
Fully discrete entropy inequality for the hydrostatic
reconstruction scheme

François Bouchut

LAMA, CNRS & Université Paris-Est
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I. conservation laws, selection of solutions

. For a system of conservation laws

(1) ∂tU +
∑
j

∂j Fj(U) = S

with Cauchy data, solutions in the distribution sense are not unique.

. In order to select a unique solution, one has to specify entropy conditions. One way to
do it is to ask for an entropy inequality

(2) ∂t η(U) +
∑
j

∂j Gj(U) ≤ η′(U)S ,

where η = η(U) is an entropy, i.e. verifies

(3) η′F ′j = G ′j

for some entropy fluxes Gj(U). Moreover, η has to be convex.
. The inequality (2) is an equality for smooth solutions to (1) (multiply by η′(U)). For
discontinuous solutions one requires that the inequality (2) holds in the sense of
distributions. This means equivalently to ask for Rankine Hugoniot conditions across the
discontinuities

(4) (η(U+)− η(U−))νt +
∑
j

(
Gj(U+)− Gj(U−)

)
νj ≤ 0
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I. Conservation laws, selection of solutions

. Example : the shallow water system

(5)

{
∂th + ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + gh2/2)+gh∂xz = 0,

with z(x) given, with entropy inequality (energy dissipation)

(6) ∂t(hu
2/2 + gh2/2) + ∂x((hu2/2 + gh2)u)+ghu∂xz ≤ 0,

or equivalently

(7) ∂t(hu
2/2 + gh2/2+ghz) + ∂x((hu2/2 + gh2+ghz)u) ≤ 0.

The topography z can be considered as a source (if z is smooth) or as an additional
unknown verifying ∂tz = 0. The entropy hu2/2 + gh2/2 is a convex function of the
conservative variables U = (h, hu).
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II. Well-balancing of source terms

A class of specific partially conservative systems :

(8)
∂tU + ∂x (F (U,Z)) + B(U,Z)∂xZ = 0,
∂tZ = 0,

where U(t, x) ∈ Rp is the unknown and Z(x) ∈ Rr is given. The nonlinearities
F (U,Z) ∈ Rp and B(U,Z) ∈ Mp,r are supposed to be smooth. The system (8) is a

quasilinear system ∂tŨ + A∂x Ũ = 0 on the vector Ũ = (U,Z), with

(9) A =

(
FU FZ + B
0 0

)
.

Example : The shallow water problem with fixed topography.

Example : Z(x) = x . Then

(10) ∂tU + ∂x (F (U, x)) + B(U, x) = 0

is a system of conservation laws with source. The interaction between the
conservative term and the source is the key issue.

The formulation (8) enables to use schemes designed for quasilinear systems that
treat both terms at the same level. It allows well-balancing and stability of
computations.
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II. Well-balancing of source terms

For the quasiconservative system ∂tU + ∂x (F (U,Z)) + B(U,Z)∂xZ = 0, a first-order
finite volume scheme is a scheme of the form

(11) Un+1
i − Ui +

∆t

∆xi

(
Fi+1/2− − Fi−1/2+

)
= 0,

where Un
i is an approximation of the solution U(t, x),

(12) Un
i '

1

∆xi

∫ xi+1/2

xi−1/2

U(tn, x)dx ,

the indices n and i refer to time tn and cell Ci = (xi−1/2, xi+1/2) of size
∆xi = xi+1/2 − xi−1/2, where tn+1 − tn = ∆t and · · · < xi−1/2 < xi+1/2 < . . . is the grid.
The interface terms are defined by

(13) Fi+1/2− = Fl(Ui ,Ui+1,Zi ,Zi+1), Fi+1/2+ = Fr (Ui ,Ui+1,Zi ,Zi+1),

and Fl(Ul ,Ur ,Zl ,Zr ), Fr (Ul ,Ur ,Zl ,Zr ) are the numerical flux functions, to be chosen
satisfying some accuracy and stability properties.
. For a conservative system (B(U,Z) ≡ 0), one would require conservativity, Fl ≡ Fr .

Well-balancing of source terms Hydrostatic reconstruction and entropy inequality 6



II. Well-balancing of source terms

. The consistency of a numerical method is the minimal accuracy property we can ask
for. Here we consider smooth consistency : if the sequence Un

i converges to a smooth
function, it must be a classical solution to the equation considered.
This condition does not ensure weak consistency for discontinuous solutions (no
Rankine-Hugoniot condition is ensured)
. For our partially conservative problem

(14) ∂tU + ∂x (F (U,Z)) + B(U,Z)∂xZ = 0, Z = Z(x),

we require moreover that when Z = cst, the scheme becomes conservative. This ensures
the Rankine-Hugoniot condition for continuous Z .
. Then the consistency+asymptotic conservativity conditions resume as

(15) Fl(U,U,Z ,Z) = Fr (U,U,Z ,Z) = F (U,Z),

(16)
Fr (Ul ,Ur ,Zl ,Zr )−Fl(Ul ,Ur ,Zl ,Zr ) = −B(U,Z)(Zr − Zl) + o(Zr − Zl)

as Ul ,Ur → U and Zl ,Zr → Z .

This formulation via a quasilinear problem enables to distribute the source term at the
interfaces xi+1/2.
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II. Well-balancing of source terms

. Stability properties are usually required for a finite volume scheme. They can be of
two types :

Preservation of some invariants domains. This means that some natural bounds are
preserved during the evolution, like nonnegativity of density, volume fraction
between 0 and 1...

Existence of a discrete entropy inequality

(17) η(Un+1
i )− η(Ui ) +

∆t

∆xi

(
Gi+1/2 − Gi−1/2

)
≤ 0

for some numerical entropy flux Gi+1/2 = G(Ui ,Ui+1). It selects suitable solutions,
and provides the a priori bound

∑
i ∆xiη(Un

i ) ≤
∑

i ∆xiη(U0
i ).

A variant of this property is the existence of a semi-discrete entropy inequality, that
is valid only in the limit ∆t → 0. It does not give any a priori bound.

. These stability properties can only hold under a CFL condition

(18) ∆t ai+1/2 ≤ min(∆xi ,∆xi+1),

where ai+1/2 is a suitable approximation of the wave speed.
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III. Shallow water problem

The shallow water problem with topography writes

(19)

{
∂th + ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + p(h)) + hg∂xz = 0,

where h(t, x) ≥ 0 is the water height, u(t, x) ∈ R is the velocity, and z(x) is the
topography. The ”pressure” is p(h) = gh2/2, g > 0.

The system is of the form (8) with U = (h, hu), Z = z ,

(20) F (U, z) = F (U) = (hu, hu2 + p(h)), B(U, z) = B(U) = (0, gh).

The system has an entropy η̃(U, z) = hu2/2 + gh2/2 + hgz ≡ η(U) + hgz with

entropy flux G̃(U, z) = (η̃ + p)u ≡ G(U) + hgzu.

The steady states are characterized by

(21) hu = cst, u2/2 + g(h + z) = cst.

The steady states at rest are those for which u = 0 and h + z = cst. They can be
characterized at the discrete level by the local relations

(22) ul = ur = 0, hl + zl − hr − zr = 0.
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III. Shallow water problem – Numerical difficulties

Numerical difficulties :

Keep the water height h nonnegative,

Compute dry areas where h = 0,

Preserve the total amount of water,

Preserve the steady states at rest (well-balanced property)

Satisfy a discrete entropy inequality,

Produce stable computations (no oscillations) for all data, including transcritical
cases.
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III. Shallow water problem – Hydrostatic reconstruction scheme

The hydrostatic reconstruction scheme proposed by Audusse, Bouchut, Bristeau, Klein,
Perthame 04 satisfies all these properties (only semi-discrete entropy inequality), and is
computationally cheap. It writes as

(23)
Fl(Ul ,Ur , zl , zr ) = F(U∗l ,U

∗
r ) +

(
0

p(hl)− p(h∗l )

)
,

Fr (Ul ,Ur , zl , zr ) = F(U∗l ,U
∗
r ) +

(
0

p(hr )− p(h∗r )

)
,

where F(Ul ,Ur ) is a (good) consistent numerical flux for the shallow water problem
without source, and the reconstructed states U∗l , U∗r are defined by

(24)
U∗l = (h∗l , h

∗
l ul), U∗r = (h∗r , h

∗
r ur ),

h∗l = max(0, hl + zl − z∗), h∗r = max(0, hr + zr − z∗)
z∗ = max(zl , zr ).

. This scheme can be easily adapted to problems of the same type, like Savage Hutter
models.
. Other schemes have been proposed. One that has a similar efficiency is the F-wave
method Leveque et al., or the equivalent Roe method developed by Pares, Castro et al..
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III. Shallow water problem – Hydrostatic reconstruction scheme

. The semi-discrete entropy inequality can be written under the form

(25)
d

dt
η̃i +

1

∆xi

(
G̃i+1/2 − G̃i−1/2

)
≤ 0,

with G̃i+1/2 = G̃(Ui ,Ui+1, zi+1 − zi ),

(26) G̃(Ul ,Ur ,∆z) = G(U∗l ,U
∗
r ) + F0(U∗l ,U

∗
r )gz∗

where we recall that η̃(U, z) = η(U) + hgz , G̃(U, z) = G(U) + hgzu, and where G is
the numerical entropy flux for the problem without source, and F0 the mass component
(first componant) of the numerical flux without source F .
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III. Shallow water problem – Hydrostatic reconstruction scheme

A counter-result :

Proposition (ABBS 2016) The hydrostatic reconstruction scheme does not verify a fully
discrete entropy inequality, whatever small is the ratio ∆t/∆x .

The proof is based on an argument of strict convexity of the dissipation, and on the fact
that the semi-discrete dissipation vanishes for data such that

(27) ul = ur 6= 0, hl + zl = hr + zr , zr − zl 6= 0.

Shallow water problem Hydrostatic reconstruction and entropy inequality 13



IV. Explicit Euler scheme

. Consider a differential system

(28)
dU

dt
= F (U),

verifying an entropy inequality

(29)
d

dt
η(U) ≤ 0, i.e. η′(U)F (U) ≤ 0 for all U,

with η convex.
. One can resolve it by an implicit Euler scheme

(30) Un+1 = Un + ∆tF (Un+1),

or by an explicit Euler scheme

(31) Un+1 = Un + ∆tF (Un).

We say that the scheme is entropy satisfying if η(Un+1) ≤ η(Un) for ∆t small enough.
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IV. Explicit Euler scheme

Proposition.
. Implicit Euler is entropy satisfying if and only if the system is entropy satisfying, and
in this case there is no need of any restriction on the time step.
. If explicit Euler is entropy satisfying then the system is entropy satisfying, but the
converse is wrong.

The only nontrivial assertion is that (the system is entropy satisfying) implies that
(implicit Euler is entropy satisfying). One just has to write according to the convexity of
η

(32)
η(Un+1) ≤ η(Un) + η′(Un+1)(Un+1 − Un)

= η(Un) + ∆tη′(Un+1)F (Un+1)
≤ η(Un).

To understand the explicit Euler scheme, one can write

(33)
η(Un+1) ' η(Un) + η′(Un)(Un+1 − Un) + η′′(Un)

(Un+1 − Un)2

2

= η(Un) + ∆tη′(Un)F (Un) +
∆t2

2
η′′(Un)F (Un)2

We observe that the linear term is nonpositive which is good, but the second-order term
is nonnegative !
If the system is strictly entropy satisfying and ∆t is small enough, then the second-order
term will be dominated by the first-order one, and the explicit scheme will be entropic.
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V. Fully discrete entropy inequality for the HR scheme

Theorem[ABBS 2016] Under the CFL condition

(34) σivm ≤ β < 1,

where vm is an upper bound for the propagation speed, i.e. |ui |+
√

2ghi ≤ vm, β is
fixed, and σi = ∆t/∆xi , the hydrostatic reconstruction scheme, with particular
homogeneous fluxes defined by a kinetic method, verifies the fully discrete time-space
entropy inequality

(35) η̃n+1
i −η̃i+σi (G̃i+1/2−G̃i−1/2) ≤ Cβ(σivm)2

(
g(hi − hi+1/2−)2 + g(hi − hi−1/2+)2

)
.

In particular, the right-hand side is upper bounded by C(σivm)2g∆z2.

Note that the error term vanishes when z = cst (no topo), or when σi → 0
(semi-discrete limit). Moreover for a Lipschitz topography it gives rise to an error term
that tends to 0 strongly when the time and space steps tend to 0. We have thus strong
consistency with the limit entropy inequality, even if the limit solution is discontinuous.
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VI. Kinetic functions

. The principle of the kinetic scheme with topography is given in [Perthame, Simeoni
2001]. One solves

(36) ∂t f + ξ∂x f − g(∂xz)∂ξf = 0

for the unknown f (t, x , ξ), ξ ∈ R, over the time interval tn, tn+1, with initial data

(37) f (tn, x , ξ) = M(Un(x), ξ),

where Un(x) is constant by cells with values Un
i , and we compute the updated values by

(38) Un+1
i =

∫
R

(
1
ξ

)
f n+1−
i (ξ)dξ.

Here M is the ”Maxwellian”

(39) M(h, u, ξ) =
1

gπ

(
2gh − (ξ − u)2

)1/2
+

that verifies the moment relations

(40)

∫
R

(
1
ξ

)
M(U, ξ) dξ = U,∫

R
ξ2M(U, ξ) dξ = hu2 + g

h2

2
.

This gives rise to a consistant and entropy satisfying scheme, but it involves integrals in
ξ which are not computable simply.
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VI. Kinetic functions

We replace the Perthame-Simeoni scheme by a fully time discrete formula

(41)
f n+1−
i = Mi − σi

(
ξ1Iξ<0Mi+1/2+ + ξ1Iξ>0Mi+1/2− + δMi+1/2−

−ξ1Iξ>0Mi−1/2− − ξ1Iξ<0Mi−1/2+ − δMi−1/2+

)
,

with Mi = M(Ui , ξ), Mi+1/2± = M(Ui+1/2±, ξ), f n+1−
i = f n+1−

i (ξ), and

(42) δMi+1/2− = (ξ − ui )(Mi −Mi+1/2−), δMi−1/2+ = (ξ − ui )(Mi −Mi−1/2+).

Theorem [ABBS 2016] When we take the integral in ξ of (41), we obtain the
hydrostatic reconstruction scheme (associated to certain kinetic homogeneous fluxes).
Moreover the scheme verifies a kinetic entropy inequality

(43)

H(f n+1−
i , zi )

≤ H(Mi , zi )− σi

(
H̃i+1/2− − H̃i−1/2+

)
− νβ σi |ξ|

g 2π2

6

(
1Iξ<0 (Mi+1/2+ + Mi+1/2−)(Mi+1/2+ −Mi+1/2−)2

+ 1Iξ>0 (Mi−1/2− + Mi−1/2+)(Mi−1/2+ −Mi−1/2−)2
)

+ Cβ(σivm)2
g 2π2

6
Mi

(
(Mi −Mi+1/2−)2 + (Mi −Mi−1/2+)2

)
,

where H̃i+1/2−, H̃i−1/2+ are some ”kinetic entropy fluxes”, νβ > 0 is a dissipation
constant, and Cβ ≥ 0 is a constant giving an error term.
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VI. Kinetic functions

Here, H(f , ξ, z) is the kinetic entropy

(44) H(f , ξ, z) = H0(f , ξ) + gzf ,

(45) H0(f , ξ) =
ξ2

2
f +

g 2π2

2
f 3.

The Maxwellian M verifies the kinetic entropy minimization principle :
Theorem[Bouchut 1999]

. For any h ≥ 0, u ∈ R, f ≥ 0, ξ ∈ R we have

(46) H0(f , ξ) ≥ H0(M(U, ξ), ξ) + η′(U)

(
1
ξ

)
(f −M(U, ξ)).

. For any function f (ξ) ≥ 0, setting h =
∫
f (ξ)dξ, hu =

∫
ξf (ξ)dξ, we have

(47) η(U) =

∫
R
H0(M(U, ξ), ξ)dξ ≤

∫
R
H0(f (ξ), ξ)dξ.

The second inequality (47) can be simply obtained by integrating (46) with respect to ξ.
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VII. Principle of proof

. The proof of the theorem giving the kinetic entropy inequality with dissipation and
error terms is obtained by estimating the second-order term (in ∆t2) with respect to the
first-order term (in ∆t) when the latter is nonzero. The residual that controls the error
when the dissipation term vanishes yields the final error term.

. Note that one can neglect the dissipation term in νβ when integrating with respect to
ξ in order to obtain the entropy inequality of the HR scheme.

. We need this dissipation term in order to prove the convergence of the scheme
[Bouchut,Lhébrard 2017] !
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