Comparison theorems
for causal diamonds

GaryFest, Tours, March 23, 2017

Clément Berthiere

Laboratoire de Mathématiques et Physique Théorique
CNRS-Université Francois Rabelais




Definitions
The geometry of small causal diamonds
Comparison theorems for causal diamonds

CB, G. Gibbons, and S. Solodukhin, Phys. Rev. D92, 064036, arXiv:1507.03619

1 An application



-




A spacetime is a connected time-oriented Lorentzian manifold {M, g}

o The chronological future of p € M, denoted I*(p):
The set of events that can be reached by a future directed timelike
curve starting from p.
For a general subset S C M, we define I*(S) = UpesI ™ (p).



A spacetime is a connected time-oriented Lorentzian manifold {M, g}

o The chronological future of p € M, denoted I*(p):
The set of events that can be reached by a future directed timelike
curve starting from p.
For a general subset S C M, we define I*(S) = UpesI ™ (p).

o We denote by 917 (p) the boundary of I7(p).
In Minkowski spacetime, 91" (p) is generated by future-directed
null geodesics starting from p.
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o A subset S C M is said to be achronal if IT(S)N S =0.

o A timelike curve is said to be past-inextendible if it has no
past endpoint.

o The future domain of dependence of an achronal set S,
denoted D (S), is the set of all p € M such that every
past-inextendible timelike curve through p intersects S.

For each definition there is a temporally dual notion, past.



Causal diamond

Defined by initial and final events p and ¢ or alternatively by an
achronal set S, as a subset of a spacetime of the form:

IY(p)nI~(¢) or DT (S)UD(S)

q

p



Geometric quantities of interest

o The d-volume V(p, q) =/ d%z/—yg.
It (p)NI~(q)

o The spatial volume V(p, q) of a hypersurface (¢ = 0) having
the intersection 11 (p) NI~ (q) as its boundary.

o The area A(p, q) of the intersection OI"(p) N AT~ (q).



The geometry of

small causal diamonds




In curved spacetime, if p and ¢ are sufficiently close, there is a unique
time-like geodesic parametrized by proper time 7 joining them.

o In small enough causal diamond the metric can be expanded as
1
9w = M = 3275 R (0) + -

where z# are RNCs about the center of the diamond r = 0.



In curved spacetime, if p and ¢ are sufficiently close, there is a unique
time-like geodesic parametrized by proper time 7 joining them.

o In small enough causal diamond the metric can be expanded as
1
Gur = M = 370 Ruaws (0) + -+
where z# are RNCs about the center of the diamond r = 0.

2 The volume of a small causal diamond is
1
V(p, q) =/ dz <1 — e R (0) + )
D

where D = D*(S)U D~ (S) in the curved spacetime.



The integration over D contains corrections to the Minkowski space-
time domain Dj;. The integral can be split into two parts Vi + Va:

1
Vi(p,q) = i a4z (1 - Ex“m”RW(O)) + /D ” dlz +--.
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The integration over D contains corrections to the Minkowski space-
time domain Dj;. The integral can be split into two parts Vi + Va:

1
Vip,g)= [ d'z (1 - —w“m”Ruu(0)> + / dz 4 -
Dum 6 D—Dy
o The evaluation of the first term is straightforward:
1 d
= 1— — 2
w= 24(d +1) (f+ 757) )

o The 2™ piece is computed using perturbations of null geodesics:

_ Vv,
V2 = 21 RO()T

[Myrheim (1978), Gibbons and Solodukhin (2007), Khetrapal et al. (2012)]
e



Then the volume of a small causal diamond is:

Vip,q) = Vul(r) (1+W‘11)(ROO_%+2R> 24 )

G. Gibbons and S. Solodukhin (2007) also found expressions for the
spatial volume and area:

V(p,q) = VM(T)(l-F%(ROO—ﬁR) T2+...>

Alp,q) = Au(7) <1+ d—4)R00—R>7—2 i )

1
24(d — 1) (2
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0 Now consider only a causal cone, i.e. the future or past domain
of dependence D*(S) of an achronal set S (a hypersurface) with
non-vanishing extrinsic curvature K.

O The timelike geodesic v of duration 7 starts at p and ends at g.

q
D*(S)

S/ p



0 Now consider only a causal cone, i.e. the future or past domain
of dependence D*(S) of an achronal set S (a hypersurface) with
non-vanishing extrinsic curvature K.

O The timelike geodesic v of duration 7 starts at p and ends at g.
q
D*(9)

S/ p

o By dimensionality we expect corrections to the volume as:

1%t order : K
2" order : R, Ry, ntn?, K? TrK?



The corrections from the extrinsic curvature is found by taking the
spacetime to be flat,

Vi(r) = Vﬂat<1 + KT+ (01K2 + czTrK2) 2. )

There is two methods to find the coefficients ¢;:

O Computing the volume between the hypersurface S and the flat
cone using RNCs centered at p, [Buck et al. (2015)].

O Computing directly the volume for simple hypersurfaces S

(e.g. with constant curvature) and solve for the coefficients ¢;,
[Jubb (2016)].
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Let's see how to find ¢y by computing the volume
of a small causal cone on top of a unit ¢! of

extrinsic curvature K = d — 1: p

Sd—l
o1 The sphere is parametrized as t = /1 — r2 and the cone as

t=1+47—r. They intersect at ry (1) = S(1+7—+v1—27 — 72).
o For a small cone 7 < 1 one finds:

T4 (7) 1+7—7r
Vi(r) = Qd_g/o drrd_Q/l_ dt

o Vﬂat(1+ %Tﬁ----)

d
Then we Identlfy co = m



Playing the same game with a family of hypersurfaces S one finds
up to O(7?) expressions for the d-volume, spatial volume and area
of a small causal cone:

o The d-volume [Jubb (2016)]

d d 1 9 2) 2
= o K - K TrK
V+(T) Vﬂt<1+2(d+l) T+4(d+1) (2 + T+ )

o The spatial volume

V+(T)=Vﬂat<1+%KT+ dt2 (1K2+—d ’IYK2>7'2+~~>

4(d+1) \2 d+2
o The area
_ d—2 d—2 (1, 2> >,
A+(T)_Aﬂ“t(1+2(d—1)KT+4(d—1) <2K R T )



Comparison theorems

for causal diamonds




We consider a spherically symmetric metric in d dimensions:

dr?
2 2v(r) 742 2 2
ds f(r)e""dt +f_(r) + redQs_,,
, 2m(r)
Wlth f(’l"):].—m >0

The Einstein's equations R, — %gw,R = (d —2)kq Ty give:

dm(r) _
— — hd r 2Ty,
—d;yignr) = kar f(r) (T + Trs) -
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[0 We shall assume some energy positivity conditions:

Ti% > 0 and TM, > 0

[0 Asymptotic flatness conditions:

lim f(r)=1 and lim v(r)=0

r—00 r—00

f(0)=1 and ~(0) <0
= m(r) >0, v(r) <0, both monotonic increasing.



The redshift z(r) is defined as

1 .
1+2 —gu(r),  with — gy =f(r)e?™

The energy conditions and asymptotics of m(r) and ~(r) yield

dgu(r) 2¢21(7)
dr rd-2

((d=3)m(r) + rar" ' Tis) 2 0

and €270 Sf(r)eQ”Y(’") < 1.
Then the redshift z(r) is a monotonic decreasing function of r,

2e > 2(r) >0

where z, = z(r = 0) = ¢77° — 1 is the redshift at the center.
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The diamond is determined by two events p and
q joined by a timelike geodesic (observer at rest
at r = 0) of invariant duration 7 (T in ¢ time).

0 Relation between ¢ time and proper-time 7:
T=14z)T
O Introduce tortoise coordinates y:
T 6_7(7‘/)
= dr’
= F(r')
[ The value of r(7/2) is found from:

- /r(T/z)d,e—w(r')
o D)




1 The volume of this diamond is:
T/2 T/2—t
V(r) = 2Qd_2/ dt/ dy rd_Z(y)f(y)eZV(y)
0 0

O The spatial volume is:

Y N T(T/2)d/ T./d—2
) =90z [ b

[0 The area is:
A(T) = Qqor®3(T/2)



Monotonicity and boundary conditions of v(r) and m(r) yield

T<r(T)< (14 z)T



Monotonicity and boundary conditions of () and m(r) yield

T<r(T)< (14 z)T,

Comparison theorems [CB, G. Gibbons, S Solodukhin (2015)]

2 The d-volume satisfies
Vu(r) S V(1) < A+ 2) Vu(r), V)= 3852 (r/2)°

o The spatial volume satisfies
Vu(r) <V(7) <1+ 2)" 7 Vu(r), v =342 (/)2

o The area satisfies

Ay (t) S AT < U+ 2) T2 An(T),  Au(r) =Qu_a(r/2)2



[0 The “usual” causal diamond:

[ The achronal set S is a ball in a spacelike
hypersurface orthogonal to the time-like
geodesic joining p and gq.

o p and g are points.




[0 The “usual” causal diamond:

[ The achronal set S is a ball in a spacelike
hypersurface orthogonal to the time-like
geodesic joining p and gq.

o p and g are points.

[0 Generalized causal diamond:

& The achronal set is a solid annulus of the
form I x S92, where I is the interval in
the radial direction.

0 pand g are S%2 and I is given by
yo—%TSyo-l-%T.

o Can be applied if a black hole is present.




We consider the d-dimensional Schwarzschild spacetime:

d—3
A0 = —Fa(P) () P28, fulr) = 1- ()
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We consider the d-dimensional Schwarzschild spacetime:
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T d?"l
y(r) —y(n) = ok T/2 (

(SR
-

ey~ T2 (B )
r=>1) = d—4a\T YdalTo
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We consider the d-dimensional Schwarzschild spacetime:
d—3
A0 = —Fa(P) () P28, fulr) = 1- ()

[0 Time-like geodesic joining p and ¢ is a round q
trip from 1y to 7,4, and then back to ry.
[ Introduce tortoise coordinates y:
rodr!

y(r) —y(n) = . m =T/2 (%)

d—4
Ts Ts
i—1 (T) + va(r)

= 7r(Tr>1) ~

[0 The volume reads: P

T/2 T/2—t
Vana(romm) =20a [ at [ dyr2()fu()

T/2+t

O YTEA [ GaFest, Tours, Mar 23,2017 124/30"



Timelike radial geodesic equations (E2 fa(Tmaz))
dt E

a s 1
dr fd(r) ( )
dry2 0 o
() = B ). (2)
Equation (2) gives 7yqq as a function of 7:
T \2/(d-1)
Tmaz(T) > Ts(%d?’s) , T>1

Combined with (1) one finds T'(7):

5—d
QgTs (T \d=1
T/2 = /24 d(2—r5) + Ba(ro)

where ag, B4(r9) > 0.



2 Volume in d = 4 dimensions:

5mrs , w2\ 1/3
Viena (T, 10) =~ ﬂT‘l 6 (8_7’5) 0B s Vga(7)
o Volume in d = 5 dimensions:
Viens ( ) T 5+7r2r7'4ln7'/r + > Vis(7)
r9) ~ T —
Schs\T, 10 160 39 s s M5
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2 Volume in d = 4 dimensions:

5mrs , w2\ 1/3
Viena (T, 10) =~ ﬂT‘l 6 (8_7’5) 0B s Vga(7)
o Volume in d = 5 dimensions:
Viens ( ) il 5+7r2r7'4ln7'/r + > Vis(7)
T,19) ™~ —T —
Schd5\7T, 70 160 39 s s M5

o Volume in d > 5 dimensions:

Vaepa(T,10) =~ Viypa(T) <1+2d@ —i—) > Vya(r)

Inequalities involving volumes in flat spacetime M Vd

Vsena(1,m0) > Viga(r,10) > Viga(7),  Vyga(rino) = Vyga(r)
><(1+2dﬂTl+---)



- An application




Comparison theorems [CB, G.Gibbons, S Solodukhin (2015)]

o The d-volume satisfies
Vi(r) S V(1) < (14 2) Viu(r), V()= T2 (/2)°

o The spatial volume satisfies
V(1) <V(7) <1+ 2)" 7 Vu(r), v =32 (/)%

o The area satisfies

Ay(t) SAT) S A+ 2) T2 Ap(T),  Au(r) =Qu_s(r/2)42



The area of a causal diamond satisfies
Ay(r) < A(m) < (1+ zc)d_2 Ap(7)



The area of a causal diamond satisfies
Ay(r) < A(m) < (1+ zc)d_2 Ap(7)

Now consider a surface X associated with a causal diamond of du-
ration 7, in a curved spacetime M and in Minkowski spacetime M.

Reformulating the inequalities on the area in terms of entanglement
entropy we conjecture:

Ss(M,7) < Ss(M, 1) < (14 2.)2 S5 (M, 7)



- Thank you!
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