Unterberger]

ŜV(d) � Vir n
[
SO(d) n

((
F
− 1

2
⊗ Rd

)
⊕c F0

)]
(10)
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We exhibit non-trivial cohomology classes of SV generalizing the previous
Diff+(T) ones and associated with conformal Bargmann structures.

If Φ ∈ SV(M, g, ξ) there exists λ, µ : SV→ C∞(M,R) sth (Def. (8))

Φ∗g = λ(Φ) (g + µ(Φ) ξ[ ⊗ ξ[) & Φ∗ξ = ξ (11)

Theorem [D-Michel]

The maps Ẽ = log(λ), resp. Ã = dẼ & S̃ = µ ξ[ are non-trivial 1-cocycles
of SV(M, g, ξ) with values in C∞(M,R), resp. Ω1(M).

Proof (sketch): Suppose Ẽ were a 1-coboundary; this would yield a
Diff+(T)-invariant 1-form of T. Idem for Ã. Also, if S̃ were a 1-coboundary,
one would show that SV ⊂ Conf(M, ĝ) for some metric ĝ. �
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We exemplify this result in the trivial, flat, Bargmann case.

Theorem [D-Michel]

For the trivial (d + 1, 1)-dimensional Bargmann structure, the previous SV
1-cocycles read respectively, for any Φ = (φ; R ,α, β) ∈ SV(d),

Ẽ(Φ) = E(φ)

Ã(Φ) = dẼ(Φ)

S̃(Φ) = µ(Φ)dt

where

µ(Φ) = −

[
‖x‖2

2
S(φ) + 2(φ′)

3
2 〈Rx,α′′〉 ◦ φ + φ′(2β′ − 〈α,α′′〉) ◦ φ

]
(12)

They extend to SV the Euclidean, affine and projective Diff+(T)-cocycles.
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Action of the SV group on the
space of Schrödinger and
Lévy-Leblond operators

The Schrödinger equation: ambient formulation.

The SV group as a group of symmetries of the Schrödinger equation
with arbitrary potential in the sense of [Niederer].

The Lévy-Leblond equation: ambient formulation.

The SV group as a group of symmetries of the Lévy-Leblond equation
with arbitrary potential.
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The Schrödinger equation: ambient formulation

The space of motions of a non-relativistic particle of mass m in a NC
spacetime is symplectomorphic toV/ ker(σ) where

V2n−2 =
{
(x, p) ∈ T∗M

∣∣∣ g−1(p, p) = 0; p · ξ = m
}

is the “evolution space” endowed with its induced presymplectic 2-form, σ.
To quantize the system, invoke Dirac’s quantization of constraints & CEQ:

Qw,w′(g−1(p, p)) = −~2∆Y
g & Qw,w′(p · ξ −m) =

~

i
Lξ −m

where w = n−2
2n & w′ = n+2

2n are the Yamabe weights if dim M = n = d + 2.

Proposition [D-Burdet-Perrin, D-Gibbons-Horváthy, D-Lazzarini]

The coupled system of PDE on a Bargmann manifold (M, g, ξ), namely

∆Y
g Ψ = 0 &

~

i
LξΨ = mΨ (Ψ ∈ F Cw (M))

descends as the Schrödinger equation on NC spacetime (N, γ, θ,∇N).
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Action of SV on ambient Schrödinger operator

Lemma [D-Michel]

Let ĝ ∈ [g]ξ, i.e., ĝ = λ(g + µ ξ[ ⊗ ξ[) with λ = φ′ > 0, then

Ric ĝ = Ricg −
1
2

[
(n − 2)S(φ) + ∆g µ

]
ξ[ ⊗ ξ[ (13)

∆Y
ĝ = ∆Y

g − µ L2
ξ (14)

Using the Diff(M)-naturality of Ric and ∆, then, for any Φ ∈ SV(M, g, ξ),
and wave-function Ψ ∈ F Cn−2

2n
(M) we find

Φ∗(∆Y
g Ψ) = ∆Y

Φ∗gΦ
∗Ψ

= ∆Y
ĝΦ
∗Ψ

=
(
∆Y

g − µ L2
ξ

)
Φ∗Ψ

=
[
∆Y

g +
m2

~2
µ(Φ)

]
Φ∗Ψ
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Since, Φ∗ξ = ξ, we have Φ∗
(
~
i LξΨ −mΨ

)
= ~

i Lξ Φ∗Ψ −mΦ∗Ψ. Hence

Proposition
The action of the Schrödinger-Virasoro group on the space of Schrödinger
operators reads as follows. For all Φ ∈ SV(M, g, ξ):

Φ∗

 ∆Y (g)

~

i
Lξ −m

 =

 ∆Y (g) − µ(Φ)(Lξ)2

~

i
Lξ −m

 (15)

If Ψ is a solution of the Schrödinger equation of mass m on a Bargmann
manifold, (M, g, ξ), then Φ∗Ψ is a solution of the Schrödinger equation with
the supplemental potential

U(Φ) = −
1
2
µ(Φ) (16)

given by the generalized Schwarzian derivative (12).
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The kernel of a group-cocycle being a subgroup, we have the following

Corollary
The subgroup of the Schrödinger-Virasoro group

Sch(M, g, ξ) =
{
Φ ∈ SV(M, g, ξ)

∣∣∣ µ(Φ) = 0
}

(17)

is the Schrödinger group. Its canonical unitary representation, %, on the
space of solutions of the Schrödinger equation, is given by

%(Φ)Ψ = Φ∗Ψ (18)

NB In the free case, the representation (18) of SV(d) is plainly given by (2).
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The Lévy-Leblond equation: ambient formulation

The Lévy-Leblond (LL) equation has originally been devised in 1967 in
order to reproduce, in the Galilean framework, Dirac’s derivation of the
celebrated spin-1

2 relativistic wave equation. We provide, here, an ambient
formulation of this equation well-adapted to our treatment of the SV group.

Assume that our Lorentzian manifold (M, g) admits a spin structure,
i.e., a principal bundle Spin(M)→ M covering 2 : 1 the bundle of its
orthonormal frames. Let S(M) be the associated spinor-bundle of M.

The covariant derivative, ∇, of sections Ψ ∈ S(M) = Γ(M,S(M))
reads: ∇X Ψ = Xα(∂αΨ + λαΨ) for all X ∈ Vect(M) with
λα = 1

8

[
γβ, ∂αγβ − Γσαβγσ

]
where, for all α = 1, . . . , n, the (locally

defined) gamma matrices γα generate the embedding of TM in the
Clifford fiber-bundle of M.

We will suppose n odd for simplicity to avoid dealing with chirality;
see however [D-Horváthy-Palla] for the planar case d = 2.
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Let us introduce the conformally-invariant Dirac operator

Dg : S(M) ⊗ F Cw (M)→ S(M) ⊗ F Cw′(M)

of (M, g), where w = n−1
2n & w′ = n+1

2n (indeed Dĝ = Dg for all ĝ ∈ [g]).

Proposition [D, D-Michel]

The coupled system of PDE on a Bargmann manifold (M, g, ξ), namely

DgΨ = 0 &
~

i
LξΨ = mΨ (Ψ ∈ S(M) ⊗ F Cw (M))

descends as the Lévy-Leblond equation on NC spacetime (N, γ, θ,∇N).

Example. Starting with a Bargmann triple (R5, g, ξ), with g ∈ [η]ξ, we do
recover the standard LL equation in (3 + 1)-dimensional NC spacetime: −iσj∂j −2im

~

∂t + i
~V(t , x) iσj∂j

  ψ′(t , x)

ψ′′(t , x)

 = 0

with arguments ψ′, ψ′′ ∈ C∞(R4,C2), and scalar potential V = −1
2mµ.
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The spinorial Lie derivative

In the above LL equation, we have used the the “Lie derivative” of a spinor
field Ψ ∈ S(M) with respect to X ∈ Vect(M) given by [Kosmann]

LX Ψ = Xα∇αΨ −
1
4
γαγβ∇[αXβ]Ψ (19)

We know that the curvature

Ω(X ,Y) = LX LY − LY LX − L[X ,Y ]

of this “Lie derivative” vanishes for all X ,Y ∈ conf(M, g) [Kosmann,Bourguignon].
We have the stronger result: Ω(X ,Y) = 0 for all X ,Y ∈ sv(M, g, ξ).

Theorem [D-Michel]

The spinorial Lie derivative L : sv(M, g, ξ)→ End(S(M)) given by (19) is a
Lie algebra homomorphism.
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Infinitesimal SV action on LL operators

With these preparations, we have the following

Proposition [D-Michel]

Given a spin Bargmann manifold (M, g, ξ), the infinitesimal action of the
Schrödinger-Virasoro group on the space of LL operators reads

LX

 Dg

~

i
Lξ −m

 =

 −1
2
m(X) γ(ξ)∇ξ

0

 (20)

for all X ∈ sv(M, g, ξ), where m is the infinitesimal “Schwarzian cocycle”,
i.e., m(X) = δµ(Φ)|{δΦ=X ,Φ=Id} (see (11)).

This confirms and generalizes a similar statement [Roger-Unterberger] worked
out for the flat (1 + 1)-dimensional Galilei spacetime.
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Conclusion & outlook

We have realized the Schrödinger-Virasoro group of a Bargmann
structure as SV(M, g, ξ) = Aut(M, ξ) ∩ Stab([g]ξ).

The SV group is a group of invariance of the Schrödinger & LL eqs
“up to a potential term”, supplying generalized Schwarzian derivative.

Replacing automorphisms of the principal bundle M → N by mere
automorphisms of the fibration, we obtain SV(M, g, ξ): extended
Schrödinger-Virasoro group.

The the group S̃V of invariance of the Schrödinger-Newton equation
[Diosi,Penrose] is such that SV ⊂ S̃V ⊂ SV [D-Michel]; see [Robertshaw-Tod].

How to realize the centrally extended SV group, ŜV, (via the BT
cocycle) with some brand new extension of Bargmann structures?
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