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Honored to be able to participate in the celebration of
Gary’s numerous contributions to gravitational physics,
including classical and quantum aspects of black holes,
topological defects and the role of (super)symmetry.

Cherish him as a friend and a colleague, since we met in the
90-ies. During my many visits at Cambridge U., and his visits
at Penn, which also led to his association with Penn, we had
the opportunity to not only collaborate but also to explore
Philadelphia’s dynamic cultural as well as wining and dining

Scenes.

His curiosity and interest in every aspect of human
endeavor are boundless, which led to many animated
discussions and arguments in different settings, and not
only on topics pertinent to science...



He is a generous and a patient collaborator, with
encyclopedic knowledge of numerous aspects of
physics and mathematics. Our association resulted in a
productive collaboration with over 30 papers.

Our collaboration covered many aspects of gravitational
physics, with applications to supergravity and string theory
as a common thread: special holonomy spaces, non-linear
Kaluza-Klein reduction in supergravity theories, and
extensive work on black holes there; topics that fit well into
celebrating Gary’s contributions to science.

!

The topic of my talk



Outline:

|. Motivate Subtracted Geometry of general
asymptotically flat black holes —
prototype STU black holes

Il. Stepping stone toward holography:
Variational Principle for Subtracted Geometry

conserved charges and thermodynamics

lll. Dual Field Theory of Subtracted Geometry via
Holography of 2D Einstein-Maxwell-Dilaton gravity
holographic dictionary & new insights & beyond

V. Outlook



Background:

Initial work on subtracted geometry
M.C., Finn Larsen 1106.3341, 1112.4846, 1406.4536

M.C., Gary Gibbons 1201.0601
M.C., Monica Guica, Zain Saleem 1301.7032

Recent:

Toward holography of subtracted geometry:

Variational principle; conserved charges & thermodynamics
Ok Song An, M.C., loannis Papadimitriou, 1602.0150

Subtracted geometry and AdS, holography
M.C., loannis Papadimtiriou,1608.07018



|. General non-extremal, asymptotically flat black holes
in effective string theory in D=4

specified by
M - mass, Q,, P;- multi-charges, J - angular momentum

wi M >2 Q) + 2| P

Prototype solutions of a sector of maximally supersymmetric
D=4 Supergravity

[sector of toroidally compactified effective string theory] -2
so-called STU model



Prototype: Black holes of STU Model
Lag rangian [A sector of toroidally compactified effective string theory]

1 1
2/@21&1 —R*x1— 5 *x dng N\ dng — 562"“ * dx® N\ dx®
1 1

1 1 1
+ 5 CabeX " F” A FC 4 S CneX "X N FC 4 < Cpex "X XFP A FY
(a=1,2,3; C,pc-anti-symmetric tensor)
w/ AY & three gauge fields A%, the three dilatons n® and the three axions y“.

Black holes: explicit solutions of equations of motion for the above
Lagrangian w/ metric, four gauge potentials and three axio-dilatons

Prototype, four-charge rotating black hole, originally obtained via

solution generating techniques M.C., Youm 9603147
Chong, M.C., Lu, Pope 0411045

Four- SO(1,1) transfs. r _ (COSh 0j sinh 51-)

time-reduced Kerr BH sinhod; cosho;

Full four-electric and four-magnetic charge solution only recently obtained
Chow, Compére 1310.1295;1404.2602



Compact form of the metric for rotating four-charge black holes
M.C. & Youm 9603147
Chong, M.C., LU & Pope 0411045
_ dr? X
ds? = —A;V2G(dt + A2+ AL (% +db? + = sin® qubz)



Compact form of the metric for rotating four-charge black holes
M.C. & Youm 9603147
Chong, M.C., LU & Pope 0411045

dr? X
ds? = —A;V2G(dt+ A)2 + AV [ 2 4 d? + Z sin? 0dg?

X G

X =r%2 —2mr +a?> =oouter & inner horizon

G=T2—2m?“—|—a2(3082t9 HCEHcosh51, HSEHsinh(SI

I=0 =0
.2
A= Qmagm UL, — ) + 2miL] do

3 3
Ay = H(r + 2msinh® §;) 4 2a% cos® 0[r® + mr Z sinh? 67 4+ 4m?(T1, — II,)TI,
1=0 =0
— 2m? Z sinh? 67 sinh? § T sinh? § K|+ a*cos* 6 .
1 SI<J<K

_ Special cases:
Gal 4m12_:0608h 201 Mass 5, =5 Kerr-Newman
. &a =0 Reisner-Nordstrom
G4Qr = stinh251 , (I =0,1,2,3) Four charges 6, =0 Kerr
& a=0 Schwarzschild
G4J = ma(ll, —11,) , Angular momentum

_ &> m>0 w/m exp(26))-finite
Or equivalently: m, a, §,(1=0,1,2,3) extremal (BPS) black hole



Thermodynamics of outer & inner horizons
suggestive of weakly interacting 2-dim. CFT

M.C., Youm ’96
w/ “left-" & " right-moving” excitations

M.C., Larsen 97

Area of outer horizon S, = S, + Sy Sy = mm? (1L, + I1,)

S.= S_ -SR] Sp = Tmvm?2 — a2 (I, — II,)

[Area of inner horizon

Surface gravity (inverse temperature) of

outer horizon By= " (B, + Br) Br, =2 m (I, — I1j)
2
[inner horizon B.= % (B, -Br )] Br = 2mm (IT. + IIy)
vVm?2 — a?

Similar structure for angular velocities Q,, Q. and momenta J,, J..

3

3
Depend only on four parameters: m, a, 11, = H coshd; , Il = H sinh §;
I=0

I1=0
Shown more recently, all independent of the warp factor A, !

M.C., Larsen 11



M.C., Larsen 1112.4856

Motivation for Subtracted Geometry

Focus on the black hole “by itself” >
enclose the black hole in a box (a la Gibbons Hawking) =

an equilibrium system w/ conformal symmetry manifest *

The box chosen to lead to a “"mildly” modified geometry

changing only the warp factor A,> A
[maintains the same horizon thermodynamic quantities]

*Determination of new warp factor A, 2> A

Via scalar field wave eq.: separable & radial part solved by

hypergeometric functions w/ SL(2,R)* = unique A



M.C., Larsen 1112.4856
Subtracted geometry for rotating four-charge black holes

 A—1)2 2 1/2
ds? = —ATY2G(dt + A2 + Al (X >

X =r%—2mr+a®,

X
I a9+ 2 in? 6’dgb2>

G =1%—2mr+a’cos’0 ,

2ma sin”
A= 2O (0, L)+ 2L d

3 3
Ny = H(r + 2msinh? 67) + 2a® cos® 8[r? + mr Z sinh? 67 + 4m? (I, — II,)11,
1=0 =0
— 2m? Z sinh? 67 sinh? 8 T sinh? ¢ K|+ a*cos 6 .
I<J<K

Ao = A = (2m)*r(I12 — II2) + (2m)*112 — (2m)* (11, — I1,)%a® cos” 0

Comments: while Ay~ r4, A~r (not asymptotically flat!)
subtracted geo3metry depends3only on four parameters:

m, a, II.= Hcoshé; N | — Hsinhé;
I=0 I=0



Matter fields (gauge potentials and scalars)
M.C., Gibbons 1201.0601

Scalars: M =mMN2 =N3 =17, X1 = X2 = X3 =X,

(2m)? . (IT. — IL)
VA 2m

Running dilaton: e = cos 6

Gauge potentials: A = A% = A% = A,

4 _
p0 — 2m)7a (AHC o) in? Ode +

(2ma)? cos? 6 (I1, — IL,)* + (2m)11, 11, ”
(7 — 1I3) A |

A= 2m cos ([A = (2ma)* (1L, — I,)*sin® 0] dp — 2ma (2mIl, + r(Il, — I1;)) dt ),

A .
Magnetic frame
Non-extremal black hole immersed in constant magnetic field

w/ A= (2m)?>(I12 — I?)r + (2m)*T2 — (2ma)*(I, — II,)* cos® @



Brief Remarks:

Asymptotic geometry of subtracted geometry is of
Lifshitz-type w/ a deficit angle:

ds® = —(£)2pdt2 + B*dR? + R*(df” + sin® 6°d¢?))
I p=3, B=4

-> black hole in an asymptotically conical box”
M.C., Gibbons 1201.0601

- the box conformal to AdS, x S?
(confining, but softer than AdS)

- lift on a circle: locally AdS; x S?  M.C., Larsen 1112.4856

Conformal symmetry of AdS; promoted to Virasoro algebra
of dual CFT,, ala Brown-Hennaux -

reproduces entropy of 4D black holes a la Cardy



Origin of subtracted geometry

I. Subtracted geometry — as a scaling limit of near-horizon
black hole w/ three-large charges Q, (mapped on m, a, I'l,, ')

F—re, f=te'. m=me, §—aqae  MC.Gibbons1201.0601

— 0 < . 112
‘ 2msinh? 6 = Q = 2me /3(I12 — I12)Y/3,  sinh? 6y = T —SHQ
ii. Subtracted geometry - as an infinite boost Harrison
transformations on the original BH M.C., Gibbons 1201.0601
L0 Virmani 1203.5088
SO(1,1): H ~ ( ) B—=1 Sahay, Virmani 1305.2800
g1 M.C.. Guica, Saleem 1302.7032..

lil. Subtracted geometry — as turning off certain integration constants
in harmonic functions of asymptotically flat black holes

Baggio, de Boer, Jottar, Mayerson 1210.7695
An, M.C., Papardimitriou 1602.0150

- non-extremal black hole microscopic properties associated with its
horizon are captured by a dual field theory of subtracted geometry



M.C., Larsen 1406.4536

Subtracted geometry [A, > A=Ar+ B cos20 +C; A,B,C-horrendous]
also works for most general black holes of the STU Model
(specified by mass, four electric and four magnetics charges and

angular momentum) Chow, Compeére 1310.1295:1404.2602

M.C., Larsen 1106.3341
All also works in parallel for subtracted geometry of
most general five-dimensional black holes
(specified by mass, three charges and two angular momenta)
M.C., Youm 9603100



Further developments
Quantum aspects of subtracted geometries:

1) Quasi-normal modes - exact results for scalar fields
two damped branches - no black hole bomb

M.C., Gibbons 1312.2250, M.C., Gibbons, Saleem 1401.0544

i) Entanglement entropy —minimally coupled scalar
M.C., Satz, Saleem 1407.0310

lil) Vacuum polarization <@2?> analytic expressions
at the horizon: static M.C., Gibbons, Saleem, Satz 1411.4658
rotating M.C., Satz, Saleem 1506.07189
outside & inside horizon: rotating M.C., Satz 1612.06766

IV) Thermodynamics of subtracted geometry

No time

via Komar integral: M.C., Gibbons, Saleem 1412.5996

- Systematic approach via variational principle

highligts



ll. Thermodynamics via variational principle
An, M.C., Papadimitriou 1602.0150

Following lessons from AdS geometries Heningson, Skenderis '98;
Balasubramanian ,Kraus '99; deBoer,Verlinde?’99; Skenderis, Solodukhin '99...

achieved through an algorithmic procedure for subtracted geometry:

* Integration constants, parameterizing solutions of the egs. of motion, separated
into 'normalizable’ - free to vary & ‘non-normalizable’ modes — fixed

« Non-normalizable modes — fixed only up to transformations induced by
local symmetries of the bulk theory (radial diffeomorphisms & gauge transf.)

» Covariant boundary term, S, to the bulk action - determined
by solving asymptotically the radial Hamilton-Jacobi egn. -

_ Skenderis,Papadimitriou ‘04, Papadimitriou '05
» Total action S+S_; independent of the radial coordinate

* First class constraints of Hamiltonian formalism lead to conserved
charges associated with Killing vectors.

e Conserved charges satisfy the first law of thermodynamics



 |dentify normalizable and non-rormalizable modes

Introduce new coordinates:
Rescaled radial coord.:¢*r € (2m)? (112 — 1) 4+ (2m)*112 — (2ma)*(II, — I1,)?,
k 1
t

Rescaled time: g_?)t < (2m)3 (12 — 112 :

Trade four parameters m, a, 11, 11 for:

Pre = ©2m)3mI2 + 12) — (2ma)? (1L, — IL,)? £ vV/m? — a2(2m)> (112 — 11?)
Pw = 2ma(Il, — II,), B = 2m,

r., r, W - normalizable modes

B - non-renormalizable mode
(fixed up to bulk diffeomorphisms & global gauge symmetries)



"Vacuum’ solution
obtained by turning off r,, r., w — three normalizable modes:

Asymptotically conical box — conformal to AdS, xS?

, Asymptotically conical box
d
ds® = \/r (@2% — rk*dt* + (*d” + (° sin” 9dgb2>
r
BQ 2
e'l = \//_g : x =0, AY =0, A = Bcos 0dg
r

Non-normalizable (fourth) mode B, along with ¢and k, fixed up to
radial diffeomorphism:

r— A4y k— XNk, (—MN, B—B
and global U(1) symmetry:

e’ — pfe, v = pu 2y, A = pPAY, A — pA, ds? — ds?

which keep kB3/# - fixed



 Radial Hamiltonian formalism
to determine S, to the bulk action S

Suitable radial coordinate u, such that constant-u slices 2,

2,— OM asu— =,

Decomposition of the metric and gauge fields:
ds® = (N2 + NiNi)du2 + 2N, dudz’ + fyijdxidxj
Al = o du + A} da?,

Decomposition leads to the radial Lagrangian L w/ canonical momenta:

7T —
0%Yij
6L _ .
=S50 w/ momenta conjugate to N, N;, and a" vanish -
. oL
TTA —

5AN First class constraints: H =#H' = F =0,



Hamiltonian:
H = / d3x (W%‘j% + 1ol + wiAAZ.A) — L= / d3x (NH + NjH' + a* Fy)

First class constraints #H = H' = F, =0, - Hamilton Jacobi egs.:

& Momenta as gradients of Hamilton’s principal function S(y,A",@"):

BN B )
_5%J’ A_éAé\a 1—5901.

7Tij

deBoer,Verlinde2'99,...Skenderis, Papadimitriou '04,...
Solve asymptotically (for 'vacuum’ asymptotic solutions) for

S(V,AA’CPI) - - Sct '

S(y,AN,¢') coincides with the on-shell action, up to terms that remain
finite as 2, — dM. In particular, divergent part of S[y, A", ¢' ] coincides
with that of the on-shell action.



« Hamiltonian Formalism with = Renormalized” Action

Covariant S calculated for vacuum asymptotic solutions
(conformal to AdS, x S? geometry)

1 B 4 — 1 g
Set = —— [ d’xv/—7 Zenm ( 2 4 (a—1)e"R[y] — %6_2’7F¢jF“ + Ze“‘"Fi(J’-FO”)
Ry

Sreg = Sa + Sct Sren = liM Sreg  Finite — Independent of r

T—00

Renormalized canonical momenta:

0S¢t
0Yij

- 0S5, 05
HAZ/\:T(';’\—l— k II; =77+ L

[T — i |
§ AN ol




* Conserved Charges

Conserved currents, a consequence of the first class constraints

F, = 0 Conserved currents for gauge potentials: DiHi = 0, DZ-HOi — (.

Conserved charges: (™= _ / Ex1rt, Q)Y =— / d%x 1%
oMNC oMNC

_ 3B & 2,2

JH{. =0 Conserved currents: — 2Dng + 11,0;m + 11,,0; x + FZ-(;HOj 4+ Fz-jHj ~ 0

Conserved ““charges”: Q[(] = / d?x (21‘[3. 4+ HOtA;? 4+ HtAj) ¢
oMNC
Asymptotic Killing vector ¢
: 2 t t 40 t Lk
Mass: M, = — d°x (201°, + Ay + I'Ay) = ——(r4 +7_)
IMNC 86§4
wl

Angular Momentum: Jj, = / d2%x (znt¢ + HéAg + 1T Ay) = ETer
oMNC 4



 Thermodynamic relations and the first law
Bylk -
Free Energy: Iy = Sk, = —Sten = Pa0s= 3¢, ((ff— —r+) 2w2€2\/:—+>

Quantum statistical relation: Gy = My — TySy — QqJ, — ®9)Q0)
Firstlaw:  dMy — TydSy — QudJy — 359d4Q% — a™ag™ =0

Smarr’'s Formula: My = 25,7y + 2Q4.J4 + Q2(6)¢2(6) 1 Qim)q)glm)

Varying parameters: r,, r, w, and B, k, ¢ subject to kB3/# —fixed
“ original parameters m, a, I, . & a scaling parameter



lll. Holography via 2D Einstein-Maxwell-Dilaton
M.C., Papadimitriou 1608.07018

4D STU fields can be consistently Kaluza-Klein reduced on S? by
one-parameter family of Ansatze:

e 21 = e %Y £ \2B%sin? 6, X = ABcos6

e 2M A0 = ¢72¥ A(2) 1 \B?sin? 0dp, A+ vAY = BcosOdd

sin? 6
do — NA(2) 2)
1 4+ A\2B2e2¢ sin29( ¢ )

eds? = ds5 + B* <d92 +

ds,?, W, A@ -fields of 2D Einstein-Maxwell-Dilaton Gravity:
Sop = % (/ d2x\/—g e ¥ (R[g] + . ie_QwFabFab) — /dt\/—i’y e_¢2K>

L2

B = 2L: M-independent A = w3/ Brotational parameter of subtracted geometry



Web of Theories

Subtracted geometry Locally: AdS; x S?

St uplift
4D STU model > 5D Einstein-Maxwell-Chern-Simons

ki = Rk}

R. =2rLk (2)

kwl € Z
w-twisted 2 K2
KK Ansatz S? reduction | 3 = 712
9 _ K3 v
S reduction 2T R,
2D Einstein-Maxwell-Dilaton || - = = - - - oo = 3D Einstein-Hilbert

w/ specific BCs
NCFT; RG

projected CFT,




General solution of 2D EMD Gravity — running dilaton
Feffeman-Graham gauge:  ds® = du® + ¢t (u, t)dt?, Auw =0
Anaytic general solution:

- u m—B2)/a2(t) , ..\ QL% _
e = B(t)e /L\/(1+ e /L) e

V= = (f) Oe ™"

B/ (1)
a(t) ,\(AL72eEEA(H) + m — B2()/03(t) — 2Q/L
28'(t) "%\ AL—2e2w/TB2(1) + m — B2(t) /a2 (t) + 2Q/L

Leading asymptotic behavior:

Ay = p(t) +

veir = —a2 ()2 L1+ 0(1), e ¥ ~ B)e F+0(e W), A = p(t)+0(e 2 D)
running dilaton

« Arbitrary functions a(t), B(f) and u(t) identified with the
sources of the corresponding dual operators

4D uplift results in asymptotically conformally AdS, x S? subtracted
geometries, generalized to include arbitrary time-dependent sources



Repeat Radial Hamiltonian Formalism in 2D

Radial ADM decomposition: ds® = (N? + N¢N")du? + 2Nidudt + i dt”

1

Countertern Action: St = —— [ dtn/ =y L1 (1 —uoLOi) e ¥
’12

Renormalized one-point functions: 7 = 27 Oy = —Ty, Jt = 7t

1
%\f = — lim ¥l (&ue_w — e_‘bL_l)

2/{% U— 0O
» ’ eu/L
0 _ui>moo\/7
1
Ty = ——5 lim et/ L= (K — L_l)

KJ% U—r 00



Explicit one-point functions:

T L (m_5/2>’ jt:ig7 0, = L <m 32 _25/04/+26—u)

_2/-4:% B Ba? K5 O 25 \ B  Ba? % a2

Ward Identities:  9:7 — OydilogB =0, Dy J" =0

L /7 !/ 7 L /
Conformal anomaly: 7 + Oy = (B e ) = 50 <B—> = A

2 2 3
Ky \ X « K5O o

5Sren B 5Sren

. . o _~ t L _1 551‘611 .
Exact generating function (7 = o Y=o 7T ):
L ma 2 QNQ)
Sren s My — 5 dt — S _— + S oba
la, B, 1] 23 ( 5 + o + 7 global



Asymptotic symmetries and conserved charges

Asymptotic symmetries: subset of Penrose-Brown-Henneaux (PBH)

transformations, diffeomorphisms and gauge transformations,
preserving the Fefferman-Graham gauge, that preserve boundary

conditions of the solution:
dppaa = Ot(ea) + ao /L, dppufB =¢ef’ + Bo/L, dppuM = Ot(ep + @)

dppHu (sources) = 0 = constrain functions &(t), o(t) and @(t) in term of two constants §;

Conserved Charges: boundary terms obtained by varying the action
with respect to the asymptotic symmetries (and Ward identities) =

- _ _ L g%\ _mL _ o Q
UXU(): Q1 = (57 o QQ)_ZR%, 0:=a7' = 5

3D perspective: two copies of the Virasoro algebra with the Brown-
Henneaux central charge. Only L%, are realized non-trivially in 2D.



Effective action as Schwarzian derivative

Under PBH transformations the sources:

o = e (14+€'+eo’)+0(e?), B =e(14e0’)+0(e?), p= ' 4+’ +e¢”+0(e?),
prime - derivative with respect to t

Inserting these expressions in the renormalized action

L /2 9
Sealos il =5 [ 0 (524 55+ )

and absorbing total derivative terms in S ,,, One obtains:

L

Sren = ? /dt ({7-7 t} — m/2) + Sglobala g = log T’
2
7_/// 3 7_//2 _ _ _
{ri}=——--— Schwarzian derivative
T 2 72
c.f., Sadcheyv, Ye, Kitaev '93,... Almeheiri, Polochinski '14;
Maldacena, Stanford, Yang '16, Engelsoy, Merens, Verlinde '16,...



Constant dilaton solutions and AdS, holography

c.f., Strominger '98, ...Castro, Grumiller, Larsen, McNees '08,...
Compere, Song, Strominger '13,...Castro, Song’14,...

Holography depends on the structure of non-extremal constant
dilaton solutions and choice of boundary conditions -

Provided systematic holographic dictionary for each choice

M.C., Papadimitriou 1608.07018
no time

: : _ Q=mL/2
Note: non-extremal running dilaton solution -

extremal running-dilaton solution
with RG flow to IR fixed point  vev of irrelevant scalar op.
extremal constant dilaton solution -2

non-extremal constant dilaton branch (Coulomb phase’)
(does not lift into subtracted geometry)



Summary/Outlook with focus on AdS, Holography

* Provided consistent KK Ansatze that allow us to uplift

any solution of 2D EMD gravity to 4D STU solutions, which
are non-extremal 4D black holes, asymptotically

(conformally) AdS, x S2— subtracted geometry.
[Works also for 5D solutions asymptotically (conformally) AdS,xS3.]

« 2D EMD gravity has a well defined UV fixed point,
described by a sector of 2D CFT.

« Constructed holographic dictionary of

2D EMD gravity theory obtained by an S2 reduction of
4D STU subtracted geometry — runing dilaton solution
as well as constant dilaton solutions.

 Many aspects of the holographic description are generic
and should apply to generic 2D dilaton gravity theories.



J hank you!

&

Congratulations Gary, and
to many movre productive,
sctentific contcitbutions!



