

Pauline Bonnet, 2018

Clues on gravitational flow dynamics from seismic inversion

Anne Mangeney^{1,7}

with specialists in seismology (C. Hibert, E. Stutzmann, Y. Capdeville, C. Levy, etc.), mathematics (F. Bouchut, E. Fernandez-Nieto, G. Narbona-Reina, J. Sainte-Marie), acoustics (J. De Rosny, X. Jia; R. Toussaint)

¹ Institut de Physique du Globe de Paris, Université Paris Diderot, SPC
 ¹ Equipe ANGE INRIA-Laboratoire Jacques Louis Lions

in the second

Outline

I – Introduction : landslides and seismic waves

II – Inversion/modelling of *low frequency* forces generated by landslides

III – Insight from *high frequency* seismic data

IV – Monitoring landslide activity in link with volcanic activity

V – **Conclusion**

Outline

I – Introduction : landslides and seismic waves

II – Inversion/modelling of *low frequency* forces generated by landslides

III – Insight from *high frequency* seismic data

IV – Monitoring landslide activity in link with volcanic activity

V – **Conclusion**

Landslides and seismic waves

- Erosion processes at the Earth surface and on telluric planets
- Risk assessment on Earth in relation with seismic, volcanic, climate forcing

• Predict velocity and runout extent

Agge Maggangaman

explain and quantify the high mobility of natural landslides ...

Lack of field measurements of their dynamics

• Understand and quantify their occurrence/properties in link with external forcing detection, localization, characterization (volume, ...)

Seismic data

Granular flow mechanics and modelling

Seismic signal generated by rockfalls

Piton de la Fournaise volcano, La Réunion

Established by the European Commission

Hibert, et al. 2011, 2014, 2017, Durand et al., 2018

 $t_{\rm seismic} \approx t_{\rm flow}$

Decrypt processes impacting seismic waveform ?

Convolution of :

Source

Mass, geometry, rheology, topography, particle agitation, fluid content ...

Wave path from source to station

Ok at low frequencies f < 0.1-0.2 Hz (5-10 s) Challenging at high frequencies f > 1Hz !

Earth heterogeneity, topography

Kühnert et al., 2018

How can we separate the processes ?

Physical simulation of field scale granular flows

Outline

I – Introduction : landslides and seismic waves

II – Inversion/modelling of *low frequency* forces generated by landslides

III – Insight from *high frequency* seismic data

IV – Monitoring landslide activity in link with volcanic activity

V – **Conclusion**

Force at the origin of seismic waves

Deconvolution of long period (T > 5-10 s) seismograms

$$\mathbf{u}_{i}(x,t) = \mathbf{g}_{ij}(x,t) * \mathbf{f}_{j}(0,t)$$

Green's function for signal component i and force direction j

Force at the origin of seismic waves

Deconvolution of long period (T > 5-10 s) seismograms

$$\mathbf{u}_{i}(x,t) = \mathbf{g}_{ij}(x,t) * \mathbf{f}_{j}(0,t)$$

Green's function for signal component i and force direction j

Recovered with good accuracy using one seismic station !

Kawakatsu, 1989

Zhao, Moretti, Mangeney, Stutzmann, Kanamori, Capdeville, Calder, Hibert et al., 2015 Sergeant, Mangeney, Stutzmann, Montagner, Walter, Moretti, and Castelnau, 2016

Force inverted from seismic data

Moretti, Mangeney, Capdeville, Stutzmann, Huggel, Schneider, Bouchut 2012

Mt-Steller rock-ice avalanche

Simulation of landslide and force history

Quantify the role of erosion in landslide dynamics ?

Moretti, Mangeney, Capdeville, Stutzmann, Huggel, Schneider, Bouchut 2012

Thin layer models for natural landslides

Simulation of the Mt-Steller landslide

The deposit area is not enough to constrain landslide models !!

Low frequency: inverted and simulated force

Force filtered between 20-80s

Taking into account erosion is necessary to reproduce the dynamics Moretti, Mangeney, Capdeville, Stutzmann, Huggel, Schneider, Bouchut 2012

Sensitivity to friction coefficient

Simulation of Mount Meager landslide $V = 50 \times 10^6 \text{ m}^3$

Moretti, Allstadt, Mangeney, Capdeville, Stutzmann, Bouchut 2015

Sensitivity to friction coefficient

Very small friction coefficient for this large landslide ($V = 50 \times 10^6 \text{ m}^3$)

Empirical friction laws based on seismic data

Friction weakening with volume (or velocity, etc.)

Physical origin ?

Lucas et al., 2014, Delannay et al., 2018, Yamada et al., 2018

Outline

I – Introduction : landslides and seismic waves

II – Inversion/modelling of *low frequency* forces generated by landslides

III – Insight from *high frequency* seismic data
 a – Laboratory experiments
 b – Field measurements/numerical modelling

IV – Monitoring landslide activity in link with volcanic activity

V – **Conclusion**

Physical origin of high frequency seismic waves ?

Physical origin of high frequency seismic waves ?

Bachelet et al. 2018, Taylor and Brodsky 2017

Seismic signal generated by rockfalls

SLIDEQUAKES

Piton de la Fournaise volcano, La Réunion

European Research Council Established by the European Commission

F(**x**,*t*) : generated force

Seismic waves

Hibert, et al. 2011, 2014, 2017, Durand et al., 2018

From seismic energy to rockfall volume

• Power law energy versus duration :

10¹⁰

10⁴

 10^{2}

. 10¹

seismic data

Piton de la Fournaise

Hibert et al., 2011, 2014, 2017

Duration (s) t_{s} or t_{f} $(t_{s} \sim t_{f})$ Volume $V = \frac{3E_s}{R_{s/p}.\rho gL(\tan \alpha \cos \theta - \sin \theta)}$

 10^{2}

Volumes: seismic and laser/photogrametry

Durand et al., 2018

- Good agreement in the North-East part
- Seismic data: higher temporal resolution than photogrammetry

Friction weakening signature on seismic data

Rockfalls and pyroclastic flows in Montserrat

 $\mu = tan \delta = 1/V^{0.0774}$

Friction weakening makes it possible to reproduce seismic data

Levy, Mangeney, Bonilla, Hibert, Calder, Smith, 2015

Outline

I – Introduction : landslides and seismic waves

II – Inversion/modelling of *low frequency* forces generated by landslides

III – Insight from *high frequency* seismic data

IV – Monitoring landslide activity in link with volcanic activity

V – **Conclusion**

Rockfall triggering

Rockfall triggering

• Strong correlation between rockfall volume and cumulative magnitude/number of Volcano-Tectonic events (time-lag 1-20 days)

- Weak correlation with maximum amplitude of volcano-tectonic seismicity
- Moderate correlation with rain with time-lag of 1-5 days

Durand et al., 2018

Conclusion

• Force history at low frequency :

constrain on landslide volume, rheology, physical processes involved (erosion, fluid content, etc.) when compared to physical simulation

• Energy at high frequency :

constrain on landslide volume, rheology, localization

• Monitoring rockfall activity:

link with seismic, volcanic, meteorological activity

Large rockfalls seem to occur close to the next eruption ?

SLIDEQUAKES

Durand et al., 2018

Rockfall triggering

Rockfall triggering

Durand et al., 2018

- Strong correlation between rockfall volume and cumulative magnitude/number of Volcano-Tectonic events (time-lag 1-20 days)
- Weak correlation with maximum amplitude of volcano-tectonic seismicity
- Moderate correlation with rain with time-lag of 1-8 days Bontemps et al., 2018

Bayesian inversion of landslide characteristics

Bayesian inversion of landslide characteristics

Boxing Day debris avalanche, Montserrat Number of models 200 100 Number of models ์ h_o (m) δ (°) Number of models Number of models **1** 250 0└─ 250 w₀ (m) I₀ (m) Time = 0 sTime = 160 s 300 400 200 600 1500[°]2000[°] 2000[°]2500[°] $V \in [32 59]$ Mm³ with a central value of V = 45.8 Mm³ Moretti et al. 2017

High frequency Detection, localization, monitoring

Power law: seismic energy versus duration

Regression lines and corresponding coefficients computed for each month

Power law: potential energy versus flow duration

• Analytical development for a rectangular mass on a flat slope

• Numerical simulation of granular flows over real topography using the code SHALTOP *Mangeney et al.* 2007

Spatio-temporal distribution

• Strong heterogeneity !

Rockfall triggering

Durand et al., 2018

Large rockfalls seem to occur close to the next eruption ?

Rockfall triggering

Rockfall crises with volume V> 3000 m³

Correlation between rockfall volume and external forcing (3-year time series)?

Permanent seismic waves all around us

Physical processes at the origin of seismic waves ?

Laboratory experiments of iceberg calving

Burton, Admundsen et al., 2012

Recovering the force due to iceberg calving

What do we expect from calving modelling ?

- Can we reproduce the force inverted from seismic records ?
- Can we estimate iceberg volume from the force ?

Finite element model Z-set

 Contact force computation with varying geometrical parameters:

Total force from 2D modeling:

- $\blacktriangleright F^{T}(t) = LF(t)$
- ► Iceberg length $500m \le L \le 5000m$

Force F(t)

Time (s)

 $x 10^{10}$

Force (N)

Force dependency on iceberg characteristics

- Catalog of 1000 models for BO capsizes and varying values of H and ε.
- ► Filtered force amplitudes match seismic observations (Veitch an Nettles, 2012, Sergeant et al., 2016)

• Force amplitude, duration and history vary with H and ϵ .

Impossible to recover the volume from F_{max} : need of full force history F(t) !

Force Bottom-out ≠ Force Top-out

Influence of initial buoyant conditions

Force inverted from seismic data

From the force to the iceberg volume

 BO capsize captured on cameras (Murray et al., Science, 2015):

25/07/2013: H ≈ 800 m

$$\epsilon \approx 0.23$$

 $L \approx 2500$ m
 $\epsilon \approx 2.500$ m
 $L \approx 2500$ m
 $\epsilon = 0.2$
 $L \approx 2500$ m
 $\epsilon = 2500$ m

► Glacial earthquake (force ~ 3x10¹⁰N)

Modelling of the basal force

Zhao, Moretti, Mangeney, Stutzmann, Kanamori, Capdeville, Calder, Hibert et al., 2015

Time-dependent basal stress field applied on top of the terrain

 \boldsymbol{X}

$$\mathbf{T} = \rho g h \left(\cos \theta + \frac{\mathbf{u}_h^t \mathcal{H} \mathbf{u}_h}{g \cos^2 \theta} \right) \left(\mu \frac{u_X}{\|\mathbf{u}\|}, \mu \frac{u_Y}{\|\mathbf{u}\|}, -1 \right)$$

Curvature effects

Thurweiser landslide seismic waves

• The scenario with glacier better reproduces the vertical waveform

Acoustic waves in laboratory experiments

Validated experimentally

Farin, Mangeney, Toussaint, De Rosny, Shapiro, Dewez, Hibert et al. 2015

The dynamic regime of granular flows changes at high slopes θ >15°

Seismic signal ?

Mangeney et al. 2010, Farin et al. 2014, 2015

Seismic efficiency

 W_{el} / ΔE_p depends essentially on particle diameter, flow mass and slope angle

May explain dispersion observed on the field $W_{el} / \Delta E_p = 10^{-5} - 10^{-3}$ e.g. Hibert et al. 2011, 2014, Lévy et al. 2015

Farin, Mangeney, De Rosny, Toussaint, Trinh, 2017

Friction weakening signature on seismic data

The parameters of the power law depend on the valley !

Granular flows over complex topography

$$\partial_t (h/c) + \nabla_x \cdot (h \boldsymbol{u}') = 0$$

$$\begin{aligned} \partial_{t}\boldsymbol{u}' + c\boldsymbol{u}' \cdot \nabla_{x}\boldsymbol{u}' + \frac{1}{c}(\boldsymbol{Id} - \boldsymbol{ss}^{t})\nabla_{x}(\boldsymbol{g}(hc + b)) &= \\ \frac{-1}{c}(\boldsymbol{u}'^{t}\boldsymbol{H}\boldsymbol{u}')\boldsymbol{s} + \frac{1}{c}(\boldsymbol{s}^{t}\boldsymbol{H}\boldsymbol{u}')\boldsymbol{u}' - \frac{\boldsymbol{g}\boldsymbol{\mu}c\boldsymbol{u}'}{\sqrt{c^{2}||\boldsymbol{u}'||^{2} + (\boldsymbol{s}\cdot\boldsymbol{u}')^{2}}} \left(1 + \frac{\boldsymbol{u}'^{t}\boldsymbol{H}\boldsymbol{u}'}{\boldsymbol{g}c}\right)_{+} \\ \vec{n} &= \left(-\frac{\nabla_{x}b}{\sqrt{1 + ||\nabla_{x}b||^{2}}}, \frac{1}{\sqrt{1 + ||\nabla_{x}b||^{2}}}\right) \equiv (-\boldsymbol{s}, c) \in \mathbb{R}^{2} \times \mathbb{R} \end{aligned}$$

$$\mu = \mu_s$$

or
$$\mu(Fr, h) = \mu_s + \frac{\mu_2 - \mu_s}{\frac{\beta h}{\mathscr{L}Fr} + 1}$$

Other empirical terms can be added with more unconstrained parameters...

Long period observed and simulated seismograms

