Tours 22/03/2017

A TALE OF TWO DYONS

Gérard CLÉMENT
LAPTh, Annecy-le-Vieux, France
Dmitri GAL'TSOV
MSU, Moscow, Russia

Concerning the title:

After my abstract was submitted, I discovered that Gary had published in 1997 (with Neil Cornish) a paper with an almost similar title: "The tale of two centres".

Actually, when choosing this title I had in mind Edgar Poe's detective tales, particularly "The gold-bug", in which deciphering a secret message leads to a buried treasure...

4D Einstein-Maxwell: old-fashioned theory, but still full of surprises!

- I will present a "new" exact stationary, asympt. flat solution of the EM equations, and the successive clues leading to its interpretation as a complex physical system of two extreme co-rotating dyonic NUTty black holes, held apart by an electrically charged rod which also acts as a Dirac-Misner string.
- Solution constructed 20 years ago (GC1997) using finite Geroch transformation.
- Restriction of EM4 to stationary solutions
(1 timelike Killing vector) \longrightarrow
reduction to 3D gravitating σ model
with "hidden" symmetry group $S U(2,1)$
of transformations between solutions
(e.g. Schwarzschild \rightarrow RN-NUT).

Static and rotating solutions are not related by $S U(2,1)$ transformations.

- Solutions with 2 commuting Killing vectors (e.g. stationary axisymmetric):
combination of infinitesimal $S U(2,1)$ transf. with infinitesimal linear transf. $K_{i} \rightarrow K_{i}^{\prime}$ in the 2-Killing vector space
\longrightarrow infinite dimensional Geroch group
\Longrightarrow complete integrability.
Basis for inverse scattering transform methods.
- Finite Geroch transformation
(G. Clément, "From Schwarzschild to Kerr ..." Phys. Rev. D57 (1998) 4885, gr-qc/9710109):
- Problem: A linear transf. $\partial_{t} \rightarrow \partial_{t}^{\prime}=\alpha \partial_{t}+\beta \partial_{\varphi}$ changes the asymptotic behaviour ("centrifugal force").
- Solution: Combine this with an $\operatorname{SU}(2,1)$ transformation also changing the as. behaviour.
- Bertotti-Robinson solution to EM4:
geometry $A d S_{2} \times S^{2}$
$d s^{2}=-\left(x^{2}-1\right) d t^{2}+\frac{d x^{2}}{x^{2}-1}+\frac{d y^{2}}{1-y^{2}}+\left(1-y^{2}\right) d \varphi^{2}$
generated by a constant electric field $A=x d t$.
- This is related to Schwarzschild by an $S U(2,1)$ transf. $\Pi: S \rightarrow B R$
- The linear transformation $\mathcal{R}(\Omega, \gamma)$:
$d \varphi=d \varphi^{\prime}-\Omega d t^{\prime}, d t=\gamma d t^{\prime}$ acting on BR
does not change the as. behaviour $(x \rightarrow \infty)$.
- The combined transformation

$$
\Sigma=\Pi^{-1} \mathcal{R}(\Omega, \gamma) \Pi
$$

transforms Schwarzschild \longrightarrow Kerr.

- More generally, Σ acting on as. flat monopole stationary axisymm. solution of EM \longrightarrow as. flat monopole + dipole solution.
- Axisymmetric stationary metric (Weyl): $d s^{2}=-F(d t-\omega d \varphi)^{2}+F^{-1}\left[e^{2 k}\left(d \rho^{2}+d z^{2}\right)+\rho^{2} d \varphi^{2}\right]$. Prolate spheroidal coords. (x, y) :

$$
\rho=\kappa\left(x^{2}-1\right)^{1 / 2}\left(1-y^{2}\right)^{1 / 2}, \quad z=\kappa x y .
$$

- Zipoy1966-Voorhees1970 vacuum metric:
$F=\left(\frac{x-1}{x+1}\right)^{\delta}, e^{2 k}=\left(\frac{x^{2}-1}{x^{2}-y^{2}}\right)^{\delta^{2}}, \omega=0(\delta \in \mathrm{R})$
naked curvature singularity at $x=1$, except for $\delta=1$ (Schwarzschild); $\delta=2$ solution first given by Darmois1927.

Rotating generalization: Tomimatsu+Sato1972 (δ integer). $\delta=2$: naked ring singularity;

- Gibbons+Russel-Clark1973: TS2 has a causal boundary $\left(g_{\varphi \varphi}=0\right)$ and a non-curvature Misner-string singularity at $x=1$;
- Kodama+Hikida2003: Two degenerate horizons at $x= \pm y=1$, and a conical singularity at $x=1$.
- Transformation Σ acting on ZV
\rightarrow continuous family of rotating spacetimes with dipole electromagnetic field.
$-\delta=1:$ Kerr; $\delta=1+\epsilon$: "almost Kerr".
- Rotating solution for $\delta=2$:

Ernst potentials:

$$
\mathcal{E}=\frac{U-W}{U+W}, \quad \psi=\frac{V}{U+W}
$$

Kinnersley potentials:

$$
\begin{gathered}
U=p \frac{x^{2}+1}{2 x}-i q y, \quad\left(p=\sqrt{1-q^{2}}, \quad \varepsilon^{2}=1\right) \\
W=1+\frac{q^{2}}{2} \frac{1-y^{2}}{x^{2}-1}+i \frac{p q}{2} \frac{y}{x}, \quad V=\varepsilon(1-W)
\end{gathered}
$$

- Simple enough, but for the explicit solution, must dualize (recover the vector potentials ω_{i} and A_{i} from the imaginary part of the Ernst scalar potentials \mathcal{E} and ψ)!
- Black hole unicity theorems \Longrightarrow this must be singular!
- The full solution $(x>1,-1 \leq y \leq 1)$

$$
\begin{gathered}
d s^{2}=-\frac{f}{\Sigma}\left(d t-\frac{\kappa \Pi}{f} d \varphi\right)^{2}+\kappa^{2} \Sigma\left[e ^ { 2 \nu } \left(\frac{d x^{2}}{x^{2}-1}\right.\right. \\
\left.\left.+\frac{d y^{2}}{1-y^{2}}\right)+f^{-1}\left(x^{2}-1\right)\left(1-y^{2}\right) d \varphi^{2}\right] \\
f=\frac{p^{2}\left(x^{2}-1\right)^{2}}{4 x^{2}}-\frac{q^{2} x^{2}\left(1-y^{2}\right)}{x^{2}-1} \\
\Sigma=\left[\frac{p x^{2}+2 x+p}{2 x}+\frac{q^{2}\left(1-y^{2}\right)}{2\left(x^{2}-1\right)}\right]^{2}+q^{2}\left(\frac{p}{2 x}-1\right)^{2} y^{2} \\
e^{2 \nu}=\frac{4 x^{2}\left(x^{2}-1\right)^{2}}{p^{2}\left(x^{2}-y^{2}\right)^{3}} \\
\quad \Pi=\Pi_{1}(x)\left(1-y^{2}\right)+\Pi_{2}(x)\left(1-y^{2}\right)^{2} \\
\quad A=\frac{\varepsilon}{\Sigma}[\bar{v} d t+\kappa \Theta d \varphi] \\
\bar{v}=v_{0}(x)+v_{1}(x)\left(1-y^{2}\right)+v_{2}(x)\left(1-y^{2}\right)^{2} \\
\Theta=\Theta_{1}(x)\left(1-y^{2}\right)+\Theta_{2}(x)\left(1-y^{2}\right)^{2}+\Theta_{3}(x)\left(1-y^{2}\right)^{3}
\end{gathered}
$$

- Asymptotically flat metric.
$-\operatorname{mass} M=2 \kappa / p$,
- angular momentum $J=-\kappa^{2} q\left(4+p^{2}\right) / p^{2}$,
- dipole magnetic moment $\mu=\varepsilon \kappa^{2} q$,
- quadrupole electric moment $Q_{2}=\varepsilon \kappa^{3} q^{2} / p$.
- Possible singularities:
- ring singularities $\left(\rho=\rho_{0}\right)$

$$
\Sigma(x, y)=0 \quad \text { (2 eqs.) }
$$

no solution! $\left(\Sigma>(1+p)^{2}\right)$

- axial singularities $(\rho=0)$:
$\begin{cases}\text { segment } R & (x=1,-1<y<1), \\ \text { points } & (x=1, y= \pm 1) .\end{cases}$
- Ergosurface

$$
F \equiv f / \Sigma=0 .
$$

2 components:
a) $f(x, y)=0$, contains $R(f<0)$;
b) R itself $(\Sigma=\infty)$.

- Causal boundary

$$
g_{\varphi \varphi} \equiv F^{-1} \rho^{2}-F \omega^{2}=0
$$

contains $R\left(g_{\varphi \varphi}<0\right)$.

- Horizons

$$
N^{2} \equiv \rho^{2} / g_{\varphi \varphi}=0\left(\text { with } g_{\varphi \varphi}>0\right)
$$

\longrightarrow candidates $H_{ \pm}(x=1, y= \pm 1)$.

- Geodesics:

1st integral $\quad T+U=\epsilon \quad(\epsilon=-1,0,+1)$

$$
\begin{aligned}
T & =\kappa^{2} \Sigma e^{2 \nu}\left(\frac{\dot{x}^{2}}{x^{2}-1}+\frac{\dot{y}^{2}}{1-y^{2}}\right)>0 \\
U & =\frac{(l-E \omega)^{2} F}{\rho^{2}}-\frac{E^{2}}{F}
\end{aligned}
$$

- Near $R\left(x=1, y^{2}<1\right):-F \propto \xi^{2}, \rho^{2} \propto \xi^{2}$ $\left(\xi^{2} \equiv x^{2}-1 \rightarrow 0\right)$
$-E \neq 0: U \gg \epsilon \Rightarrow$ geodesics turn back before reaching R.
- $E=0$: geodesics terminate on R, but timelike or null geodesics ($\epsilon=-1$ or 0) cannot originate from ∞ :
"harmless" naked singularity.
- Near $H_{ \pm}$: Geodesics such that, near $x=1$, $1-y^{2} \sim X^{2}\left(x^{2}-1\right) \quad(X$ fixed $)$
can be continued through $x= \pm y=1$ to a region with $x<1$ and $y^{2}>1$
$\Longrightarrow 2$ double horizons.
2 black holes $\left(H_{ \pm}\right)$held apart by a rod (R).
- Interlude: 2-black hole stationary solutions
- BPS superpositions

Majumdar,Papapetrou(1947): Static linear superpositions of N identical extremal BH. Israel+Wilson,Perjès(1971): Stationary linear superpositions of $N \mathrm{BH}$, with rod singularities (Hartle+Hawking,Bonnor+Ward(1972)).

- Weyl superpositions

Stationary axisym. linear superpositions of N identical non-extremal BH, with singular rods (Bach+Weyl1922, Israel+Khan1964).

- Extremal diholes
- Bonnor1966: Static solution, with only mass and magnetic dipole moment.
- Emparan2000: This is a dihole: 2 extreme magnetic RN BH, with equal masses and opposite magn. charges, held apart by a rod (can be replaced by an external magnetic field, at the expense of asymptotic flatness).
- Double Kerr
- Kramer+Neugebauer1980: Double Kerr-NUT.
- Bonnor+Steadman2003: For equal masses, this is as. flat if either the 2 spins are opposite, or the 2 spins are equal, and the rod between the holes is spinning
- Co-rotating double Kerr with massless, nonspinning rod (only conical singularity):
Cabrera-Munguia et al., Manko+Ruiz(2017)
- Non-extremal diholes
- Emparan+Teo2001: Static non-extremal diholes with equal masses, opposite charges, and rod
- Generalization to 2 counter-rotating black dyons with opposite charges:
Cabrera-Munguia et al.2013, Manko et al. 2014
- The horizons: geometry

Blow up the horizons $x= \pm y=1$ by transforming to the coords. (Kodama+Hikida):

$$
X=\sqrt{\frac{1-y^{2}}{x^{2}-1}}, \quad Y=\frac{y}{x}
$$

On the horizons $Y= \pm 1$,

$$
\begin{aligned}
& F_{H}=-\frac{q^{2} X^{2}}{\Sigma_{H}(X)}, \quad \omega_{H}^{-1}=\Omega_{H}=-\frac{q}{\kappa \lambda(p)} \\
& \Sigma_{H}(X)=\frac{p \lambda(p)}{2}+q^{2}(1+p) X^{2}+\frac{q^{4}}{4} X^{4} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { - In the co-rotating near-horizon frame } \\
& \hat{\varphi}=\varphi-\Omega_{H} t \\
& \qquad d s_{H}^{2}=\frac{\kappa^{2} \lambda(p)}{2 p l(\theta)}\left[d \theta^{2}+l^{2}(\theta) \sin ^{2} \theta d \hat{\varphi}^{2}\right] \\
& l(\theta) \equiv \frac{p \lambda(p)}{2} \frac{\left(X^{2}+1\right)^{2}}{\Sigma_{H}(X)}, \quad X=\tan (\theta / 2) \\
& \text { topologically } S^{2} \\
& l(0)=1, \text { but } l(\pi)=\alpha \equiv \frac{2 p \lambda(p)}{q^{4}}>\frac{8}{q^{4}} \\
& \text { conical singularity! }
\end{aligned}
$$

- Horizon area:

$$
\mathcal{A}_{H}=4 \pi \frac{\kappa^{2} \lambda(p)}{2 p} \simeq 4 \pi M^{2}
$$

- The horizons: electromagnetic field
$A_{H}=\varepsilon\left[\frac{q^{2}(2-p)}{2 \lambda(p)} d t-\frac{\kappa q}{4} \frac{\delta(p) X^{2}+q^{2} \gamma(p) X^{4}}{\Sigma_{H}(X)} d \hat{\varphi}\right]$
- Near-horizon electric field, or
$Q_{H}=-\frac{1}{4 \pi} \oint_{H} \omega_{H} d \operatorname{Im} \psi($ Tomimatsu1984 $) \rightarrow$
Electric charges $Q_{+}=Q_{-}=-\frac{\varepsilon \kappa(1+p)}{2}$.
But the solution is electrically neutral, so the rod must be also charged!

$$
\longrightarrow \text { electric quadrupole }
$$

- Magnetic charges: $\quad P_{H}=\frac{1}{4 \pi} \oint_{H} d A_{\varphi} \rightarrow$

$$
P_{ \pm}= \pm \frac{\varepsilon \kappa \gamma(p)}{2 q} .
$$

- Komar mass and angular momentum:

$$
\begin{aligned}
M & =\frac{1}{4 \pi} \oint_{\infty} k^{\mu ; \nu} d \Sigma_{\mu \nu} \quad\left(k=\partial_{t}\right) \\
J & =-\frac{1}{8 \pi} \oint_{\infty} l^{\mu ; \nu} d \Sigma_{\mu \nu} \quad\left(l=\partial_{\varphi}\right)
\end{aligned}
$$

- Ostrogradsky theorem \longrightarrow

$$
\begin{aligned}
M & =\sum_{n} \frac{1}{4 \pi} \oint_{H_{n}} k^{\mu ; \nu} d \Sigma_{\mu \nu}+\frac{1}{4 \pi} \int k^{\mu ; \nu}{ }_{; \nu} d S \mu \\
& =\cdots \cdots \cdots
\end{aligned}
$$

- Tomimatsu: using the EM eqs., the bulk integral can be converted to a surface integral \rightarrow total horizon mass $M_{H}=\frac{1}{4 \pi} \oint_{H} \omega_{H} d \operatorname{Im} \mathcal{E}$:

$$
M_{+}=M_{-}=\frac{\kappa}{p}+\frac{\kappa p}{2}
$$

$>M / 2$, so the rod must have negative mass!

- Horizon angular momentum:
$J_{+}=J_{-}=-\frac{\kappa^{2}}{8 q p}\left[2 \lambda\left(2+p^{2}\right)-q^{2} p(1+p)(2-p)\right]$
- Also horizon NUT charges: $N_{ \pm}= \pm \frac{\kappa \lambda(p)}{4 q}$.
- The rod

Near-rod configuration $\left(\xi^{2} \equiv x^{2}-1 \rightarrow 0\right)$:
$d s^{2} \sim-\frac{\kappa^{2} q^{2}}{4}\left(1-y^{2}\right)^{2} d \varphi^{2}+\frac{\kappa^{2} q^{4}}{p^{2}\left(1-y^{2}\right)}\left[\frac{d y^{2}}{1-y^{2}}\right.$
$\left.+d \xi^{2}+\alpha^{2} \Omega_{H}^{2} \xi^{2}(d t-\omega(y) d \varphi)^{2}\right]$,
$A \sim-\varepsilon\left[\left(1-\frac{2(1+p) \xi^{2}}{q^{2}\left(1-y^{2}\right)}\right) d t+A_{\varphi}(y) d \varphi\right]$,
\rightarrow conical singularity, with finite Ricci square scalar

$$
R^{\mu \nu} R_{\mu \nu} \sim \frac{64 p^{4}}{\kappa^{4} q^{12}}\left[(1+p)^{2}+q^{2} y^{2}\right]^{2}
$$

- Transformation to the horizon co-rotating frame:

$$
\begin{aligned}
d s^{2} & \sim q^{4}\left[-\frac{\left(1-y^{2}\right)^{2}}{4 \lambda^{2}(p)}\left(d t+\Omega_{H}^{-1} d \hat{\varphi}\right)^{2}\right. \\
& \left.+\frac{\kappa^{2}}{p^{2}\left(1-y^{2}\right)}\left(\frac{d y^{2}}{1-y^{2}}+d \xi^{2}+\alpha^{2} \xi^{2} d \widehat{\varphi}^{2}\right)\right]
\end{aligned}
$$

- Interlude: Straight spinning cosmic string in flat spacetime:
(Deser, Jackiw,'t Hooft1984, GC1985)

$$
\begin{aligned}
& d \hat{s}^{2}=-\left(d t+4 J_{S} d \hat{\varphi}\right)^{2}+d \rho^{2}+\alpha^{2} \rho^{2} d \hat{\varphi}^{2}+d z^{2} \\
& \left(\alpha=1-4 M_{S}\right)
\end{aligned}
$$

The same viewed in a rotating frame,

$$
d \varphi=d \hat{\varphi}-\Omega d t
$$

with critical angular velocity $\Omega=-1 / 4 J_{S}$:

$$
d s^{2}=\alpha^{2} \Omega^{2} \rho^{2}\left(d t+\Omega^{-1} d \varphi\right)^{2}+d \rho^{2}-\Omega^{-2} d \varphi^{2}+d z^{2}
$$

- The rod is a spinning cosmic string in curved spacetime, with negative tension $(\alpha>1)$.
- This "spinning" string is a Misner string connecting 2 opposite NUT sources at $z= \pm \kappa$. We do not periodically identify time (Clément, Gal'tsov, Guenouche, "Rehabilitating space-times with NUTs", Phys. Lett. B750 (2015) 591, arXiv:1508.07622)
-1 NUT source : $\omega=-2 N \cos \theta$
2 opposite NUT sources
$\omega=-2 N \cos \theta_{+}+2 N \cos \theta_{-}$
On the axis $(\rho=0)$:
$\omega=-4 N(-\kappa<z<\kappa)$ or $0(|z|>\kappa) \Rightarrow$

$$
N=J_{S}=-\frac{1}{4 \Omega_{H}}=\frac{\kappa \lambda(p)}{4 q}
$$

- Rod vector potential

$$
A_{\varphi} \sim-\varepsilon \kappa\left[\frac{\gamma(p)}{q}+\frac{q\left(1-y^{2}\right)}{2}\right]
$$

- Constant contribution $-\varepsilon \kappa \frac{\gamma(p)}{q}=P_{-}-P_{+}$:

The rod is also a Dirac string connecting
2 opposite magnetic monopoles at $z= \pm \kappa$

- Radial magnetic flux density

$$
\sqrt{|g|} B^{\xi}=F_{y \varphi}=\varepsilon \kappa q y
$$

\longrightarrow rod magnetic moment

$$
\mu_{R}=\frac{1}{4 \pi} \int_{-1}^{+1} \sqrt{|g|} B^{\xi} z 2 \pi d y=\frac{\varepsilon \kappa^{2} q}{3}=\frac{\mu}{3}
$$

- Rod electric charge

The Maxwell equation $\partial_{\nu}\left(\sqrt{|g|} F^{\mu \nu}\right)=0$ is satisfied only outside sources \rightarrow distributional contribution

$$
Q_{R}=\frac{1}{4 \pi} \int\left[\partial_{\xi}\left(\sqrt{|g|} F^{t \xi}\right)\right] d \xi d y d \varphi
$$

In the global frame,

$$
\begin{aligned}
& \quad A_{t}=-\varepsilon\left[1+\mathrm{O}\left(\xi^{2}\right)\right], \quad g_{t t}=\mathrm{O}\left(\xi^{2}\right) \quad \rightarrow \\
& \qquad F_{t \xi} \propto \xi \quad(\xi>0), \quad \sqrt{|g|} F^{t \xi} \propto \theta(\xi) \\
& \Rightarrow \quad Q_{R}=\frac{1}{4 \pi} \int \varepsilon \kappa(1+p) \delta(\xi) d \xi d y d \varphi=\varepsilon \kappa(1+p) \\
& \text { ensures } Q_{+}+Q_{-}+Q_{R}=0 .
\end{aligned}
$$

- Rod mass

The Einstein eqs. with Maxwell source $R_{\mu \nu}-8 \pi T_{\mu \nu}=0$ are only satisfied outside sources. In the presence of distributional sources,

$$
R_{\mu \nu}-8 \pi T_{\mu \nu}=\left[R_{\mu \nu}\right]-8 \pi\left[T_{\mu \nu}\right]
$$

\Rightarrow Komar mass at ∞

$$
\begin{aligned}
& M=M_{+}+M_{-}+M_{R} \text { with } \\
& M_{R}=-\frac{1}{4 \pi} \int\left(\left[R_{t}^{t}\right]-8 \pi\left[T_{t}^{t}\right]\right) \sqrt{|g|} d^{3} x=M_{R}^{\mathrm{grav}}+M_{R}^{\mathrm{em}} \\
& {\left[R_{t}^{t}\right]=-\left(g_{t t}\right)^{-1 / 2} g^{i j}\left(g_{t t}\right)_{, j ; i}^{1 / 2}=-g^{\xi \xi^{\prime}} \xi^{-1} \delta(\xi)} \\
& \rightarrow \quad M_{R}^{\mathrm{grav}}=\kappa \\
& M_{R}^{\mathrm{em}}=Q_{R} A_{t}(\xi=0)=-\kappa(1+p)
\end{aligned}
$$

-Total rod mass $M_{R}=-\kappa p$
repulses test particles (antigravity)

$$
\frac{2 \kappa}{p}=2\left(\frac{\kappa}{p}+\frac{\kappa p}{2}\right)-\kappa p
$$

- Behind the horizon H_{+}:
- Region $I I_{+}$with $-1<x<1$ and $y>1$
- Inner horizon $H_{+}^{\prime}(x=-1, y=1)$
- Between outer and inner horizon, timelike singularity $S_{0}(y=\infty)$, with $f<0$, $g_{\varphi \varphi}<0$, and Ricci square scalar $\sim y^{4}$
- Is S_{0} really at infinity?
- The 2 horizons H and H^{\prime} are topological spheres, with $\mathcal{A}>\mathcal{A}^{\prime}$
- Near S_{0}, putting $y=\eta^{-1}, x=\cos \chi$,
$d s^{2} \simeq-\frac{a}{\cos ^{2} \chi} \eta^{-4} d \varphi^{2}+b \cos ^{2} \chi\left[d \eta^{2}+\eta^{2} d \chi^{2}\right.$ $\left.+c \eta^{2} \sin ^{2} \chi\left(d t+k(x) \eta^{-2} d \varphi^{2}\right)\right]$
$\Longrightarrow \sqrt{|g|}$ goes to a finite limit for $y \rightarrow \infty$
$-\eta=0$ is a "point" (timelike line)
- Only spacelike geos with $E=0$ terminate at $y=\infty$.
- Now the z axis ($\rho=0$) includes:
- a regular segment $y=1,-1<x<1$ between the 2 horizons;
- 2 singular rods $x= \pm 1$ from the outer or inner horizon to S_{0}.
- The 2 rods have different tensions and angular velocities.
- The 2 rods carry different diverging electric charges (integration on y from 1 to ∞), so S_{0} must carry infinite electric charge, and finite magnetic and NUT charges.
- Similar region $I I_{-}(y<-1)$ behind H_{-}.
- Beyond the inner horizons:
- Region III ($X<-1,-1 \leq y \leq 1$),
with a singular rod connecting the 2 co-rotating horizons H_{+}^{\prime} and H_{-}^{\prime}, and
- A timelike ring singularity $\Sigma\left(x_{0}, 0\right)=0$, with $f>0, g_{\varphi \varphi}<0$.
- Only fine-tuned spacelike geodesics can reach this ring (similar to Kerr-Newman).
- Summary
- Exact one-parameter rotating e.m. solution generated from ZV2 static vacuum solution.
- No naked ring singularity: more regular than the seed static solution, or its rotating vacuum counterpart TS2.
- Has only dipole magnetic moment and quadrupole electric moment.
- Generated by a complex system:

2 co-rotating dyonic NUTty black holes
held apart by a rotating, electrically charged, magnetized rod.

- More general 4-parameter class of solutions (Manko et al2000): Does it include a purely magnetic rotating solution (without quadrupole electric moment) \longrightarrow a system of 2 magnetic NUTty black holes and an electrically neutral rod?

