Comparison theorems for causal diamonds

Clément Berthiere

Laboratoire de Mathématiques et Physique Théorique CNRS-Université François Rabelais

Summary

1 Definitions

2 The geometry of small causal diamonds

3 Comparison theorems for causal diamonds
CB, G. Gibbons, and S. Solodukhin, Phys. Rev. D92, 064036, arXiv:1507.03619
4 An application

Definitions

Definitions

A spacetime is a connected time-oriented Lorentzian manifold $\{M, g\}$

- The chronological future of $p \in M$, denoted $I^{+}(p)$: The set of events that can be reached by a future directed timelike curve starting from p.
For a general subset $S \subset M$, we define $I^{+}(S)=\cup_{p \in S} I^{+}(p)$.
We denote by $\partial I^{+}(p)$ the boundary of $I^{+}(p)$.
In Minkowski spacetime, $\partial I^{+}(p)$ is generated by future-directed null geodesics starting from p.

Definitions

A spacetime is a connected time-oriented Lorentzian manifold $\{M, g\}$
\square The chronological future of $p \in M$, denoted $I^{+}(p)$:
The set of events that can be reached by a future directed timelike curve starting from p.
For a general subset $S \subset M$, we define $I^{+}(S)=\cup_{p \in S} I^{+}(p)$.

- We denote by $\partial I^{+}(p)$ the boundary of $I^{+}(p)$. In Minkowski spacetime, $\partial I^{+}(p)$ is generated by future-directed null geodesics starting from p.

Definitions

\square A subset $S \subset M$ is said to be achronal if $I^{+}(S) \cap S=\emptyset$.

- A timelike curve is said to be past-inextendible if it has no past endpoint.
- The future domain of dependence of an achronal set S, denoted $D^{+}(S)$, is the set of all $p \in M$ such that every past-inextendible timelike curve through p intersects S.

For each definition there is a temporally dual notion, past.

Definitions

\square A subset $S \subset M$ is said to be achronal if $I^{+}(S) \cap S=\emptyset$.
\square A timelike curve is said to be past-inextendible if it has no past endpoint.

> The future domain of dependence of an achronal set S, denoted $D^{+}(S)$, is the set of all $p \in M$ such that every past-inextendible timelike curve through p intersects S.

For each definition there is a temporally dual notion, past.

Definitions

- A subset $S \subset M$ is said to be achronal if $I^{+}(S) \cap S=\emptyset$.
\square A timelike curve is said to be past-inextendible if it has no past endpoint.
\square The future domain of dependence of an achronal set S, denoted $D^{+}(S)$, is the set of all $p \in M$ such that every past-inextendible timelike curve through p intersects S.

For each definition there is a temporally dual notion, past.

Definitions

- A subset $S \subset M$ is said to be achronal if $I^{+}(S) \cap S=\emptyset$.
\square A timelike curve is said to be past-inextendible if it has no past endpoint.
\square The future domain of dependence of an achronal set S, denoted $D^{+}(S)$, is the set of all $p \in M$ such that every past-inextendible timelike curve through p intersects S.

For each definition there is a temporally dual notion, past.

Definitions

Causal diamond

Defined by initial and final events p and q or alternatively by an achronal set S, as a subset of a spacetime of the form:

$$
I^{+}(p) \cap I^{-}(q) \quad \text { or } \quad D^{+}(S) \cup D^{-}(S)
$$

Definitions

Geometric quantities of interest

\square The spatial volume $\mathcal{V}(p, q)$ of a hypersurface $(t=0)$ having the intersection $\partial I^{+}(p) \cap \partial I^{-}(q)$ as its boundary.

- The area $A(p, q)$ of the intersection $\partial I^{+}(p) \cap \partial I^{-}(q)$.

The geometry of small causal diamonds

The geometry of small causal diamonds

In curved spacetime, if p and q are sufficiently close, there is a unique time-like geodesic parametrized by proper time τ joining them.

- In small enough causal diamond the metric can be expanded as

$$
g_{\mu \nu}=\eta_{\mu \nu}-\frac{1}{3} x^{\alpha} x^{\beta} R_{\mu \alpha \nu \beta}(0)+\cdots
$$

where x^{μ} are RNCs about the center of the diamond $r=0$.
The volume of a small causal diamond is
where $D=D^{+}(S) \cup D^{-}(S)$ in the curved spacetime.

The geometry of small causal diamonds

In curved spacetime, if p and q are sufficiently close, there is a unique time-like geodesic parametrized by proper time τ joining them.

- In small enough causal diamond the metric can be expanded as

$$
g_{\mu \nu}=\eta_{\mu \nu}-\frac{1}{3} x^{\alpha} x^{\beta} R_{\mu \alpha \nu \beta}(0)+\cdots
$$

where x^{μ} are RNCs about the center of the diamond $r=0$.

- The volume of a small causal diamond is

$$
V(p, q)=\int_{D} d^{d} x\left(1-\frac{1}{6} x^{\mu} x^{\nu} R_{\mu \nu}(0)+\cdots\right)
$$

where $D=D^{+}(S) \cup D^{-}(S)$ in the curved spacetime.

The geometry of small causal diamonds

The integration over D contains corrections to the Minkowski spacetime domain D_{M}. The integral can be split into two parts $V_{1}+V_{2}$:

$$
V(p, q)=\int_{D_{M}} d^{d} x\left(1-\frac{1}{6} x^{\mu} x^{\nu} R_{\mu \nu}(0)\right)+\int_{D-D_{M}} d^{d} x+\cdots
$$

The $2^{\text {nd }}$ piece is computed using perturbations of null geodesics:
[Myrheim (1978), Gibbons and Solodukhin (2007), Khetrapal et al. (2012)]

The geometry of small causal diamonds

The integration over D contains corrections to the Minkowski spacetime domain D_{M}. The integral can be split into two parts $V_{1}+V_{2}$:

$$
V(p, q)=\int_{D_{M}} d^{d} x\left(1-\frac{1}{6} x^{\mu} x^{\nu} R_{\mu \nu}(0)\right)+\int_{D-D_{M}} d^{d} x+\cdots
$$

- The evaluation of the first term is straightforward:

$$
V_{1}=V_{M}\left(1-\frac{1}{24(d+1)}\left(R_{00}+\frac{d}{d+2} R\right) \tau^{2}\right)
$$

The $2^{\text {nd }}$ piece is computed using perturbations of null geodesics:
[Myrheim (1978), Gibbons and Solodukhin (2007), Khetrapal et al. (2012)]

The geometry of small causal diamonds

The integration over D contains corrections to the Minkowski spacetime domain D_{M}. The integral can be split into two parts $V_{1}+V_{2}$:

$$
V(p, q)=\int_{D_{M}} d^{d} x\left(1-\frac{1}{6} x^{\mu} x^{\nu} R_{\mu \nu}(0)\right)+\int_{D-D_{M}} d^{d} x+\cdots
$$

- The evaluation of the first term is straightforward:

$$
V_{1}=V_{M}\left(1-\frac{1}{24(d+1)}\left(R_{00}+\frac{d}{d+2} R\right) \tau^{2}\right)
$$

- The $2^{\text {nd }}$ piece is computed using perturbations of null geodesics:

$$
V_{2}=\frac{V_{M}}{24} R_{00} \tau^{2}
$$

[Myrheim (1978), Gibbons and Solodukhin (2007), Khetrapal et al. (2012)]

The geometry of small causal diamonds

Then the volume of a small causal diamond is:

$$
V(p, q)=V_{M}(\tau)\left(1+\frac{d}{24(d+1)}\left(R_{00}-\frac{1}{d+2} R\right) \tau^{2}+\cdots\right)
$$

G. Gibbons and S. Solodukhin (2007) also found expressions for the spatial volume and area:

$$
\begin{aligned}
& \mathcal{V}(p, q)=\mathcal{V}_{M}(\tau)\left(1+\frac{d-1}{24(d+1)}\left(R_{00}-\frac{1}{d-1} R\right) \tau^{2}+\cdots\right) \\
& A(p, q)=A_{M}(\tau)\left(1+\frac{1}{24(d-1)}\left(2(d-4) R_{00}-R\right) \tau^{2}+\cdots\right)
\end{aligned}
$$

Extrinsic curvature contributions

\square Now consider only a causal cone, i.e. the future or past domain of dependence $D^{ \pm}(S)$ of an achronal set S (a hypersurface) with non-vanishing extrinsic curvature K.
\square The timelike geodesic γ of duration τ starts at p and ends at q.

By dimensionality we expect corrections to the volume as:

Extrinsic curvature contributions

\square Now consider only a causal cone, i.e. the future or past domain of dependence $D^{ \pm}(S)$ of an achronal set S (a hypersurface) with non-vanishing extrinsic curvature K.
\square The timelike geodesic γ of duration τ starts at p and ends at q.

\square By dimensionality we expect corrections to the volume as:

$$
\begin{aligned}
1^{\text {st }} \text { order } & : K \\
2^{n d} \text { order } & : R, R_{\mu \nu} n^{\mu} n^{\nu}, K^{2}, \operatorname{Tr} K^{2}
\end{aligned}
$$

Extrinsic curvature contributions

The corrections from the extrinsic curvature is found by taking the spacetime to be flat,

$$
V_{+}(\tau)=V_{\text {flat }}\left(1+c_{0} K \tau+\left(c_{1} K^{2}+c_{2} \operatorname{Tr} K^{2}\right) \tau^{2}+\cdots\right)
$$

There is two methods to find the coefficients c_{i} :
\square Computing the volume between the hypersurface S and the flat cone using RNCs centered at p, [Buck et al. (2015)].
\square Computing directly the volume for simple hypersurfaces S (e.g. with constant curvature) and solve for the coefficients c_{i}, [Jubb (2016)].

Extrinsic curvature contributions

Let's see how to find c_{0} by computing the volume of a small causal cone on top of a unit S^{d-1} of extrinsic curvature $K=d-1$:

Extrinsic curvature contributions

Let's see how to find c_{0} by computing the volume of a small causal cone on top of a unit S^{d-1} of extrinsic curvature $K=d-1$:

- The sphere is parametrized as $t=\sqrt{1-r^{2}}$ and the cone as $t=1+\tau-r$. They intersect at $r_{+}(\tau)=\frac{1}{2}\left(1+\tau-\sqrt{1-2 \tau-\tau^{2}}\right)$. For a small cone $\tau \ll 1$ one finds:
\square

Extrinsic curvature contributions

Let's see how to find c_{0} by computing the volume of a small causal cone on top of a unit S^{d-1} of extrinsic curvature $K=d-1$:

- The sphere is parametrized as $t=\sqrt{1-r^{2}}$ and the cone as $t=1+\tau-r$. They intersect at $r_{+}(\tau)=\frac{1}{2}\left(1+\tau-\sqrt{1-2 \tau-\tau^{2}}\right)$.
- For a small cone $\tau \ll 1$ one finds:

$$
\begin{aligned}
V_{+}(\tau) & =\Omega_{d-2} \int_{0}^{r_{+}(\tau)} d r r^{d-2} \int_{\sqrt{1-r^{2}}}^{1+\tau-r} d t \\
& \simeq V_{\text {flat }}\left(1+\frac{d(d-1)}{2(d+1)} \tau+\cdots\right)
\end{aligned}
$$

Then we identify $c_{0}=\frac{d}{2(d+1)}$

Extrinsic curvature contributions

Let's see how to find c_{0} by computing the volume of a small causal cone on top of a unit S^{d-1} of extrinsic curvature $K=d-1$:

- The sphere is parametrized as $t=\sqrt{1-r^{2}}$ and the cone as $t=1+\tau-r$. They intersect at $r_{+}(\tau)=\frac{1}{2}\left(1+\tau-\sqrt{1-2 \tau-\tau^{2}}\right)$.
- For a small cone $\tau \ll 1$ one finds:

$$
\begin{aligned}
V_{+}(\tau) & =\Omega_{d-2} \int_{0}^{r_{+}(\tau)} d r r^{d-2} \int_{\sqrt{1-r^{2}}}^{1+\tau-r} d t \\
& \simeq V_{\text {flat }}\left(1+\frac{d(d-1)}{2(d+1)} \tau+\cdots\right)
\end{aligned}
$$

Then we identify $c_{0}=\frac{d}{2(d+1)}$.

Extrinsic curvature contributions

Playing the same game with a family of hypersurfaces S one finds up to $O\left(\tau^{2}\right)$ expressions for the d-volume, spatial volume and area of a small causal cone:

- The d-volume [Jubb (2016)]

$$
V_{+}(\tau)=V_{\text {fat }}\left(1+\frac{d}{2(d+1)} K \tau+\frac{d}{4(d+1)}\left(\frac{1}{2} K^{2}+\operatorname{Tr} K^{2}\right) \tau^{2}+\cdots\right)
$$

\square The spatial volume

$$
\mathcal{V}_{+}(\tau)=\mathcal{V}_{\text {flat }}\left(1+\frac{1}{2} K \tau+\frac{d+2}{4(d+1)}\left(\frac{1}{2} K^{2}+\frac{d}{d+2} \operatorname{Tr} K^{2}\right) \tau^{2}+\cdots\right)
$$

\square The area

$$
A_{+}(\tau)=A_{\text {flat }}\left(1+\frac{d-2}{2(d-1)} K \tau+\frac{d-2}{4(d-1)}\left(\frac{1}{2} K^{2}+\operatorname{Tr} K^{2}\right) \tau^{2}+\cdots\right)
$$

Comparison theorems for causal diamonds

Metric and asymptotic conditions

We consider a spherically symmetric metric in d dimensions:

$$
\begin{aligned}
\qquad d s^{2} & =-f(r) \mathrm{e}^{2 \gamma(r)} d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \Omega_{d-2}^{2} \\
\text { with } \quad f(r) & =1-\frac{2 m(r)}{r^{d-3}}>0
\end{aligned}
$$

The Einstein's equations $R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=(d-2) \kappa_{d} T_{\mu \nu}$ give:

$$
\begin{aligned}
\frac{d m(r)}{d r} & =\kappa_{d} r^{d-2} T_{\hat{t} \hat{t}} \\
\frac{d \gamma(r)}{d r} & =\kappa_{d} r f(r)^{-1}\left(T_{\hat{t} \hat{t}}+T_{\hat{r} \hat{r}}\right)
\end{aligned}
$$

Metric and asymptotic conditions

\square We shall assume some energy positivity conditions:

$$
T_{\hat{t} \hat{t}} \geq 0 \quad \text { and } \quad T_{\hat{r} \hat{r}} \geq 0
$$

\square Asymptotic flatness conditions:

[^0]
Metric and asymptotic conditions

\square We shall assume some energy positivity conditions:

$$
T_{\hat{t} \hat{t}} \geq 0 \quad \text { and } \quad T_{\hat{r} \hat{r}} \geq 0
$$

\square Asymptotic flatness conditions:

$$
\begin{gathered}
\lim _{r \rightarrow \infty} f(r)=1 \quad \text { and } \quad \lim _{r \rightarrow \infty} \gamma(r)=0 \\
f(0)=1 \quad \text { and } \quad \gamma(0)<0
\end{gathered}
$$

Metric and asymptotic conditions

\square We shall assume some energy positivity conditions:

$$
T_{\hat{t} \hat{t}} \geq 0 \quad \text { and } \quad T_{\hat{r} \hat{r}} \geq 0
$$

\square Asymptotic flatness conditions:

$$
\begin{gathered}
\lim _{r \rightarrow \infty} f(r)=1 \quad \text { and } \quad \lim _{r \rightarrow \infty} \gamma(r)=0 \\
f(0)=1 \quad \text { and } \quad \gamma(0)<0
\end{gathered}
$$

$\Longrightarrow \quad m(r) \geq 0, \gamma(r) \leq 0$, both monotonic increasing.

Monotonicity of the redshift

The redshift $z(r)$ is defined as

$$
\frac{1}{1+z}=\sqrt{-g_{t t}(r)}, \quad \text { with } \quad-g_{t t}=f(r) e^{2 \gamma(r)}
$$

The energy conditions and asymptotics of $m(r)$ and $\gamma(r)$ yield

$$
-\frac{d g_{t t}(r)}{d r}=\frac{2 e^{2 \gamma(r)}}{r^{d-2}}\left((d-3) m(r)+\kappa_{d} r^{d-1} T_{\hat{r} \hat{r}}\right) \geq 0
$$

and $e^{2 \gamma_{0}} \leq f(r) e^{2 \gamma(r)} \leq 1$.
Then the redshift $z(r)$ is a monotonic decreasing function of r,

$$
z_{c} \geq z(r) \geq 0
$$

where $z_{c}=z(r=0)=e^{-\gamma_{0}}-1$ is the redshift at the center.

The causal diamond

The diamond is determined by two events p and q joined by a timelike geodesic (observer at rest at $r=0$) of invariant duration $\tau(T$ in t time $)$.

The causal diamond

The diamond is determined by two events p and q joined by a timelike geodesic (observer at rest at $r=0$) of invariant duration $\tau(T$ in t time $)$.
\square Relation between t time and proper-time τ :

$$
T=\left(1+z_{c}\right) \tau
$$

The causal diamond

The diamond is determined by two events p and q joined by a timelike geodesic (observer at rest at $r=0$) of invariant duration $\tau(T$ in t time $)$.
\square Relation between t time and proper-time τ :

$$
T=\left(1+z_{c}\right) \tau
$$

\square Introduce tortoise coordinates y :

$$
y=\int_{0}^{r} d r^{\prime} \frac{e^{-\gamma\left(r^{\prime}\right)}}{f\left(r^{\prime}\right)}
$$

\square The value of $r(T / 2)$ is found from:

The causal diamond

The diamond is determined by two events p and q joined by a timelike geodesic (observer at rest at $r=0$) of invariant duration $\tau(T$ in t time $)$.
\square Relation between t time and proper-time τ :

$$
T=\left(1+z_{c}\right) \tau
$$

\square Introduce tortoise coordinates y :

$$
y=\int_{0}^{r} d r^{\prime} \frac{e^{-\gamma\left(r^{\prime}\right)}}{f\left(r^{\prime}\right)}
$$

\square The value of $r(T / 2)$ is found from:

$$
T / 2=\int_{0}^{r(T / 2)} d r^{\prime} \frac{e^{-\gamma\left(r^{\prime}\right)}}{f\left(r^{\prime}\right)}
$$

Volume, spatial volume and area

\square The volume of this diamond is:

$$
V(\tau)=2 \Omega_{d-2} \int_{0}^{T / 2} d t \int_{0}^{T / 2-t} d y r^{d-2}(y) f(y) e^{2 \gamma(y)}
$$

\square The spatial volume is:

$$
\mathcal{V}(\tau)=\Omega_{d-2} \int_{0}^{r(T / 2)} d r^{\prime} \frac{r^{\prime d-2}}{\sqrt{f\left(r^{\prime}\right)}}
$$

\square The area is:

$$
A(\tau)=\Omega_{d-2} r^{d-2}(T / 2)
$$

Comparison theorems

Monotonicity and boundary conditions of $\gamma(r)$ and $m(r)$ yield

$$
\tau \leq r(T) \leq\left(1+z_{c}\right) \tau
$$

Comparison theorems

Monotonicity and boundary conditions of $\gamma(r)$ and $m(r)$ yield

$$
\tau \leq r(T) \leq\left(1+z_{c}\right) \tau
$$

Comparison theorems

[CB, G. Gibbons, S Solodukhin (2015)]

- The d-volume satisfies

$$
V_{M}(\tau) \leq V(\tau) \leq\left(1+z_{c}\right)^{d} V_{M}(\tau), \quad V_{M}(\tau)=\frac{2 \Omega_{d-2}}{d(d-1)}(\tau / 2)^{d}
$$

\square The spatial volume satisfies

$$
\mathcal{V}_{M}(\tau) \leq \mathcal{V}(\tau) \leq\left(1+z_{c}\right)^{d-1} \mathcal{V}_{M}(\tau), \quad \mathcal{V}_{M}(\tau)=\frac{\Omega_{d-2}}{d-1}(\tau / 2)^{d-1}
$$

\square The area satisfies

$$
A_{M}(\tau) \leq A(\tau) \leq\left(1+z_{c}\right)^{d-2} A_{M}(\tau), \quad A_{M}(\tau)=\Omega_{d-2}(\tau / 2)^{d-2}
$$

Generalization to spacetime with horizon

\square The "usual" causal diamond:
\square The achronal set S is a ball in a spacelike hypersurface orthogonal to the time-like geodesic joining p and q.
$\square p$ and q are points.
\square Generalized causal diamond:
The achronal set is a solid annulus of the form $I \times S^{d-2}$, where I is the interval in the radial direction
 $y_{0}-\frac{1}{2} \tau \leq y_{0}+\frac{1}{2}$ Can be applied if a black hole is present.

Generalization to spacetime with horizon

\square The "usual" causal diamond:
\square The achronal set S is a ball in a spacelike hypersurface orthogonal to the time-like geodesic joining p and q.
$\square p$ and q are points.
\square Generalized causal diamond:
\square The achronal set is a solid annulus of the form $I \times S^{d-2}$, where I is the interval in the radial direction.
$\square p$ and q are S^{d-2} and I is given by $y_{0}-\frac{1}{2} \tau \leq y_{0}+\frac{1}{2} \tau$.

- Can be applied if a black hole is present.

Causal diamond in Schwarzschild spacetime

We consider the d-dimensional Schwarzschild spacetime:

$$
d s_{S c h^{d}}^{2}=-f_{d}(r) d t^{2}+f_{d}(r)^{-1} d r^{2}+r^{2} d \Omega_{d-2}^{2}, \quad f_{d}(r)=1-\left(\frac{r_{s}}{r}\right)^{d-3}
$$

\square Time-like geodesic joining p and q is a round trip from r_{0} to $r_{\max }$ and then back to r_{0}.
\square Introduce tortoise coordinates y :

\square The volume reads:

Causal diamond in Schwarzschild spacetime

We consider the d-dimensional Schwarzschild spacetime:

$$
d s_{S c h^{d}}^{2}=-f_{d}(r) d t^{2}+f_{d}(r)^{-1} d r^{2}+r^{2} d \Omega_{d-2}^{2}, \quad f_{d}(r)=1-\left(\frac{r_{s}}{r}\right)^{d-3}
$$

\square Time-like geodesic joining p and q is a round trip from r_{0} to $r_{\max }$ and then back to r_{0}.
\square Introduce tortoise coordinates y :

\square The volume reads:

Causal diamond in Schwarzschild spacetime

We consider the d-dimensional Schwarzschild spacetime:

$$
d s_{S c h^{d}}^{2}=-f_{d}(r) d t^{2}+f_{d}(r)^{-1} d r^{2}+r^{2} d \Omega_{d-2}^{2}, \quad f_{d}(r)=1-\left(\frac{r_{s}}{r}\right)^{d-3}
$$

\square Time-like geodesic joining p and q is a round trip from r_{0} to $r_{\max }$ and then back to r_{0}.

- Introduce tortoise coordinates y :

$$
\begin{aligned}
& y(r)-y\left(r_{0}\right)=\int_{r_{0}}^{r} \frac{d r^{\prime}}{f_{d}\left(r^{\prime}\right)}=T / 2 \\
\Rightarrow & r(T \gg 1) \simeq T+\frac{r_{s}}{d-4}\left(\frac{r_{s}}{T}\right)^{d-4}+\gamma_{d}\left(r_{0}\right)
\end{aligned}
$$

$$
\square \text { The volume reads: }
$$

Causal diamond in Schwarzschild spacetime

We consider the d-dimensional Schwarzschild spacetime:

$$
d s_{S c h^{d}}^{2}=-f_{d}(r) d t^{2}+f_{d}(r)^{-1} d r^{2}+r^{2} d \Omega_{d-2}^{2}, \quad f_{d}(r)=1-\left(\frac{r_{s}}{r}\right)^{d-3}
$$

\square Time-like geodesic joining p and q is a round trip from r_{0} to $r_{\max }$ and then back to r_{0}.

- Introduce tortoise coordinates y :

$$
\begin{aligned}
& y(r)-y\left(r_{0}\right)=\int_{r_{0}}^{r} \frac{d r^{\prime}}{f_{d}\left(r^{\prime}\right)}=T / 2 \\
\Rightarrow & r(T \gg 1) \simeq T+\frac{r_{s}}{d-4}\left(\frac{r_{s}}{T}\right)^{d-4}+\gamma_{d}\left(r_{0}\right)
\end{aligned}
$$

\square The volume reads:

$$
V_{S c h^{d}}\left(\tau, r_{0}\right)=2 \Omega_{d-2} \int_{0}^{T / 2} d t \int_{-T / 2+t}^{T / 2-t} d y r^{d-2}(y) f_{d}(y)
$$

Proper time of radial timelike geodesics

Timelike radial geodesic equations $\left(E^{2}=f_{d}\left(r_{\max }\right)\right)$:

$$
\begin{align*}
\frac{d t}{d \tau} & =\frac{E}{f_{d}(r)} \tag{1}\\
\left(\frac{d r}{d \tau}\right)^{2} & =E^{2}-f_{d}(r) \tag{2}
\end{align*}
$$

Equation (2) gives $r_{\max }$ as a function of τ :

$$
r_{\max }(\tau) \simeq r_{s}\left(\frac{\tau}{2 b_{d} r_{s}}\right)^{2 /(d-1)}, \quad \tau \gg 1
$$

Combined with (1) one finds $T(\tau)$:

$$
T / 2 \simeq \tau / 2+\frac{\alpha_{d} r_{s}}{5-d}\left(\frac{\tau}{2 r_{s}}\right)^{\frac{5-d}{d-1}}+\beta_{d}\left(r_{0}\right)
$$

where $\alpha_{d}, \beta_{d}\left(r_{0}\right)>0$.

Volume of generalized causal diamond

- Volume in $d=4$ dimensions:

$$
V_{S c h^{4}}\left(\tau, r_{0}\right) \simeq \frac{\pi}{24} \tau^{4}+\frac{5 \pi r_{s}}{6}\left(\frac{\pi^{2}}{8 r_{s}}\right)^{1 / 3} \tau^{10 / 3}+\cdots>V_{M^{4}}(\tau)
$$

\square Volume in $d=5$ dimensions:

$$
V_{S c h^{5}}\left(\tau, r_{0}\right) \simeq \frac{\pi}{160} \tau^{5}+\frac{\pi^{2}}{32} r_{s} \tau^{4} \ln \tau / r_{s}+\cdots>V_{M^{5}}(\tau)
$$

- Volume in $d>5$ dimensions:

$$
V_{S c h^{d}}\left(\tau, r_{0}\right) \simeq V_{M^{d}}(\tau)\left(1+2 d \frac{\sigma_{d}\left(r_{0}\right)}{\tau}+\cdots\right)>V_{M^{d}}(\tau)
$$

Volume of generalized causal diamond

- Volume in $d=4$ dimensions:

$$
V_{S c h^{4}}\left(\tau, r_{0}\right) \simeq \frac{\pi}{24} \tau^{4}+\frac{5 \pi r_{s}}{6}\left(\frac{\pi^{2}}{8 r_{s}}\right)^{1 / 3} \tau^{10 / 3}+\cdots>V_{M^{4}}(\tau)
$$

\square Volume in $d=5$ dimensions:

$$
V_{S c h^{5}}\left(\tau, r_{0}\right) \simeq \frac{\pi}{160} \tau^{5}+\frac{\pi^{2}}{32} r_{s} \tau^{4} \ln \tau / r_{s}+\cdots>V_{M^{5}}(\tau)
$$

\square Volume in $d>5$ dimensions:

$$
V_{S c h^{d}}\left(\tau, r_{0}\right) \simeq V_{M^{d}}(\tau)\left(1+2 d \frac{\sigma_{d}\left(r_{0}\right)}{\tau}+\cdots\right)>V_{M^{d}}(\tau)
$$

Inequalities involving volumes in flat spacetime $M \quad \forall d$

$$
\begin{aligned}
V_{S c h^{d}}\left(\tau, r_{0}\right)>V_{M^{d}}\left(\tau, r_{0}\right)>V_{M^{d}}(\tau), \quad V_{M^{d}}\left(\tau, r_{0}\right) & \simeq V_{M^{d}}(\tau) \\
& \times\left(1+2 d \frac{r_{0}}{\tau}+\cdots\right)
\end{aligned}
$$

An application

Comparison theorems

Comparison theorems

[CB, G. Gibbons, S Solodukhin (2015)]

- The d-volume satisfies

$$
V_{M}(\tau) \leq V(\tau) \leq\left(1+z_{c}\right)^{d} V_{M}(\tau), \quad V_{M}(\tau)=\frac{2 \Omega_{d-2}(\tau / d)^{d}}{d(d-1)}
$$

\square The spatial volume satisfies

$$
\mathcal{V}_{M}(\tau) \leq \mathcal{V}(\tau) \leq\left(1+z_{c}\right)^{d-1} \mathcal{V}_{M}(\tau), \quad \mathcal{V}_{M}(\tau)=\frac{\Omega_{d-2}}{d-1}(\tau / 2)^{d-1}
$$

- The area satisfies

$$
A_{M}(\tau) \leq A(\tau) \leq\left(1+z_{c}\right)^{d-2} A_{M}(\tau), \quad A_{M}(\tau)=\Omega_{d-2}(\tau / 2)^{d-2}
$$

A conjecture

The area of a causal diamond satisfies

$$
A_{M}(\tau) \leq A(\tau) \leq\left(1+z_{c}\right)^{d-2} A_{M}(\tau)
$$

Now consider a surface Σ associated with a causal diamond of duration τ, in a curved spacetime \mathcal{M} and in Minkowski spacetime M. Reformulating the inequalities on the area in terms of entanglement entropy we conjecture:

$$
S_{\Sigma}(M, \tau) \leq S_{\Sigma}(M, \tau) \leq\left(1+z_{C}\right)^{d-2} S_{\Sigma}(M, \tau)
$$

A conjecture

The area of a causal diamond satisfies

$$
A_{M}(\tau) \leq A(\tau) \leq\left(1+z_{c}\right)^{d-2} A_{M}(\tau)
$$

Now consider a surface Σ associated with a causal diamond of duration τ, in a curved spacetime \mathcal{M} and in Minkowski spacetime M.

Reformulating the inequalities on the area in terms of entanglement entropy we conjecture:

$$
S_{\Sigma}(M, \tau) \leq S_{\Sigma}(\mathcal{M}, \tau) \leq\left(1+z_{c}\right)^{d-2} S_{\Sigma}(M, \tau)
$$

Thank you!

[^0]: $\Longrightarrow \quad m(r) \geq 0, \gamma(r) \leq 0$, both monotonic increasing.

