Reactive molecular dynamics simulations of plasma treatment of emerging pollutants in water

Pascal Brault

GREMI, UMR7344 CNRS Université d'Orléans, Orléans, France

Outline

Plasma- liquid interactions

- Reactive Molecular dynamics principles
- First attempts of paracetamol active oxydation
- Conclusions & perspectives

Plasma - liquid interactions

Y Baloul, et al, Paracetamol degradation in aqueous solution by non-thermal plasma. Eur. Phys. J. Appl. Phys. 79 (2017) 30802 Y. Baloul, et al, Preliminary study of a non-thermal plasma for the degradation of the paracetamol residue in water, International Journal of Plasma Environmental Science & Technology, 10 (2016) 102

Plasma - liquid interactions

Sketch of air atmospheric plasma on a liquid

Samukawa S et al 2012 The 2012 plasma roadmap J. Phys. D: Appl. Phys. 45 253001 P J Bruggeman et al 2016 Plasma–liquid interactions: a review and roadmap Plasma Sources Sci. Technol. 25 053002

Plasma - liquid interactions

Table 1. Typical plasma properties for four often used discharges: pulsed direct discharge in liquid, DC air glow discharge with a water electrode, pulsed plasma jet (non-touching) and filamentary dielectric barrier discharge (DBD).

	Direct liquid discharge [17, 21]	DC air glow discharge [50, 52, 57–59]	Pulsed jet (non-touching) [60, 61]	Filamentary DBD (single filament) [62]
Medium/gas	Water	Humid air	He–Ar	Air
Plasma generation time	1–10 s µs	Continuous	10–100 ns	1–10 ns
Electron density (m^{-3})	$10^{24} - 10^{26}$	10 ¹⁸ -10 ¹⁹	$10^{19} - 10^{20}$	$10^{19} - 10^{21}$
Pressure (bar)	10 ⁴ (peak)	1	1	1
Gas temperature (K)	1000-7000	2000-3000	300-400	300-400
Ionization degree	$1 - 10^{-3}$	$10^{-5} - 10^{-7}$	$10^{-5} - 10^{-6}$	$10^{-5} - 10^{-6}$
Energy/power	1 J per pulse	5–100 W	$< 10 \ \mu J$ per pulse	$< 10 \ \mu J$ per pulse
Power density	$\leq 10^{15} \mathrm{W} \mathrm{m}^{-3}$	$\sim 10^{6} \mathrm{W} \mathrm{m}^{-3}$	$< 10^{12} \mathrm{W} \mathrm{m}^{-3}$	$< 10^{12} \mathrm{W} \mathrm{m}^{-3}$
Current	~1 A	5–100 mA	2–10 mA peak	<100 mA
Electron temperature (eV)	1 (close to LTE)	1–2	1-2	2–3
Electric field (kV cm ⁻¹)	~10 ³	1 (in positive column)	1–10	10-100
Ion density at interface (m^{-3})	10^{24}	10 ¹⁸ -10 ¹⁹	$\leq 10^{16}$	$10^{20} - 10^{21}$
$UV (m^{-2}s^{-1})$	Broadband UV emission	Strong UV (NO(A-X), OH(A-X),	5×10^{22}	5×10^{23}
		$N_2(C-B))$		
Radical density	~10 ²⁴	$10^{21} - 10^{23}$	$10^{19} - 10^{21}$	$10^{20} - 10^{21}$
(e.g. $^{\bullet}OH$ and O^{\bullet}) m ⁻³ s				
Reactive species flux $(m^{-2} s^{-1})$	Extremely large gradients	$10^{23} - 10^{25}$	$5 \times 10^{21} - 5 \times 10^{23}$	$5 \times 10^{22} - 5 \times 10^{23}$
Flow effects	Shockwaves	Thermal convection	Forced flow	Convective

e e e e e e e e e e e e

Water density 3.3 10²⁸ m⁻³

Molecular dynamics simulations

- Calculate all trajectories of a set of atoms, molecules, ...
 via the Newton equation of motion
 - \rightarrow Suitable for processes at nanoscale (up to 10⁹ atoms)

 A rigourous approach requires the use of robust interaction potentials and initial conditions (positions, velocities) preferably matching experimental conditions

 \rightarrow appropriate velocity distribution functions can be derived from experimental conditions.

✓ Proper energy dissipation:

- Energy release during bond formation : deposition, bond formation/breaking
- Annealing
- → via friction term(s), thermostat(s)

Molecular dynamics simulations

Relevance/significance of MD Simulations

Flux :

Exp. $1 \ 10^{15}$ cm⁻² s⁻¹ = 10 species / nm² / s - MD 1 specie /10x10 nm² / 2 ps Prohibit long time diffusion, except if including specific strategies

Pressure/simulation box size Solid density : Pt 65 nm⁻³ Liquid density: water 33 nm⁻³

Can be treated. Diffusion coefficients can be calculated without additional approximation(s)

Gas density: 1 atm = 2.4 10^{-2} nm⁻³ \rightarrow Not enough species in box of size d at pressure PSolution: relevant parameter = Collision number ∞ P.dThermal relaxation $\rightarrow \uparrow P \downarrow d$ should work.

 Choose a relevant specie release time: i.e. greater than thermalisation time

- Choose a relevant thermostat (region i.e. what should be thermostated) within this relevant time
- For interactions with surface, one can guess that only the substrate should be thermostated

GREMI

Molecular dynamics simulations: Interactions potentials

ReaxFF allows for computationally efficient simulation of materials under realistic conditions, *i.e.* bond breaking and formation with accurate chemical energies. It also includes variable partial charges.

Due to the chemistry, ReaxFF has a complicated potential energy function: E_{system} =

Overview of the ReaxFF total energy components

TP Senftle et al, The ReaxFF reactive force-field: development, applications and future directions, npj Computational Materials 2, (2016) 15011

Paracetamol plasma active oxidation

- Paracetamol is a common and (well) studied drug pollutant present in water resulting from human intake methodology
 - Goal of a reactive MD
 - Identifying reaction pathways
 - To provide with the oxidation by-products and identifying possible toxic ones
 - In turn, to deduce the most appropriate oxidation process
 - More generally providing an insight of plasma liquid interactions in developping an appropriate methotodology

Requirements

- To parametrize and/or to use (already available) reactive force fields (e.g. ReaxFF, AIREBO, ...)
- Ultimately include electron force fields for including electron processes in MD (available forcefields : e-reaxFF, eFF or in a new one)

Paracetamol plasma active oxidation Preliminary results on paracetamol

• Oxidation at temperature 2500 K \rightarrow insight in the kinetics

> MD oxidation using O_2 , OH, O_3

Intermediate and final products

Paracetamol plasma active oxidation Oxidation at 2500 K

- Simulation box
 - > 2.5 x 2.5 x 2.5 nm³ : 1 paracetamol + 100 active molecules \rightarrow O2, OH or O₃
 - Time step : 0.1 fs, 2.10⁸ iterations $T_{calc} = 20$ ns
- Preliminary results
 - \triangleright O₂ and OH lead to same final products.
 - \succ But with OH, reactions occur faster than with O₂ and at lower temperature.
 - \succ O₃ leads to deeper oxidation very quickly, even at room temperature

	02	ОН	O ₃
Final products	NC ₄ O 4 H ₂ O 1 OH 4 CO n O ₂	NC ₅ O 3 CO 1 HO ₂ 8 H ₂ O nH ₂ O + nH ₂ O 2	NO C_2O 6 CO $1 HO_2$ $4 H_2O$ $n O_2$

Paracetamol plasma active oxidation Oxidation at 2500 K

Paracetamol oxidation with O₂

Conclusions & perspectives

Conclusions

- Reactive MD is able to describe advanced oxidation
- > No activity (OH) if only water, active radicals and electric field at 300K

Perspectives

- Simulation should mimic convection and continuous uptake of active species in water
- To include interface with plasma phase above the liquid with plasma species (e-reaxFF ?) and UV-light effect.

Thank you for your attention

Water micropollutants: from detection to removal, Orléans France, 26-28 Nov. 2018