

"<u>Electrochemical Preparation of a Molecularly Imprinted Polypyrrole - modified</u> <u>Glassy Carbon Electrode for Determination of Isoproturon</u>"

Imer SADRIU^{1,2}

S.Bouden¹, J.Nicolle¹, F.Podvorica², K. Gondry³, L.Amalric³, B.Claude⁴, C.Vautrin-Ul¹

¹ ICMN Laboratory, CNRS, Orléans, France
² Chemistry Department, FNMS, Prishtina, Kosovo
³ BRGM, Orléans, France
⁴ ICOA, Orléans, France

Context

How to detect selectively isoproturon in water?

***** EXPERIMENTAL SECTION

- Experimental apparatus & Experimental Strategy
- Synthesis of the Molecularly Imprinted Polymers and optimization
- Electroanalytical method optimization
- **Presentation of isoproturon detection results (in milli Q & natural water samples)**
- Conclusion and perspectives

Context

Purity: 99.985 Pesticio

The World Health Organization & The European Water Framework Directive (WFD) the maximum allowed concentration at 300 ng.L⁻¹ (1.45 X 10⁻⁹M) for inland surface waters

Each method which provides us the simplest way how to determine these pollutants in waters is welcomed !

M.M. Nemat Alla, N.M. Hassan, Pesticide Biochemistry and Physiology, 112 (2014) 56–62. doi:10.1016/j.pestbp.2014.04.012 World Health Organization, ed., Guidelines for drinking-water quality, 4th ed, World Health Organization, Geneva, 2011

3-p-cumenyl-1,1-dimethylurea)

Its harmful effects

European Water Framework Directive

> Our main goal is to develop rapid selectively and sensing devices for pesticides and especially for isoproturon detection on-site analysis in real time

How to detect selectively isoproturon in water ?

What is a MIP sensor ?

A MIP sensor is a polymer thin film containing some cavities which can selectively recognize the template molecule !

A thin molecularly imprinted polymer film easily can be deposited onto working electrode during an electropolymerization process.

MIP Electrochemical Sensor

What is the strategy of these sensors ?

The deposition of a MIP thin film on the surface of the working electrode which plays a role of recognition unit resulting in an electrochemical sensor

Why we use a MIP sensor for isoproturon ?

The molecular imprinting methods is a very suitable technique for determination of the micropollutants which are organic compounds !

Experimental section

under room temperature (25 °C)

A π -conjugated structure

Pyrrole (an aromatic heterocycle) -chosen monomer

A conductive polymer

This method has many advantages:

> Modification of different electrode substrates (C & metal substrate)

 \geq

- > Mechanical stability
- Relative environmental stability
- > Conductive polymer

& metal substrate)

Polypyrrole

-nH

a radical coupling mechanism

A. F. DIAZ, K. KEIJI KANAZAWA, *Electrochemical Polymerization of Pyrrole*, J.C.S. CHEM. COMM., 1979 M. Zhou; J. Heinze, *Electrochemical Study of Polypyrrole*, J. Phys. Chem. B 1999, 103, 8451-8457 -2H

Preparation of a glassy carbon modified electrode by NIP and MIP

1st Step: Electropolymerization of Pyrrole

Experimental section

Experimental strategy for the fabrication of the NIP and MIP PPy thin films

Faraday's Law used for the theoretical calculation of film thickness:

 $(PPy film thickness) x = \frac{\mathbf{q} \cdot \mathbf{M}}{\mathbf{p} \cdot \mathbf{A} \cdot \mathbf{z} \cdot \mathbf{F}} \quad \text{-where: } q \text{ is number of charge in coulomb (C), } M \text{ monomer molar mass, } \rho \text{ is polypyrrole density (1.5 g cm}^{-3}), \\ A \text{ is electrode surface area (7mm^2), } z \text{ is number of electrons (z = 2.25), } F \text{ is Faraday constant } F = 96 \, 485.33 \, \text{C mol}^{-1}$

The influence of the amount of ethanol present in the solution was optimized at different ratios water/ethanol (v/v):

Jérôme Dejeu, Morphological and adhesive properties of polypyrrole films synthesized by sonoelectrochemical technique, Synthetic Metals 160 (2010) 2540–2545

The influence of electropolymerization time has been studied by chronoamperometry (at different time duration):

electropolymerization duration times 25 sec up to 1000 sec (potential applied 1.1 V vs Ag/AgCl)

an aqueous/ethanol solution (30:70) solution of sulfuric acid (pH ~1.0)

film thickness followed by EOCM 200 400 600 800 1000 **Electropolymerization time (s)** EQCM study of anodic polypyrrole film growth on gold quartz electrodes by chronoamerometry

1000 sec (potential applied 1.1 V vs Ag/AgCl)

(potential applied 1.1 V vs Ag/AgCl)

 (\mathbf{C})

Was showed that the peak current increased rapidly from 25 sec up to 600 sec

- Over 600 sec have shown an rapidly decreasing of the peak current,
- EQCM studies show that after a time ~600 s was obtained an immediately decrease in film mass

Electropolymerization time was optimized to be 600 sec

2nd Step: Template (isoproturon) extraction

Between pollutant molecule and polymer exist "hydrogen bonds"

Levent Özcan, Mutlu Sahin and Yücel Sahin, *Sensors* 2008, *8*, 5792-5805; Y. Li, Conducting Polymers, in: Y. Li (Ed.), Organic Optoelectronic Materials, Cham, 2015: pp. 23–50

many chemical products.

Experimental strategy for the electroanalytical detection of isoproturon

IMER SADRIU – "Electrochemical Preparation of a Molecularly Imprinted Polypyrrole - modified Glassy Carbon Electrode for Determination of Isoproturon"

Electroanalytical method optimization

The incubation time is a very important factor

The response of the sensor over different incubation time (the sensor was incubated in a milli-Q solution containing isoproturon 5 x 10⁻⁷ M)

Was shown that the peak current increased rapidly from 5 to 25 min
 When the incubation time reached 25 min, the peak current is leveled off gradually

Presentation of Isoproturon detection results – in milli Q water

The calibration plot is found to be linear between 0 and 10^{-7} M and obeys to the following relation: I (μ A) = 4.8701 [Isoproturon] - 0.0043 (R² = 0.9959)

World Health Organization, ed., *Guidelines for drinking-water quality*, 4th ed, World Health Organization, Geneva, 2011

Intereference study

(A) Carbamazepine – a medicament used against epileptic diseases
(B) Carbendazim – a benzimidazole used as a fungicide
(C) Diuron – an aryl-urea used as a herbicide

None of carbendazim (Cbd) and carbamazepine (Cbz) seems to affect the MIP-GC sensitivity toward isoproturon.

The presence of diuron at the same concentration than isoproturon lowers its signal by ~50%.

Presentation of Isoproturon detection results – in real water samples

IMER SADRIU – "Electrochemical Preparation of a Molecularly Imprinted Polypyrrole - modified Glassy Carbon Electrode for Determination of Isoproturon"

Conclusions

- The molecularly imprinted polypyrrole modified glassy carbon electrode was successfully employed as a sensor for fast determination of isoproturon *on-site* analysis in real time through electrochemical techniques.
- The advantages of a very simple instrumentation and a fast preparation of proposed sensor can make these sensors a very useful tools for determination of isoproturon.

WHO max. allowed conc.	Limit of Detection	Limit of Detection
Isoproturon	in milli Q water	in natural water samples
0.3 μg.L ⁻¹ (1.45 X 10 ⁻⁹ M)	0.5 μg L ⁻¹ (2.76 x 10 ⁻⁹ M)	2.2 μg L ⁻¹ (1.1 x 10 ⁻⁸ M)

Perspectives

• The ongoing research will be focused on the preparation of such sensors with even higher performances using *the functionalized graphene electrodes*, after seeing the excellent properties that this material possesses.

Thank you so much for your attention !

- The financial support provided to the PIVOTS and the CAPEL-MIP projects by the Region Centre Val de Loire (ARD 2020 program and CPER 2015 -2020)
 - The French Ministry of Higher Education and Research (CPER 2015 -2020 and public service subsidy to CNRS and University of Orleans)
 - The European Union committed to the Center-Val de Loire region with the European Regional Development Fund

