Moment closure methods for cell motion in fiber structures

Axel Klar

In cooperation with

R. Borsche, F. Schneider, G. Corbin, L. Müller, A. Hunt, C. Surulescu (TU Kaiserslautern)

Content

- Kinetic models
- Balance equations and moment closures
- Application: Tumor cell migration in tissue
- Application: Chemotaxis on networks

Kinetic equation

Consider $x \in \mathbb{R}^n$, and $v \in V = \mathbb{S}^2$, $\epsilon > 0$.

The kinetic equation for the cell density function f is

$$\partial_t f + \frac{1}{\epsilon} \mathbf{v} \cdot \nabla_{\mathbf{x}} f = (\frac{1}{\epsilon^2} \mathcal{L}_1 + \frac{1}{\epsilon} \mathcal{L}_2) f,$$

The turning operators \mathcal{L}_1 and \mathcal{L}_2 are

$$\mathcal{L}_i f = \int_V (k_i(x, v, v') f(v') - k_i(x, v', v) f(v)) dv', \quad i \in \{1, 2\}.$$

with

$$\int_V \mathcal{L}_i(f)(v) dv = 0.$$

Chalub, F., Markowich, P., Perthame, B., Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. (2004) Hillen, T., Othmer, H.G.: The diffusion limit of transport equations derived from velocity jump processes. (2000) Assume an equilibrium probability distribution F = F(x, v) > 0, $\langle F \rangle = \int_V f(v) dv = 1$ that is first-order symmetric,

$$\langle vF \rangle = 0$$

and fulfills for each $x \in \mathbb{R}^n$ the detailed balance condition

$$k_1(x, v', v)F(x, v) = k_1(x, v, v')F(x, v').$$

Density and mean flux

$$ho = \int_V \mathit{fdv} = \langle \mathit{f} \rangle \,, \ \ \mathit{q} = \langle \mathit{vf} \rangle \,.$$

As $\epsilon \to 0$ one obtains convergence to a drift-diffusion equation for ρ . We consider two examples for turning kernels.

Haptotaxis-kernels

Choose the kernels k_1 and k_2 as

$$k_1(x, v, v') = \eta F,$$

$$k_2(x, v, v') = -\lambda_H \nabla_x Q \cdot v' F.$$

- $\eta = \text{constant: part of the turning rate independent of the cell-state.}$
- F = F(x, v): normalized directional distribution of tissue fiber, in general not isotropic, ⟨vF⟩ = 0.
- Q = Q(x): macroscopic volume fraction of tissue fibers.
- $\lambda_H = \lambda_H(Q(x))$: cell-state dependent part of the turning rate.
- $\epsilon = \frac{x_0}{t_0 c}$, c the cell-velocity.

Then

$$\partial_t f + \frac{1}{\epsilon} \nabla_x \cdot (vf) = -\frac{\eta}{\epsilon^2} (f - F\rho) + \frac{1}{\epsilon} \lambda_H \nabla_x Q \cdot (fv - Fq).$$

As ϵ tends to 0 the macroscopic approximation is

$$\partial_t \rho - \nabla_x \cdot (\nabla_x \cdot (\rho D) - \rho \lambda_H \nabla_x Q D) = 0$$

with

$$\eta D = \int_V v \otimes v F dv = D_F$$

which is a generally anisotropic drift-diffusion equation.

Engwer, C., Hillen, T., Knappitsch, M., Surulescu, C.: Glioma follow white matter tracts: a multiscale DTI-based model. (2015)

Chemotaxis-kernels

Consider

$$k_1(x, v, v') = \lambda F(x, v) = \frac{\lambda}{|\mathbb{S}^2|},$$

$$k_2(x, v, v') = \alpha \overline{\nabla m} \cdot vF,$$

with constants λ and α and a limiter chosen for example as

$$\overline{x} = \frac{x}{\sqrt{1+|x|^2}}$$

The kinetic equation is given by

$$\partial_t f + \frac{1}{\epsilon} \nabla_x \cdot (vf) = -\frac{\lambda}{\epsilon^2} (f - F\rho) + \frac{1}{\epsilon} \alpha \rho \overline{\nabla m} \cdot vF.$$

Rem.: The chemoattractant concentration m(t, x) is governed by a reaction-diffusion equation.

Rem.: As ϵ tends to 0 the macroscopic approximation is a flux-limited Keller-Segel model.

Balance equations and moment closure approaches

We start with the kinetic equation

$$\epsilon^2 \partial_t f + \epsilon \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \mathcal{L}_1 f + \epsilon \mathcal{L}_2 f.$$

Multiplication with 1 and v and integrating with respect to v gives the continuity and momentum equations

$$\epsilon \partial_t \rho + \nabla_x \cdot q = 0,$$

$$\epsilon^2 \partial_t q + \epsilon \nabla_x \cdot P = \langle v \mathcal{L}_1 f \rangle + \epsilon \langle v \mathcal{L}_2 f \rangle.$$

The pressure tensor $P := \langle v \otimes vf \rangle$ contains the second moments of f. These equations have to be closed by an approximation of P (and potentially $\langle v\mathcal{L}_if \rangle$) using only ρ and q. One uses an ansatz function $f^A(v; \rho, q)$ with $\langle f^A \rangle = \rho$ and $\langle vf^A \rangle = q$. Then

$$P = \langle \mathbf{v} \otimes \mathbf{v} \mathbf{f} \rangle \approx \left\langle \mathbf{v} \otimes \mathbf{v} \mathbf{f}^{\mathcal{A}} \right\rangle = P^{\mathcal{A}}.$$

Resulting system of equations is

$$\epsilon \partial_t \rho + \nabla_x \cdot q = 0,$$

$$\epsilon^2 \partial_t q + \epsilon \nabla_x \cdot P^{\mathcal{A}}(\rho, q) = \left\langle v \mathcal{L}_1 f^{\mathcal{A}}(\rho, q) \right\rangle + \epsilon \left\langle v \mathcal{L}_2 f^{\mathcal{A}}(\rho, q) \right\rangle.$$

In the following we consider different ansatz functions and the resulting equations.

Hillen, T.: Hyperbolic models for chemosensitive movement. (2002)

Linear
$$(P_1^{(F)})$$
-)closure

One uses the simple linear perturbation ansatz

$$f^{A} = a(1 + \epsilon v \cdot b)F(v).$$

The multipliers *a* and *b* are chosen to fulfill the moment constraints $\langle f^A \rangle = \rho$ and $\langle vf^A \rangle = q$. With $\hat{q} = \frac{q}{\rho}$ one obtains

$$P^{A} = \rho \hat{P}^{A}(\hat{q}),$$

with

$$\hat{\mathcal{P}}^{\mathcal{A}}(\hat{q}) = rac{\left\langle v \otimes v f^{\mathcal{A}}
ight
angle}{\left\langle f^{\mathcal{A}}
ight
angle} = D_{\mathcal{F}} + \epsilon \left\langle v \otimes v v \cdot b \mathcal{F}(v)
ight
angle,$$

where $D_F = \langle v \otimes vF(v) \rangle$. **Rem:** Closure function might become negative!

Nonlinear
$$(M_1^{(F)})$$
-)closure

Use the approximating function

$$f^{A} = a \exp(\epsilon v \cdot b) F(v) > 0.$$

Again, the multipliers a and b are determined from the moment constraints on f^A

$$(\rho, q) = \left\langle (1, v) f^A \right\rangle = \left\langle (1, v) a \exp(\epsilon v \cdot b) F(v) \right\rangle.$$

This gives

$$\hat{q}(b) = rac{\langle v \exp(\epsilon v \cdot b) F(v) \rangle}{\langle \exp(\epsilon v \cdot b) F(v) \rangle}$$
 and $\hat{P}^{A}(b) = rac{\langle v \otimes v \exp(\epsilon v \cdot b) F(v) \rangle}{\langle \exp(\epsilon v \cdot b) F(v) \rangle}$

Inverting the relation for $\hat{q}(b)$ one obtains $\hat{P}^{A}(\hat{q})$.

Anile, A.M., Pennisi, S., Sammartino, M.: A thermodynamical approach to Eddington factors. (1991)

Levermore, C.D.: Moment closure hierarchies for kinetic theories. (1996)

Axel Klar (TU Kaiserslautern)

Simplified nonlinear closure
$$(K_1^{(F)})$$

We determine the second moment P^A via an interpolation between the free-streaming value $P_{\rm free}=\rho\frac{q\otimes q}{|q|^2}$ and the equilibrium solution $P_{\rm eq}=\rho D_{\rm F}$ and make the ansatz

$$\mathcal{P}^{\mathcal{A}} =
ho \hat{\mathcal{P}}^{\mathcal{A}}(\hat{q}) :=
ho \left(lpha D_{\mathcal{F}} + (1-lpha) rac{\hat{q} \otimes \hat{q}}{|\hat{q}|^2}
ight),$$

where $\alpha = \alpha(\hat{q})$ has to be chosen such that the realizability conditions, i.e. the fact that the moments can be generated by a non-negative distribution function, are satisfied.

Kershaw, D.S.: Flux Limiting Nature's Own Way: A New Method for Numerical Solution of the Transport Equation. (1976)

Realizability

For every $ho \geq$ 0 and $|\hat{q}| \leq$ 1 we need (Cauchy-Schwarz and $v \in \mathbb{S}^2$)

$$\hat{P}-\hat{q}\otimes\hat{q}\geq 0$$
 and ${
m tr}(\hat{P})=1.$

The trace equality immediately follows for all $\alpha \in \mathbb{R}$ since $\operatorname{tr}(D_F) = \operatorname{tr}(\frac{\hat{q} \otimes \hat{q}}{|\hat{q}|^2}) = 1$. Plugging in the definition of P^A gives that

$$\hat{\mathcal{P}}^{\mathcal{A}} - \hat{q} \otimes \hat{q} = lpha D_{\mathcal{F}} + (1 - lpha - |\hat{q}|^2) rac{\hat{q} \otimes \hat{q}}{|\hat{q}|^2}$$

is positive semidefinite if $\alpha \geq 0$ and $1 - \alpha \geq |\hat{q}|^2$. We use

$$\alpha = 1 - |\hat{q}|^2.$$

Rem.: In the special case $D_F = \frac{l}{3}$ the original Kershaw model is recovered.

Higher-order moment models and other angular bases

Let $\mathbf{a}(v) = (a_0(v), \dots a_{K-1}(v))$ be the basis of a K- dimensional subspace of $L^2(V)$. The corresponding moments are defined as $\mathbf{u} := \langle f \mathbf{a} \rangle$. As before we get a system of equations for the moments

$$\partial_t \boldsymbol{u} + \frac{1}{\epsilon} \nabla_x \cdot \langle \boldsymbol{v} \boldsymbol{a} f \rangle = \left\langle \left(\frac{1}{\epsilon^2} \mathcal{L}_1(f) + \frac{1}{\epsilon} \mathcal{L}_2(f) \right) \boldsymbol{a} \right\rangle.$$

f is approximated by an ansatz function

$$f^{A}[\boldsymbol{u}](\boldsymbol{v}) \approx f(\boldsymbol{v})$$

which depends on the moments, such that we get a closed form

$$\partial_t \boldsymbol{u} + \nabla_x \cdot \left\langle \boldsymbol{v} \boldsymbol{a} f^A \right\rangle = \frac{1}{\epsilon^2} \left\langle \mathcal{L}_1(f^A) \boldsymbol{a} \right\rangle + \frac{1}{\epsilon} \left\langle \mathcal{L}_2(f^A) \right) \boldsymbol{a} \right\rangle.$$

The classical P_N and M_N methods use the ansatz functions

$$f^{A} = \boldsymbol{\alpha}_{N} \cdot \boldsymbol{a}$$
 and $f^{A} = \exp(\boldsymbol{\alpha}_{N} \cdot \boldsymbol{a}),$

respectively. Analogously to the first-order methods we define the modified $P_N^{(F)}$ and $M_N^{(F)}$ as

$$f^{A} = (\boldsymbol{\alpha}_{N} \cdot \boldsymbol{a})F(v)$$
 and $f^{A} = \exp(\boldsymbol{\alpha}_{N} \cdot \boldsymbol{a})F(v),$

respectively, in order to incorporate the equilibrium of the reorientation kernel F(v).

Half moments - Partial moments in one dimension

Given a density function f(t, x, v) with $t \in \mathbb{R}^+$, $x \in \mathbb{R}$ and $v \in V = [-1, 1]$, we define half-moments as

$$(
ho_\pm,q_\pm,P_\pm,\cdots):=\int_{V_\pm}(1,v,v^2,\cdots)fdv,$$

with $V_{-} := [-1, 0], V_{+} := [0, 1].$

Then one proceeds similarly to the full moment case closing the equations with different closure functions.

Partial moments in higher dimension

- Similarly to the one-dimensional setting one may define higher order partial moment equations in higher dimensions, for example, quarter-moments in 2D. This gives QP_N and QM_N models.
- For the minimum-entropy closures one uses suitable lookup tables .
- A more refined division of angular space and the use of higher order moments yields a hierarchy of discretizations (~ hp-FE).

Application: Tumor cell migration

- The system of moment equations is discretized using second-order realizability-preserving Finite-Volume schemes with realizability limiters.
- The source code for the numerical simulations builds upon DUNE and DUNE PDELab [4], a C++ numerics framework for PDE'S.
- Goal: Decision support for cancer treatment

Corbin, G., Hunt, A., Schneider, F., Klar, A., Surulescu, C.: Higher-order models for glioma invasion. (2018)

Haptotaxis and glioma invasion

We consider a water diffusion tensors D_W from a DTI scan of the human brain. This is used to obtain the equilibrium fiber distribution as

$$F(v) = \frac{3}{4\pi tr D_W} \left(v^\top D_W v \right).$$

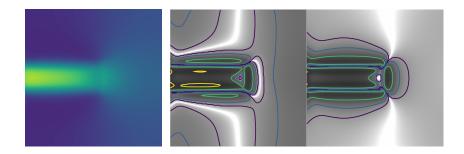
We use the following expression to obtain the volume fractions:

$$Q(x)=1-\left(\frac{trD_W}{4\lambda_1}\right)^{\frac{3}{2}},$$

where λ_1 is the maximum eigenvalue of D_W .

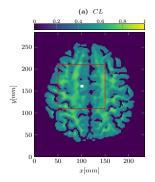
Engwer, C., Hillen, T., Knappitsch, M., Surulescu, C.: Glioma follow white matter tracts: a multiscale DTI-based model. (2015)

P_5^F , Diffusion, K_1^F , $\epsilon = 0.1$.

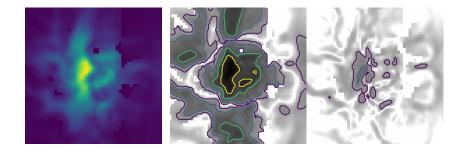


Yellow: 10 % error, green: 5 % , purple: 1 %

Volume fraction and domain of computation.



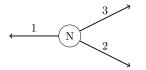
P_3^F , Diffusion, K_1^F .



Yellow: 10 % error, purple: 1 % error

Application: Cell motion on networks

Consider hierarchy of 1D cell-motion equations on a graph



Crucial point: determine coupling conditions at the nodes **Procedure:**

- define coupling conditions for kinetic equations
- derive coupling conditions for moment models.

Coupling condition for kinetic equations

Consider node with 3 outgoing edges.

The coupling conditions should assign on each edge a value to all f(v) with v > 0. We require:

- The coupling conditions should be linear and independent of v.
- 2 The total mass in the system should be conserved.
- Solution The values of *f* should remain positive all times.
- In the limit e→ 0 the conditions should converge to reasonable coupling conditions for the limit equations.

General form

$$f^+ = Af^-,$$

where $f_i^+ = f_i(v)$ and $f_i^- = f_i(-v)$ for v > 0. In order to conserve the total mass in the system the matrix $A \in \mathbb{R}^{3 \times 3}$ has to fulfill

$$\sum_{i=1}^3 a_{i,j} = 1 \qquad \forall j = 1, \dots, 3 \; .$$

We require also

$$\sum_{j=1}^3 a_{i,j} = 1 \qquad \forall j = 1, \dots, 3 \; .$$

A typical choice where all edges are treated equally:

$$\begin{bmatrix} f_1^+ \\ f_2^+ \\ f_3^+ \end{bmatrix} = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} f_1^- \\ f_2^- \\ f_3^- \end{bmatrix}$$

Coupling condition for the linear and non-linear half-moment model

We define the quantities ρ_i^+ , ρ_i^- , q_i^+ , q_i^- for i = 1, ..., N on each edge. Coupling condition for the half moment model are obtained from the kinetic ones via integration

$$\left\{ \begin{array}{c} \left[\begin{array}{c} \rho_1^+ \\ \rho_2^+ \\ \rho_3^+ \end{array} \right] &= \left[\begin{array}{ccc} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{array} \right] \left[\begin{array}{c} \rho_1^- \\ \rho_2^- \\ \rho_3^- \end{array} \right] \\ \left[\begin{array}{c} q_1^+ \\ q_2^+ \\ q_3^+ \end{array} \right] &= \left[\begin{array}{ccc} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{array} \right] \left[\begin{array}{c} q_1^- \\ q_2^- \\ q_3^- \end{array} \right] \\ \end{array} \right]$$

These are six equations for six outgoing characteristics (2 per edge) of the half moment system.

Coupling condition for the linear full moment equations (Cattaneo)

Problem: Kinetic conditions are given for parts of the velocity domain. No simple integration over the full velocity domain.

Simple solution: Use the linear full moment closure function and insert it into the kinetic conditions. This gives

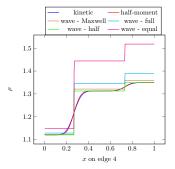
$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{bmatrix} + \epsilon \frac{3}{2} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = 0 \; .$$

Note that for the linear full moment equation we have one characteristic moving to the right (\sim wave equation). This yields 3 conditions for a node with three edges.

Remarks

- For the linear full moment case similar conditions are treated in Bretti, G., Natalini, R., Ribot, M.: A hyperbolic model of chemotaxis on a network: a numerical study. (2014)
- A more detailed analysis of the situation near the node based on kinetic layers leads to more accurate conditions. For a kinetic BGK model and the wave equation, see

Borsche, R., Klar, A.: Kinetic layers and coupling conditions for macroscopic equations on networks. (2018)



Remarks

• To derive coupling conditions for the nonlinear full-moment approximation from the kinetic ones is a challenging topic: nonlinear kinetic layers, change of the number of required coupling conditions. For a similar problem see

Borsche, R., Klar, A.: Kinetic layers and coupling conditions for nonlinear scalar equations on networks. (2018)

• For theoretical work on the Keller-Segel model on a network see

Camilli, F., Corrias, L.: Parabolic models for chemotaxis on weighted networks. (2017)

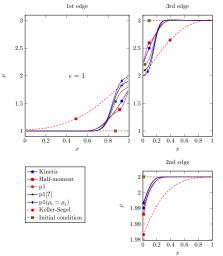
Numerical results on tripod networks

- Consider the chemotaxis model.
- We use for the nonlinear half-moment model the Kershaw approximation.
- The results of the nonlinear half-moment model with the corresponding coupling conditions are compared with the results of the kinetic, linear half and full moment and Keller-Segel model.

Borsche, R., Kall, J., Klar, A., Pham, T.: Kinetic and related macroscopic models for chemotaxis on networks. (2016)

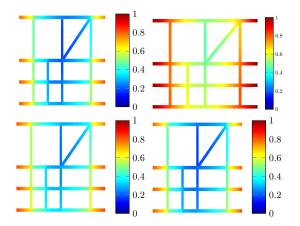
Borsche, R., Klar, A., Pham, T.H.: Nonlinear flux-limited models for chemotaxis on networks. (2017)

Numerical solutions on a tripod network at time t = 0.2, $\Delta x = 0.02$, $\epsilon = 1$



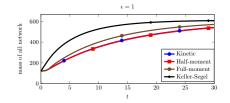
Axel Klar (TU Kaiserslautern)

Numerical solutions on a larger network



Kinetic, Diffusion, Full-moment , Half-moment at t = 5.

Total mass over time in large network.



Outlook

- numerical method for kinetic equations based on automatic choice of moment expansion and subspace for integration, combination with asymptotic preserving methods for small values of ϵ .
- Calibration and validation of tumor migration models with clinical data: time resolution before and after surgery??
- network models: derivation of coupling conditions for more complicated nonlinear full moment models, e.g. Euler equations, from underlying kinetic models