
Moment closure methods for cell motion in fiber
structures

Axel Klar

TECHNISCHE UNIVERSITÄT
KAISERSLAUTERN

Fachbereich Mathematik
Arbeitsgruppe Technomathematik



In cooperation with

R. Borsche, F. Schneider, G. Corbin, L. Müller, A. Hunt, C. Surulescu
(TU Kaiserslautern)

Content

Kinetic models

Balance equations and moment closures

Application: Tumor cell migration in tissue

Application: Chemotaxis on networks

Axel Klar (TU Kaiserslautern) Cell motion in fiber structures 2 / 34



Kinetic models for cell motion

Kinetic equation
Consider x ∈ Rn, and v ∈ V = S2, ε > 0 .
The kinetic equation for the cell density function f is

∂t f +
1

ε
v · ∇x f = (

1

ε2
L1 +

1

ε
L2)f ,

The turning operators L1 and L2 are

Li f =

∫
V

(
ki (x , v , v

′)f (v ′)− ki (x , v
′, v)f (v)

)
dv ′, i ∈ {1, 2}.

with ∫
V
Li (f )(v)dv = 0.

Chalub, F., Markowich, P., Perthame, B., Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. (2004)

Hillen, T., Othmer, H.G.: The diffusion limit of transport equations derived from velocity jump processes. (2000)

Axel Klar (TU Kaiserslautern) Cell motion in fiber structures 3 / 34



Kinetic models for cell motion

Assume an equilibrium probability distribution F = F (x , v) > 0,
〈F 〉 =

∫
V f (v)dv = 1 that is first-order symmetric,

〈vF 〉 = 0

and fulfills for each x ∈ Rn the detailed balance condition

k1(x , v ′, v)F (x , v) = k1(x , v , v ′)F (x , v ′).

Density and mean flux

ρ =

∫
V
fdv = 〈f 〉 , q = 〈vf 〉 .

As ε→ 0 one obtains convergence to a drift-diffusion equation for ρ.
We consider two examples for turning kernels.
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Kinetic models for cell motion

Haptotaxis-kernels
Choose the kernels k1 and k2 as

k1(x , v , v ′) = ηF ,

k2(x , v , v ′) = −λH∇xQ · v ′F .

η = constant: part of the turning rate independent of the cell-state.

F = F (x , v): normalized directional distribution of tissue fiber, in
general not isotropic, 〈vF 〉 = 0.

Q = Q(x): macroscopic volume fraction of tissue fibers.

λH = λH(Q(x)): cell-state dependent part of the turning rate.

ε = x0
t0c
, c the cell-velocity.

Then

∂t f +
1

ε
∇x · (vf ) = − η

ε2
(f − Fρ) +

1

ε
λH∇xQ · (fv − Fq) .
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Kinetic models for cell motion

As ε tends to 0 the macroscopic approximation is

∂tρ−∇x · (∇x · (ρD)− ρλH∇xQD) = 0

with

ηD =

∫
V
v ⊗ vFdv = DF

which is a generally anisotropic drift-diffusion equation.

Engwer, C., Hillen, T., Knappitsch, M., Surulescu, C.: Glioma follow white matter tracts: a multiscale DTI-based model. (2015)
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Kinetic models for cell motion

Chemotaxis-kernels
Consider

k1(x , v , v ′) = λF (x , v) =
λ

|S2|
,

k2(x , v , v ′) = α∇m · vF ,

with constants λ and α and a limiter chosen for example as

x =
x√

1 + |x |2
.

The kinetic equation is given by

∂t f +
1

ε
∇x · (vf ) = − λ

ε2
(f − Fρ) +

1

ε
αρ∇m · vF .

Rem.: The chemoattractant concentration m(t, x) is governed by a
reaction-diffusion equation.
Rem.: As ε tends to 0 the macroscopic approximation is a flux-limited
Keller-Segel model.
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Balance equations and moment closure approaches

Balance equations and moment closure
approaches

We start with the kinetic equation

ε2∂t f + εv · ∇x f = L1f + εL2f .

Multiplication with 1 and v and integrating with respect to v gives the
continuity and momentum equations

ε∂tρ+∇x · q = 0,

ε2∂tq + ε∇x · P = 〈vL1f 〉+ ε 〈vL2f 〉 .

The pressure tensor P := 〈v ⊗ vf 〉 contains the second moments of f .
These equations have to be closed by an approximation of P (and
potentially 〈vLi f 〉) using only ρ and q.
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Balance equations and moment closure approaches

One uses an ansatz function f A(v ; ρ, q) with
〈
f A
〉

= ρ and
〈
vf A
〉

= q.
Then

P = 〈v ⊗ vf 〉 ≈
〈
v ⊗ vf A

〉
= PA.

Resulting system of equations is

ε∂tρ+∇x · q = 0,

ε2∂tq + ε∇x · PA(ρ, q) =
〈
vL1f

A(ρ, q)
〉

+ ε
〈
vL2f

A(ρ, q)
〉
.

In the following we consider different ansatz functions and the resulting
equations.
Hillen, T.: Hyperbolic models for chemosensitive movement. (2002)
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Balance equations and moment closure approaches

Linear (P
(F )
1 -)closure

One uses the simple linear perturbation ansatz

f A = a(1 + εv · b)F (v).

The multipliers a and b are chosen to fulfill the moment constraints〈
f A
〉

= ρ and
〈
vf A
〉

= q. With q̂ = q
ρ one obtains

PA = ρP̂A(q̂),

with

P̂A(q̂) =

〈
v ⊗ vf A

〉
〈f A〉

= DF + ε 〈v ⊗ vv · bF (v)〉 ,

where DF = 〈v ⊗ vF (v)〉.
Rem: Closure function might become negative!
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Balance equations and moment closure approaches

Nonlinear (M
(F )
1 -)closure

Use the approximating function

f A = a exp(εv · b)F (v) > 0.

Again, the multipliers a and b are determined from the moment
constraints on f A

(ρ, q) =
〈

(1, v)f A
〉

= 〈(1, v)a exp(εv · b)F (v)〉 .

This gives

q̂(b) =
〈v exp(εv · b)F (v)〉
〈exp(εv · b)F (v)〉

and P̂A(b) =
〈v ⊗ v exp(εv · b)F (v)〉
〈exp(εv · b)F (v)〉

.

Inverting the relation for q̂(b) one obtains P̂A(q̂).
Anile, A.M., Pennisi, S., Sammartino, M.: A thermodynamical approach to Eddington factors. (1991)

Levermore, C.D.: Moment closure hierarchies for kinetic theories. (1996)
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Balance equations and moment closure approaches

Simplified nonlinear closure (K
(F )
1 )

We determine the second moment PA via an interpolation between the
free-streaming value Pfree = ρq⊗q

|q|2 and the equilibrium solution Peq = ρDF

and make the ansatz

PA = ρP̂A(q̂) := ρ

(
αDF + (1− α)

q̂ ⊗ q̂

|q̂|2

)
,

where α = α(q̂) has to be chosen such that the realizability conditions, i.e.
the fact that the moments can be generated by a non-negative distribution
function, are satisfied.
Kershaw, D.S.: Flux Limiting Nature’s Own Way: A New Method for Numerical Solution of the Transport Equation. (1976)
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Balance equations and moment closure approaches

Realizability

For every ρ ≥ 0 and |q̂| ≤ 1 we need (Cauchy-Schwarz and v ∈ S2 )

P̂ − q̂ ⊗ q̂ ≥ 0 and tr(P̂) = 1.

The trace equality immediately follows for all α ∈ R since
tr(DF ) = tr( q̂⊗q̂|q̂|2 ) = 1. Plugging in the definition of PA gives that

P̂A − q̂ ⊗ q̂ = αDF + (1− α− |q̂|2)
q̂ ⊗ q̂

|q̂|2

is positive semidefinite if α ≥ 0 and 1− α ≥ |q̂|2. We use

α = 1− |q̂|2.

Rem.: In the special case DF = I
3 the original Kershaw model is recovered.

Axel Klar (TU Kaiserslautern) Cell motion in fiber structures 13 / 34



Balance equations and moment closure approaches

Higher-order moment models and other
angular bases

Let aaa(v) = (a0(v), ...aK−1(v)) be the basis of a K - dimensional subspace
of L2(V ). The corresponding moments are defined as uuu := 〈f aaa〉. As before
we get a system of equations for the moments

∂tuuu +
1

ε
∇x · 〈vaaaf 〉 =

〈
(

1

ε2
L1(f ) +

1

ε
L2(f ))aaa

〉
.

f is approximated by an ansatz function

f A[uuu](v) ≈ f (v)

which depends on the moments, such that we get a closed form

∂tuuu +∇x ·
〈
vaaaf A

〉
=

1

ε2

〈
L1(f A)aaa

〉
+

1

ε

〈
L2(f A))aaa

〉
.
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Balance equations and moment closure approaches

The classical PN and MN methods use the ansatz functions

f A = αααN · aaa and f A = exp(αααN · aaa),

respectively. Analogously to the first-order methods we define the modified

P
(F )
N and M

(F )
N as

f A = (αααN · aaa)F (v) and f A = exp(αααN · aaa)F (v),

respectively, in order to incorporate the equilibrium of the reorientation
kernel F (v).
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Balance equations and moment closure approaches

Half moments - Partial moments in one
dimension

Given a density function f (t, x , v) with t ∈ R+, x ∈ R and
v ∈ V = [−1, 1], we define half-moments as

(ρ±, q±,P±, · · · ) :=

∫
V±

(1, v , v2, · · · )fdv ,

with V− := [−1, 0], V+ := [0, 1].
Then one proceeds similarly to the full moment case closing the equations
with different closure functions.
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Balance equations and moment closure approaches

Partial moments in higher dimension

Similarly to the one-dimensional setting one may define higher order
partial moment equations in higher dimensions, for example,
quarter-moments in 2D. This gives QPN and QMN models.

For the minimum-entropy closures one uses suitable lookup tables .

A more refined division of angular space and the use of higher order
moments yields a hierarchy of discretizations (∼ hp-FE).
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Tumor cell migration

Application: Tumor cell migration

The system of moment equations is discretized using second-order
realizability-preserving Finite-Volume schemes with realizability
limiters.

The source code for the numerical simulations builds upon DUNE and
DUNE PDELab [4], a C++ numerics framework for PDE’S.

Goal: Decision support for cancer treatment

Corbin, G., Hunt, A., Schneider, F., Klar, A., Surulescu, C.: Higher-order models for glioma invasion. (2018)

Axel Klar (TU Kaiserslautern) Cell motion in fiber structures 18 / 34



Tumor cell migration

Haptotaxis and glioma invasion

We consider a water diffusion tensors DW from a DTI scan of the human
brain. This is used to obtain the equilibrium fiber distribution as

F (v) =
3

4πtrDW

(
v>DW v

)
.

We use the following expression to obtain the volume fractions:

Q(x) = 1−
(
trDW

4λ1

) 3
2

,

where λ1 is the maximum eigenvalue of DW .
Engwer, C., Hillen, T., Knappitsch, M., Surulescu, C.: Glioma follow white matter tracts: a multiscale DTI-based model. (2015)
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Tumor cell migration

PF
5 , Diffusion, K F

1 , ε = 0.1.

Yellow: 10 % error, green: 5 % , purple: 1 %
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Tumor cell migration

Volume fraction and domain of
computation.
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Tumor cell migration

PF
3 , Diffusion, K F

1 .

Yellow: 10 % error, purple: 1 % error
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Cell motion on networks

Application: Cell motion on networks

Consider hierarchy of 1D cell-motion equations on a graph

N
1

3

2

Crucial point: determine coupling conditions at the nodes
Procedure:

define coupling conditions for kinetic equations

derive coupling conditions for moment models.
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Cell motion on networks

Coupling condition for kinetic equations

Consider node with 3 outgoing edges.
The coupling conditions should assign on each edge a value to all f (v)
with v > 0. We require:

1 The coupling conditions should be linear and independent of v .

2 The total mass in the system should be conserved.

3 The values of f should remain positive all times.

4 In the limit ε→ 0 the conditions should converge to reasonable
coupling conditions for the limit equations.
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Cell motion on networks

General form

f + = Af −,

where f +
i = fi (v) and f −i = fi (−v) for v > 0. In order to conserve the

total mass in the system the matrix A ∈ R3×3 has to fulfill

3∑
i=1

ai ,j = 1 ∀j = 1, . . . , 3 .

We require also

3∑
j=1

ai ,j = 1 ∀j = 1, . . . , 3 .

A typical choice where all edges are treated equally: f +
1

f +
2

f +
3

 =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 f −1
f −2
f −3

 .
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Cell motion on networks

Coupling condition for the linear and
non-linear half-moment model

We define the quantities ρ+
i , ρ

−
i , q

+
i , q

−
i for i = 1, . . . ,N on each edge.

Coupling condition for the half moment model are obtained from the
kinetic ones via integration

 ρ+
1

ρ+
2

ρ+
3

 =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 ρ−1
ρ−2
ρ−3


 q+

1

q+
2

q+
3

 = −

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 q−1
q−2
q−3

 .
These are six equations for six outgoing characteristics (2 per edge) of the
half moment system.
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Cell motion on networks

Coupling condition for the linear full
moment equations (Cattaneo)

Problem: Kinetic conditions are given for parts of the velocity domain. No
simple integration over the full velocity domain.
Simple solution: Use the linear full moment closure function and insert it
into the kinetic conditions. This gives 2 −1 −1

−1 2 −1
−1 −1 2

 ρ1

ρ2

ρ3

+ ε
3

2

 2 1 1
1 2 1
1 1 2

 q1

q2

q3

 = 0 .

Note that for the linear full moment equation we have one characteristic
moving to the right (∼ wave equation). This yields 3 conditions for a node
with three edges.
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Cell motion on networks

Remarks

For the linear full moment case similar conditions are treated in
Bretti, G., Natalini, R., Ribot, M.: A hyperbolic model of chemotaxis on a network: a numerical study. (2014)

A more detailed analysis of the situation near the node based on
kinetic layers leads to more accurate conditions. For a kinetic BGK
model and the wave equation, see
Borsche, R., Klar, A.: Kinetic layers and coupling conditions for macroscopic equations on networks. (2018)
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Cell motion on networks

Remarks

To derive coupling conditions for the nonlinear full-moment
approximation from the kinetic ones is a challenging topic: nonlinear
kinetic layers, change of the number of required coupling conditions.
For a similar problem see
Borsche, R., Klar, A.: Kinetic layers and coupling conditions for nonlinear scalar equations on networks. (2018)

For theoretical work on the Keller-Segel model on a network see
Camilli, F., Corrias, L.: Parabolic models for chemotaxis on weighted networks. (2017)
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Cell motion on networks

Numerical results on tripod networks

Consider the chemotaxis model.

We use for the nonlinear half-moment model the Kershaw
approximation.

The results of the nonlinear half-moment model with the
corresponding coupling conditions are compared with the results of
the kinetic, linear half and full moment and Keller-Segel model.

Borsche, R., Kall, J., Klar, A., Pham, T.: Kinetic and related macroscopic models for chemotaxis on networks. (2016)

Borsche, R., Klar, A., Pham, T.H.: Nonlinear flux-limited models for chemotaxis on networks. (2017)
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Cell motion on networks

Numerical solutions on a tripod network
at time t = 0.2, ∆x = 0.02, ε = 1
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Cell motion on networks

Numerical solutions on a larger network
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Cell motion on networks

Total mass over time in large network.
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Cell motion on networks

Outlook

numerical method for kinetic equations based on automatic choice of
moment expansion and subspace for integration, combination with
asymptotic preserving methods for small values of ε.

Calibration and validation of tumor migration models with clinical
data: time resolution before and after surgery??

network models: derivation of coupling conditions for more
complicated nonlinear full moment models, e.g. Euler equations, from
underlying kinetic models
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