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Definitions

A spacetime is a connected time-oriented Lorentzian manifold {M , g}

The chronological future of p ∈ M , denoted I +(p):
The set of events that can be reached by a future directed timelike
curve starting from p.
For a general subset S ⊂ M , we define I +(S) = ∪p∈SI +(p).

We denote by ∂I +(p) the boundary of I +(p).
In Minkowski spacetime, ∂I +(p) is generated by future-directed
null geodesics starting from p.
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Definitions

A subset S ⊂ M is said to be achronal if I +(S) ∩ S = ∅.

A timelike curve is said to be past-inextendible if it has no
past endpoint.

The future domain of dependence of an achronal set S ,
denoted D+(S), is the set of all p ∈ M such that every
past-inextendible timelike curve through p intersects S .

For each definition there is a temporally dual notion, past.
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Definitions

Causal diamond
Defined by initial and final events p and q or alternatively by an
achronal set S , as a subset of a spacetime of the form:

I +(p) ∩ I−(q) or D+(S) ∪D−(S)
q

p

•

•

S

D+(S)

D−(S)

∂I−(q)

∂I +(p)
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Definitions

Geometric quantities of interest

The d-volume V (p, q) =
∫
I+(p)∩I−(q)

dd x
√
−g.

The spatial volume V(p, q) of a hypersurface (t = 0) having
the intersection ∂I +(p) ∩ ∂I−(q) as its boundary.

The area A(p, q) of the intersection ∂I +(p) ∩ ∂I−(q).
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The geometry of
small causal diamonds
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The geometry of small causal diamonds

In curved spacetime, if p and q are sufficiently close, there is a unique
time-like geodesic parametrized by proper time τ joining them.

In small enough causal diamond the metric can be expanded as

gµν = ηµν −
1
3xαxβRµανβ(0) + · · ·

where xµ are RNCs about the center of the diamond r = 0.

The volume of a small causal diamond is

V (p, q) =
∫
D

dd x
(

1− 1
6xµxνRµν(0) + · · ·

)
where D = D+(S) ∪D−(S) in the curved spacetime.
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The geometry of small causal diamonds

The integration over D contains corrections to the Minkowski space-
time domain DM . The integral can be split into two parts V1 + V2:

V (p, q) =
∫
DM

dd x
(

1− 1
6xµxνRµν(0)

)
+
∫
D−DM

dd x + · · ·

The evaluation of the first term is straightforward:

V1 = VM

(
1− 1

24(d + 1)

(
R00 + d

d + 2R
)
τ2
)

The 2nd piece is computed using perturbations of null geodesics:

V2 = VM
24 R00 τ

2

[Myrheim (1978), Gibbons and Solodukhin (2007), Khetrapal et al. (2012)]
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The geometry of small causal diamonds

Then the volume of a small causal diamond is:

V (p, q) = VM (τ)
(

1 + d
24(d + 1)

(
R00 −

1
d + 2R

)
τ2 + · · ·

)

G.Gibbons and S. Solodukhin (2007) also found expressions for the
spatial volume and area:

V(p, q) = VM (τ)
(

1 + d − 1
24(d + 1)

(
R00 −

1
d − 1R

)
τ2 + · · ·

)

A(p, q) = AM (τ)
(

1 + 1
24(d − 1)

(
2(d − 4)R00 − R

)
τ2 + · · ·

)
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Extrinsic curvature contributions

Now consider only a causal cone, i.e. the future or past domain
of dependence D±(S) of an achronal set S (a hypersurface) with
non-vanishing extrinsic curvature K .
The timelike geodesic γ of duration τ starts at p and ends at q.

γ

•

•
q

pS

D+(S)

By dimensionality we expect corrections to the volume as:
1st order : K
2nd order : R,Rµνnµnν ,K 2, TrK 2
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Extrinsic curvature contributions

The corrections from the extrinsic curvature is found by taking the
spacetime to be flat,

V+(τ) = Vflat
(
1 + c0Kτ +

(
c1K 2 + c2TrK 2

)
τ2 + · · ·

)
There is two methods to find the coefficients ci :

Computing the volume between the hypersurface S and the flat
cone using RNCs centered at p, [Buck et al. (2015)].

Computing directly the volume for simple hypersurfaces S
(e.g. with constant curvature) and solve for the coefficients ci ,
[Jubb (2016)].
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Extrinsic curvature contributions

Let’s see how to find c0 by computing the volume
of a small causal cone on top of a unit Sd−1 of
extrinsic curvature K = d − 1:

τ
•

•
q

p
Sd−1

The sphere is parametrized as t =
√

1− r2 and the cone as
t = 1 + τ − r . They intersect at r+(τ) = 1

2(1 + τ −
√

1− 2τ − τ2).
For a small cone τ � 1 one finds:

V+(τ) = Ωd−2

∫ r+(τ)

0
dr rd−2

∫ 1+τ−r
√

1−r2
dt

' Vflat

(
1 + d(d − 1)

2(d + 1) τ + · · ·
)

Then we identify c0 = d
2(d + 1) .
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Extrinsic curvature contributions

Playing the same game with a family of hypersurfaces S one finds
up to O(τ2) expressions for the d-volume, spatial volume and area
of a small causal cone:

The d-volume [Jubb (2016)]

V+(τ) = Vflat

(
1 + d

2(d + 1)Kτ + d
4(d + 1)

(1
2K2 + TrK2

)
τ2 + · · ·

)
The spatial volume

V+(τ) = Vflat
(

1 + 1
2Kτ + d + 2

4(d + 1)

(1
2K2 + d

d + 2TrK2
)

τ2 + · · ·
)

The area

A+(τ) = Aflat

(
1 + d − 2

2(d − 1)Kτ + d − 2
4(d − 1)

(1
2K2 + TrK2

)
τ2 + · · ·

)
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Comparison theorems
for causal diamonds
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Metric and asymptotic conditions

We consider a spherically symmetric metric in d dimensions:

ds2 = −f (r)e2γ(r)dt2 + dr2

f (r) + r2dΩ2
d−2 ,

with f (r) = 1− 2m(r)
rd−3 > 0 .

The Einstein’s equations Rµν − 1
2gµνR = (d − 2)κdTµν give:

dm(r)
dr = κd rd−2Tt̂ t̂ ,

dγ(r)
dr = κdr f (r)−1 (Tt̂ t̂ + Tr̂ r̂) .
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Metric and asymptotic conditions

We shall assume some energy positivity conditions:

Tt̂ t̂ ≥ 0 and Tr̂ r̂ ≥ 0

Asymptotic flatness conditions:

lim
r→∞

f (r) = 1 and lim
r→∞

γ(r) = 0

f (0) = 1 and γ(0) < 0

=⇒ m(r) ≥ 0 , γ(r) ≤ 0 , both monotonic increasing.
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Monotonicity of the redshift

The redshift z(r) is defined as
1

1 + z =
√
−gtt(r) , with − gtt = f (r)e2γ(r)

The energy conditions and asymptotics of m(r) and γ(r) yield

−dgtt(r)
dr = 2e2γ(r)

rd−2

(
(d − 3)m(r) + κd rd−1Tr̂ r̂

)
≥ 0

and e2γ0 ≤ f (r)e2γ(r) ≤ 1.
Then the redshift z(r) is a monotonic decreasing function of r ,

zc ≥ z(r) ≥ 0

where zc = z(r = 0) = e−γ0 − 1 is the redshift at the center.
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The causal diamond

The diamond is determined by two events p and
q joined by a timelike geodesic (observer at rest
at r = 0) of invariant duration τ (T in t time).

Relation between t time and proper-time τ :
T = (1 + zc) τ

Introduce tortoise coordinates y:

y =
∫ r

0
dr ′ e

−γ(r ′)

f (r ′)

The value of r(T/2) is found from:

T/2 =
∫ r(T/2)

0
dr ′ e

−γ(r ′)

f (r ′)

t

y0

T/2

−T/2

q

p

t =T/2−y

t =−T/2+y
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Volume, spatial volume and area

The volume of this diamond is:

V (τ) = 2Ωd−2

∫ T/2

0
dt
∫ T/2−t

0
dy rd−2(y)f (y)e2γ(y)

The spatial volume is:

V(τ) = Ωd−2

∫ r(T/2)

0
dr ′ r ′d−2√

f (r ′)

The area is:
A(τ) = Ωd−2rd−2(T/2)
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Comparison theorems

Monotonicity and boundary conditions of γ(r) and m(r) yield

τ ≤ r(T ) ≤ (1 + zc)τ ,

Comparison theorems [CB, G. Gibbons, S Solodukhin (2015)]

The d-volume satisfies
VM (τ) ≤ V (τ) ≤ (1 + zc)d VM (τ) , VM (τ) = 2Ωd−2

d(d−1) (τ/2)d

The spatial volume satisfies
VM (τ) ≤ V(τ) ≤ (1 + zc)d−1 VM (τ) , VM (τ) = Ωd−2

d−1 (τ/2)d−1

The area satisfies
AM (τ) ≤ A(τ) ≤ (1 + zc)d−2 AM (τ) , AM (τ) = Ωd−2(τ/2)d−2
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Generalization to spacetime with horizon

The “usual” causal diamond:
The achronal set S is a ball in a spacelike
hypersurface orthogonal to the time-like
geodesic joining p and q.
p and q are points.

Generalized causal diamond:
The achronal set is a solid annulus of the
form I × Sd−2, where I is the interval in
the radial direction.
p and q are Sd−2 and I is given by
y0 − 1

2τ ≤ y0 + 1
2τ .

Can be applied if a black hole is present.
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Causal diamond in Schwarzschild spacetime

We consider the d-dimensional Schwarzschild spacetime:

ds2
Schd = −fd(r)dt2+fd(r)−1dr2+r2dΩ2

d−2 , fd(r) = 1−
(rs

r
)d−3

Time-like geodesic joining p and q is a round
trip from r0 to rmax and then back to r0.
Introduce tortoise coordinates y:

y(r)− y(r0) =
∫ r

r0

dr ′

fd(r ′) = T/2

⇒ r(T�1) ' T + rs
d − 4

(rs
T

)d−4
+ γd(r0)

The volume reads:

VSchd (τ, r0) = 2Ωd−2

∫ T/2

0
dt
∫ T/2−t

−T/2+t
dy rd−2(y)fd(y)

r0 • • • r( τ
2 )rmax

q

p
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Time-like geodesic joining p and q is a round
trip from r0 to rmax and then back to r0.
Introduce tortoise coordinates y:

y(r)− y(r0) =
∫ r

r0

dr ′

fd(r ′) = T/2

⇒ r(T�1) ' T + rs
d − 4

(rs
T

)d−4
+ γd(r0)

The volume reads:

VSchd (τ, r0) = 2Ωd−2

∫ T/2

0
dt
∫ T/2−t

−T/2+t
dy rd−2(y)fd(y)

r0 • • • r( τ
2 )rmax

q

p
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Proper time of radial timelike geodesics

Timelike radial geodesic equations (E2 = fd(rmax)):
dt
dτ = E

fd(r) , (1)( dr
dτ
)2

= E2 − fd(r) . (2)

Equation (2) gives rmax as a function of τ :

rmax(τ) ' rs
( τ

2bdrs

)2/(d−1)
, τ � 1

Combined with (1) one finds T (τ):

T/2 ' τ/2 + αd rs
5− d

( τ

2rs

) 5−d
d−1 + βd(r0)

where αd , βd(r0) > 0.
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Volume of generalized causal diamond

Volume in d = 4 dimensions:

VSch4(τ, r0) ' π

24τ
4 + 5πrs

6
( π2

8rs

)1/3
τ10/3 + · · · > VM4(τ)

Volume in d = 5 dimensions:

VSch5(τ, r0) ' π

160τ
5 + π2

32 rsτ4 ln τ/rs + · · · > VM5(τ)

Volume in d > 5 dimensions:

VSchd (τ, r0) ' VMd (τ)
(

1 + 2d σd(r0)
τ

+ · · ·
)
> VMd (τ)

Inequalities involving volumes in flat spacetime M ∀d

VSchd (τ, r0) > VMd (τ, r0) > VMd (τ) , VMd (τ,r0)'VMd (τ)
×(1+2d r0

τ
+··· )
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An application
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Comparison theorems

Comparison theorems [CB, G. Gibbons, S Solodukhin (2015)]

The d-volume satisfies
VM (τ) ≤ V (τ) ≤ (1 + zc)d VM (τ) , VM (τ) = 2Ωd−2

d(d−1) (τ/2)d

The spatial volume satisfies
VM (τ) ≤ V(τ) ≤ (1 + zc)d−1 VM (τ) , VM (τ) = Ωd−2

d−1 (τ/2)d−1

The area satisfies
AM (τ) ≤ A(τ) ≤ (1 + zc)d−2 AM (τ) , AM (τ) = Ωd−2(τ/2)d−2
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A conjecture

The area of a causal diamond satisfies
AM (τ) ≤ A(τ) ≤ (1 + zc)d−2 AM (τ)

Now consider a surface Σ associated with a causal diamond of du-
ration τ , in a curved spacetimeM and in Minkowski spacetime M .

Reformulating the inequalities on the area in terms of entanglement
entropy we conjecture:

SΣ(M , τ) ≤ SΣ(M, τ) ≤ (1 + zc)d−2 SΣ(M , τ)
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Thank you!
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