A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations

Alina Chertock
North Carolina State University
chertock@math.ncsu.edu
joint work with
Y. Cheng, M. Herty, A. Kurganov, S.N. Ozcan and T. Wu

Systems of Balance Laws

$\boldsymbol{U}_{t}+\boldsymbol{f}(\boldsymbol{U})_{x}+\boldsymbol{g}(\boldsymbol{U})_{y}=\boldsymbol{S}(\boldsymbol{U})$
Examples:

- Gas dynamics with pipe-wall friction
- Euler equations with gravity/friction
- shallow water equations with Coriolis forces

Applications:

- astrophysical and atmospheric phenomena in many fields including supernova explosions
- (solar) climate modeling and weather forecasting

$$
\boldsymbol{U}_{t}+\boldsymbol{f}(\boldsymbol{U})_{x}+\boldsymbol{g}(\boldsymbol{U})_{y}=\frac{1}{\varepsilon} \boldsymbol{S}(\boldsymbol{U})
$$

Examples:

- low Mach number compressible flows
- low Froude number shallow water flows
- diffusive relaxation in kinetic models

Applications:

- various two-phase flows such as bubbles in water
- unmostly incompressible flows with regions of high compressibility such as underwater explosions
- atmospheric flows

Systems of Balance Laws

$$
\boldsymbol{U}_{t}+\boldsymbol{f}(\boldsymbol{U})_{x}+\boldsymbol{g}(\boldsymbol{U})_{y}=\boldsymbol{S}(\boldsymbol{U}) \quad \text { or } \quad \boldsymbol{U}_{t}+\boldsymbol{f}(\boldsymbol{U})_{x}+\boldsymbol{g}(\boldsymbol{U})_{y}=\frac{1}{\varepsilon} \boldsymbol{S}(\boldsymbol{U})
$$

- Challenges: certain structural properties of these hyperbolic problems (conservation or balance law, equilibrium state, positivity, assymptotic regimes, etc.) are essential in many applications;
- Goal: to design numerical methods that are not only consistent with the given PDEs, but
- preserve the structural properties at the discrete level - well-balanced numerical methods
- remain accurate and robust in certain asymptotic regimes of physical interest - asymptotic preserving numerical methods
[P. LeFloch; 2014]

Well-Balanced (WB) Methods

$$
\boldsymbol{U}_{t}+\boldsymbol{f}(\boldsymbol{U})_{x}+\boldsymbol{g}(\boldsymbol{U})_{y}=\boldsymbol{S}(\boldsymbol{U})
$$

- In many physical applications, solutions of the system are small perturbations of the steady states;
- These perturbations may be smaller than the size of the truncation error on a coarse grid;
- To overcome this difficulty, one can use very fine grid, but in many physically relevant situations, this may be unaffordable;

Goal:

- to design a well-balanced numerical method, that is, the method which is capable of exactly preserving some steady state solutions;
- perturbations of these solutions will be resolved on a coarse grid in a non-oscillatory way.

Finite-Volume Methods - 1-D

$$
\boldsymbol{U}_{t}+\boldsymbol{f}(\boldsymbol{U})_{x}=\boldsymbol{S}
$$

- $\overline{\boldsymbol{U}}_{k}^{n} \approx \frac{1}{\Delta y} \int_{C_{k}} \boldsymbol{U}\left(y, t^{n}\right) d y:$ cell averages over $C_{j}:=\left(x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}\right)$
- Semi-discrete FV method:

$$
\frac{d}{d t} \overline{\boldsymbol{U}}_{j}(t)=-\frac{\mathcal{F}_{j+\frac{1}{2}}(t)-\mathcal{F}_{j-\frac{1}{2}}(t)}{\Delta x}+\overline{\boldsymbol{S}}_{j}
$$

$\mathcal{F}_{j+\frac{1}{2}}(t)$: numerical fluxes
\bar{S}_{j} : quadrature approximating the corresponding source terms

- Central-Upwind (CU) Scheme:
[Kurganov, Lin, Noelle, Petrova, Tadmor, et al.; 2000-2007]

$$
\left\{\overline{\boldsymbol{U}}_{j}(t)\right\} \rightarrow \tilde{\boldsymbol{U}}(\cdot, t) \rightarrow\left\{\boldsymbol{U}_{j}^{\mathrm{E}, \mathrm{~W}}(t)\right\} \rightarrow\left\{\mathcal{F}_{j+\frac{1}{2}}(t)\right\} \rightarrow\left\{\overline{\boldsymbol{U}}_{j}(t+\Delta t)\right\}
$$

(Discontinuous) piecewise-linear reconstruction:

$$
\widetilde{\boldsymbol{U}}(y, t):=\overline{\boldsymbol{U}}_{j}(t)+\left(\boldsymbol{U}_{x}\right)_{j}\left(x-x_{j}\right), \quad x \in C_{j}
$$

It is conservative, second-order accurate, and non-oscillatory provided the slopes, $\left\{\left(\boldsymbol{U}_{y}\right)_{k}\right\}$, are computed by a nonlinear limiter

Example - Generalized Minmod Limiter

$$
\left(\boldsymbol{U}_{y}\right)_{j}=\operatorname{minmod}\left(\theta \frac{\overline{\boldsymbol{U}}_{j}-\overline{\boldsymbol{U}}_{j-1}}{\Delta x}, \frac{\overline{\boldsymbol{U}}_{j+1}-\overline{\boldsymbol{U}}_{j-1}}{2 \Delta x}, \theta \frac{\overline{\boldsymbol{U}}_{j+1}-\overline{\boldsymbol{U}}_{j}}{\Delta x}\right)
$$

where

$$
\operatorname{minmod}\left(z_{1}, z_{2}, \ldots\right):=\left\{\begin{array}{lc}
\min _{j}\left\{z_{j}\right\}, & \text { if } z_{j}>0 \forall j, \\
\max _{j}\left\{z_{j}\right\}, & \text { if } z_{j}<0 \forall j, \\
0, & \text { otherwise },
\end{array}\right.
$$

and $\theta \in[1,2]$ is a constant

$$
\left\{\overline{\boldsymbol{U}}_{j}(t)\right\} \rightarrow \widetilde{\boldsymbol{U}}(\cdot, t) \rightarrow\left\{U_{j}^{\mathrm{E}, \mathrm{~W}}(t)\right\} \rightarrow\left\{\mathcal{F}_{j+\frac{1}{2}}(t)\right\} \rightarrow\left\{\overline{\boldsymbol{U}}_{j}(t+\Delta t)\right\}
$$

U_{j}^{E} and $\boldsymbol{U}_{j}^{\mathrm{W}}$ are the point values at $x_{j+\frac{1}{2}}$ and $x_{j-\frac{1}{2}}$:

$$
\begin{aligned}
& \tilde{\boldsymbol{U}}(y, t)=\overline{\boldsymbol{U}}_{j}+\left(\boldsymbol{U}_{x}\right)_{j}\left(x-x_{j}\right), \quad x \in C_{j} \\
& \boldsymbol{U}_{j}^{\mathrm{E}}:=\overline{\boldsymbol{U}}_{j}+\frac{\Delta x}{2}\left(\boldsymbol{U}_{x}\right)_{j} \\
& \boldsymbol{U}_{j}^{\mathrm{W}}:=\overline{\boldsymbol{U}}_{j}-\frac{\Delta x}{2}\left(\boldsymbol{U}_{x}\right)_{j}
\end{aligned}
$$

$$
\begin{gathered}
\left\{\overline{\boldsymbol{U}}_{j}(t)\right\} \rightarrow \tilde{\boldsymbol{U}}(\cdot, t) \rightarrow\left\{\boldsymbol{U}_{j}^{\mathrm{E}, \mathrm{~W}}(t)\right\} \rightarrow\left\{\mathcal{F}_{j+\frac{1}{2}}(t)\right\} \rightarrow\left\{\bar{U}_{j}(t+\Delta t)\right\} \\
\frac{d}{d t} \overline{\boldsymbol{U}}_{j}=-\frac{\mathcal{F}_{j+\frac{1}{2}}-\mathcal{J}_{j-\frac{1}{2}}}{\Delta x}+\overline{\boldsymbol{S}}_{j}
\end{gathered}
$$

where

$$
\begin{aligned}
& \mathcal{F}_{j+\frac{1}{2}}=\frac{a_{j+\frac{1}{2}}^{+} \boldsymbol{f}\left(\boldsymbol{U}_{j}^{\mathrm{E}}\right)-a_{j+\frac{1}{2}}^{-} \boldsymbol{f}\left(\boldsymbol{U}_{j+1}^{\mathrm{W}}\right)}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}}+\alpha_{j+\frac{1}{2}}\left(\boldsymbol{U}_{j+1}^{\mathrm{W}}-\boldsymbol{U}_{j}^{\mathrm{W}}\right) \\
& \alpha_{j+\frac{1}{2}}=\frac{a_{j+\frac{1}{2}}^{+} a_{j+\frac{1}{2}}^{-}}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}} \\
& a_{j+\frac{1}{2}}^{+}=\max \left\{\lambda\left(\boldsymbol{U}_{j}^{\mathrm{E}}\right), \lambda\left(\boldsymbol{U}_{j+1}^{\mathrm{W}}\right), 0\right\}, \quad a_{j+\frac{1}{2}}^{-}=\min \left\{\lambda\left(\boldsymbol{U}_{j}^{\mathrm{E}}\right), \lambda\left(\boldsymbol{U}_{j+1}^{\mathrm{W}}\right), 0\right\}
\end{aligned}
$$

2-D extension is dimension-by-dimension

Non Well-Balanced Property - Example

$$
\left\{\begin{array}{l}
h_{t}+q_{x}=0 \\
q_{t}+f_{2}(h, q)_{x}=-s(h, q)
\end{array}\right.
$$

For steady-state solution: $q=$ Const and $h=h(x)$
Implementing the CU scheme results in

$$
\begin{aligned}
\frac{d \bar{h}_{j}}{d t}= & -\frac{1}{\Delta x}\left[\frac{a_{j+\frac{1}{2}}^{+} q_{j}^{\mathrm{E}}-a_{j+\frac{1}{2}}^{-} q_{j+1}^{\mathrm{W}}}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}}+\alpha_{j+\frac{1}{2}}\left(h_{j+1}^{\mathrm{W}}-h_{j}^{\mathrm{E}}\right)\right. \\
& \left.-\frac{a_{j-\frac{1}{2}}^{+} q_{j-1}^{\mathrm{E}}-a_{j-\frac{1}{2}}^{-} q_{j}^{\mathrm{W}}}{a_{j-\frac{1}{2}}^{+}-a_{j-\frac{1}{2}}^{-}}+\alpha_{j-\frac{1}{2}}\left(h_{j}^{\mathrm{W}}-h_{j-1}^{\mathrm{E}}\right)\right] \neq 0
\end{aligned}
$$

- The steady state would not be preserved at the discrete level;
- This would also true for the first-order version of the scheme;
- For smooth solutions, the balance error is expected to be of order $(\Delta x)^{2}$, but a coarse grid solution may contain large spurious waves.

Well-Balanced Methods

1-D 2×2 Systems of Balance Laws

$$
\left\{\begin{array}{l}
h_{t}+f_{1}(h, q)_{x}=0 \\
q_{t}+f_{2}(h, q)_{x}=-s(h, q)
\end{array}\right.
$$

Steady state solution:

$$
f_{1}(h, q)_{x} \equiv 0, \quad f_{2}(h, q)_{x}+s(h, q) \equiv 0
$$

or

$$
\begin{aligned}
K & :=f_{1}(h, q) \equiv \text { Const } \\
L & :=f_{2}(h, q)+\int^{x} s(h, q) d \xi \equiv \text { Const }
\end{aligned} \quad \forall x, t
$$

Numerical Challenges : to exactly balance the flux and source terms, i.e., to exactly preserve the steady states.

How to design a well-balanced scheme?

Well-Balanced Scheme

$$
\left\{\begin{array}{l}
h_{t}+f_{1}(h, q)_{x}=0 \\
q_{t}+f_{2}(h, q)_{x}=-s(h, q)
\end{array}\right.
$$

- Incorporate the source term into the flux:

$$
\left\{\begin{array}{l}
h_{t}+f_{1}(h, q)_{x}=0, \\
q_{t}+\left(f_{2}(h, q)_{x}+R\right)_{x}=0,
\end{array} \quad R:=\int^{x} s(h, q) d \xi\right.
$$

- Rewrite

$$
\left\{\begin{array}{l}
h_{t}+K_{x}=0 \\
q_{t}+L_{x}=0
\end{array}\right.
$$

where

$$
K:=f_{1}(h, q), \quad L:=f_{2}(h, q)_{x}+R
$$

- Define
conservative variables $\boldsymbol{U}=(h, q)^{T}$
equilibrium variables $\mathbf{W}:=(K, L)^{T}$

Well-Balanced Scheme

$$
\begin{gathered}
\boldsymbol{U}_{t}+\boldsymbol{f}(\boldsymbol{U})_{x}=\mathbf{0} \\
\boldsymbol{U}=\binom{h}{q}, \quad \boldsymbol{f}(\boldsymbol{U})=\boldsymbol{W}:=\binom{K}{L}
\end{gathered}
$$

Semi-discrete FV method:

$$
\frac{d}{d t} \overline{\boldsymbol{U}}_{j}(t)=-\frac{\mathcal{F}_{j+\frac{1}{2}}(t)-\mathcal{F}_{j-\frac{1}{2}}(t)}{\Delta x}
$$

Two major modifications:

- Well-balanced reconstruction - performed on the equilibrium rather than conservative variables:

$$
\left\{\overline{\boldsymbol{U}}_{j}(t)\right\} \rightarrow \tilde{\boldsymbol{U}}(\cdot, t) \rightarrow\left\{\mathbf{W}_{j}^{\mathrm{E}, \mathrm{~W}}(t)\right\} \rightarrow\left\{\boldsymbol{U}_{j}^{\mathrm{E}, \mathrm{~W}}(t)\right\} \rightarrow\left\{\mathcal{F}_{j+\frac{1}{2}}(t)\right\} \rightarrow\left\{\overline{\boldsymbol{U}}_{j}(t+\Delta t)\right\}
$$

- Well-balanced evolution

Well-Balanced Reconstruction

Given: $\overline{\boldsymbol{U}}_{j}(t)=\left(\bar{h}_{j}, \bar{q}_{j}\right)^{T}$ - cell averages
Need: $\mathbf{W}_{j}^{\mathrm{E}, \mathrm{W}}=\left(K_{j}^{\mathrm{E}, \mathrm{W}}, L_{j}^{\mathrm{E}, \mathrm{W}}\right)^{T}$ - point values, where

$$
K:=f_{1}(h, q), \quad L:=f_{2}(h, q)_{x}+R, \quad R:=\int^{x} s(h, q) d \xi
$$

- Compute $R_{j}=\int^{x_{j}} s(h, q) d \xi$ by the midpoint quadrature rule and using the following recursive relation:

$$
\begin{aligned}
& R_{1 / 2} \equiv 0, \quad R_{j}=\frac{1}{2}\left(R_{j-\frac{1}{2}}+R_{j+\frac{1}{2}}\right) \\
& R_{j+\frac{1}{2}}=R\left(x_{j+\frac{1}{2}}\right)=R_{j-\frac{1}{2}}+\Delta x s\left(x_{j}, \bar{h}_{j}, \bar{q}_{j}\right)
\end{aligned}
$$

- Compute the point values of K and L at x_{j} from the cell averages, \bar{h}_{j} and \bar{q}_{j} :

$$
K_{j}=f_{1}\left(\bar{h}_{j}, \bar{q}_{j}\right), \quad L_{j}=f_{2}\left(\bar{h}_{j}, \bar{q}_{j}\right)+R_{j}
$$

Well-Balanced Reconstruction

- Apply the minmod reconstruction procedure to $\left\{K_{j}, L_{j}\right\}$ and obtain the point values at the cell interfaces:

$$
\begin{array}{ll}
K_{j}^{\mathrm{E}}=K_{j}+\frac{\Delta x}{2}\left(K_{x}\right)_{j}, & L_{j}^{\mathrm{E}}=L_{j}+\frac{\Delta x}{2}\left(L_{x}\right)_{j} \\
K_{j}^{\mathrm{W}}=K_{j}-\frac{\Delta x}{2}\left(K_{x}\right)_{j}, & L_{j}^{\mathrm{W}}=L_{j}-\frac{\Delta x}{2}\left(L_{x}\right)_{j}
\end{array}
$$

- Finally, equipped with the values of $K_{j}^{\mathrm{E}, \mathrm{W}}, L_{j}^{\mathrm{E}, \mathrm{W}}$ and $R_{j \pm \frac{1}{2}}$, solve

$$
\begin{array}{ll}
K_{j}^{\mathrm{E}}=f_{1}\left(h_{j}^{\mathrm{E}}, q_{j}^{\mathrm{E}}\right), & L_{j}^{\mathrm{E}}=f_{2}\left(h_{j}^{\mathrm{E}}, q_{j}^{\mathrm{E}}\right)+R_{j+\frac{1}{2}} \\
K_{j}^{\mathrm{W}}=f_{1}\left(h_{j}^{\mathrm{W}}, q_{j}^{\mathrm{W}}\right), & L_{j}^{\mathrm{W}}=f_{2}\left(h_{j}^{\mathrm{W}}, q_{j}^{\mathrm{W}}\right)+R_{j-\frac{1}{2}}
\end{array}
$$

for $\boldsymbol{U}_{j}^{\mathrm{E}, \mathrm{W}}=\left(h_{j}^{\mathrm{E}, \mathrm{W}}, q_{j}^{\mathrm{E}, \mathrm{W}}\right)^{T}$.

Well-Balanced Evolution

$$
\frac{d}{d t} \bar{U}_{j}=-\frac{\mathcal{F}_{j+\frac{1}{2}}-\mathcal{F}_{j-\frac{1}{2}}}{\Delta x}
$$

where

$$
\begin{aligned}
\mathcal{F}_{j+\frac{1}{2}}^{(1)}= & \frac{a_{j+\frac{1}{2}}^{+} K_{j}^{\mathrm{E}}-a_{j+\frac{1}{2}}^{-} K_{j+1}^{\mathrm{W}}}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}} \\
& \left.+\alpha_{j+\frac{1}{2}}\left(h_{j+1}^{\mathrm{W}}-h_{j}^{\mathrm{E}}\right) \mathcal{H}\left(\frac{\left|K_{j+1}-K_{j}\right|}{\Delta x} \cdot \frac{|\Omega|}{\max _{j}} K_{j}, K_{j+1}\right\}\right) \\
\mathcal{F}_{j+\frac{1}{2}}^{(2)}= & \frac{a_{j+\frac{1}{2}}^{+} L_{j}^{\mathrm{E}}-a_{j+\frac{1}{2}}^{-} L_{j+1}^{\mathrm{W}}}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}} \\
& +\alpha_{j+\frac{1}{2}}\left(q_{j+1}^{\mathrm{W}}-q_{j}^{\mathrm{E}}\right) \mathcal{H}\left(\frac{\mid L_{j+1}^{0.02}}{\Delta x}\right)
\end{aligned}
$$

Proof of the Well-Balanced Property

Theorem. The central-upwind semi-discrete schemes coupled with the well-balanced reconstruction and evolution is well-balanced in the sense that it preserves the corresponding steady states exactly.

1-D Saint-Venant System of Shallow Water with Friction

$$
\left\{\begin{array}{l}
h_{t}+q_{x}=0 \\
q_{t}+\left(h u^{2}+\frac{g}{2} h^{2}\right)_{x}=-g h B_{x}-g \frac{n^{2}}{h^{7 / 3}}|q| q
\end{array}\right.
$$

- h - water depth
- u - velocity
- $q:=h u$ - discharge
- $B(x)$ - bottom elevation
- g - the constant gravitational acceleration
- n - Manning friction coefficient.

Shallow Water Equations

$$
\left\{\begin{array}{l}
h_{t}+q_{x}=0 \\
q_{t}+\left(h u^{2}+\frac{g}{2} h^{2}\right)_{x}=-g h B_{x}-g \frac{n^{2}}{h^{7 / 3}}|q| q
\end{array}\right.
$$

- Well-balanced scheme should exactly balance the flux and source terms so that the steady states are preserved:
- Moving Steady-state solutions (no friction $n \equiv 0$):

$$
q=\text { Const, } \quad \frac{u^{2}}{2}+g(h+B)=\mathrm{Const}
$$

- Stationary steady-state solutions (lake at rest):

$$
u=0, \quad h+B=\mathrm{Const}
$$

Well-Balanced Methods - Some References

- Shallow water models (preserving "lake at rest" steady states):
- LeVeque (1998) - incorporating the source term into the Riemann solver
- Jin (2001) - well-balanced source term averaging
- Perthame, Simeoni (2001) - kinetic scheme
- Kurganov, Levy (2002) - central-upwind scheme
- Gallouët, Hérard, Seguin (2003) - Roe-type scheme
- Audusse, Bouchut, Bristeau, Klein, Perthame (2004) - hydrostatic reconstruction
- Russo (2005) staggered central scheme
- Xing, Shu $(2005,2006)$ - WENO schemes
- Noelle, Pankratz, Puppo, Natvig (2006) - high-order schemes
- Lukácová-Medvidová, Noelle, Kraft (2007) FVEG scheme
- Berthon, Marche (2008) - relaxation schemes
- Fjordholm, Mishra, Tadmor $(2008,2011)$ energy stable schemes
- Abgrall, Audusse, Bristeau, Castro, Chertock, Dawson, Donat, Epshteyn, George, Karni, Klingenberg, Mohammadian, Parés, Ricchiuto, ...

Well-Balanced Methods - Some References

- Shallow water models (preserving moving steady states):
- Noelle, Shu, Xing $(2007,2009,2011)$ - WENO schemes
- Russo, Khe $(2009,2010)$ - staggered central schemes
- Xing (2014) - discontinuous Galerkin method
- Y. Chen, A. Kuragnov (2016) - central-upwind scheme
- Y. Chen, A. Chertock, M. Herty, A. Kurganov (2017; preprint) -central-upwind scheme
- Shallow water models (positivity preserving schemes):
- Perthame, Simeoni (2001) - kinetic scheme
- Audusse, Bouchut, Bristeau, Klein, Perthame (2004) - hydrostatic reconstruction
- Kurgnov, Petrova (2007) - central-upwind scheme with continuous piecewise linear bottom reconstruction
- Berthon, Marche (2008) - relaxation schemes
- Bollermann, Noelle, Lukáčová-Medvid'ová (2011) - special timequadrature for the fluxes
- Bollermann, Chen, Kurganov, Noelle (2013): well-balanced reconstruction of wet/dry fronts

Moving Steady States with Friction

We incorporate the source term in the discharge equation into its flux term:

$$
\left\{\begin{array}{l}
h_{t}+q_{x}=0, \\
q_{t}+\left(\frac{q^{2}}{h}+\frac{g}{2} h^{2}+R\right)_{x}=0
\end{array}\right.
$$

General (moving-water) steady state can be expressed in terms of K and L :

$$
q \equiv \text { Const }, \quad K \equiv \text { Const }
$$

where

$$
\begin{aligned}
& K:=\frac{q^{2}}{h}+\frac{g}{2} h^{2}+R \\
& R(x, t):=g \int^{x}\left[h(\xi, t) B_{x}(\xi)+\frac{n^{2}}{h^{7 / 3}(\xi)}|q(\xi)| q(\xi)\right] d \xi
\end{aligned}
$$

Well-Balanced Algorithm

Given: $\overline{\boldsymbol{U}}_{j}(t)=\left(\bar{h}_{j}, \bar{q}_{j}\right)^{T}$ - cell averages

- Compute equilibrium variables $\left(\bar{q}_{j}, K_{j}\right)^{T}$ at x_{j} from the above cell averages:

$$
\bar{q}_{j}, \quad K_{j}=\frac{\bar{q}_{j}^{2}}{\bar{h}_{j}}+\frac{g}{2} \bar{h}_{j}^{2}+\frac{R_{j+\frac{1}{2}}+R_{j-\frac{1}{2}}}{2}
$$

where

$$
\begin{aligned}
R\left(x_{j+\frac{1}{2}}, t\right) \approx R_{j+\frac{1}{2}} & :=g \sum_{m=j_{\ell}}^{j}\left\{\bar{h}_{m}\left(B_{m+\frac{1}{2}}-B_{m-\frac{1}{2}}\right)+\frac{n^{2}}{\bar{h}_{m}^{7 / 3}}\left|\bar{q}_{m}\right| \bar{q}_{m} \Delta x\right\} \\
& =R_{j-\frac{1}{2}}+\frac{g}{2}\left[\bar{h}_{j}\left(B_{j+\frac{1}{2}}-B_{j-\frac{1}{2}}\right)+\frac{n^{2}}{\bar{h}_{j}^{7 / 3}}\left|\bar{q}_{j}\right| \bar{q}_{j} \Delta x\right]
\end{aligned}
$$

- Apply the minmod reconstruction procedure to $\left\{K_{j}, L_{j}\right\}$ and obtain the point values at the cell interfaces:

$$
q_{j}^{\mathrm{E}, \mathrm{~W}}=q_{j} \pm \frac{\Delta x}{2}\left(q_{x}\right)_{j}, \quad K_{j}^{\mathrm{E}, \mathrm{~W}}=K_{j} \pm \frac{\Delta x}{2}\left(K_{x}\right)_{j}
$$

Well-Balanced Algorithm

- Compute point values $h_{j}^{\mathrm{E}, \mathrm{W}}$ by solving the nonlinear algebraic equations

$$
\varphi(h):=\frac{\left(q_{j}^{\mathrm{E}, \mathrm{~W}}\right)^{2}}{h}+\frac{g}{2} h^{2}+R_{j \pm \frac{1}{2}}-K_{j}^{\mathrm{E}, \mathrm{~W}}=0
$$

which does not have any positive solutions unless

$$
\left(q_{j}^{\mathrm{E}, \mathrm{~W}}\right)^{4} \leq \frac{8\left(K_{j}^{\mathrm{E}, \mathrm{~W}}-R_{j \pm \frac{1}{2}}\right)^{3}}{27 g}
$$

Consider h_{j}^{E}

Well-Balanced Algorithm

- If the inequality is not satisfied, we reconstruct $w=\bar{h}+B$ and set

$$
\begin{equation*}
h_{j}^{\mathrm{E}}=w_{j}^{\mathrm{E}}-B_{j+\frac{1}{2}} \tag{*}
\end{equation*}
$$

- If the inequality is satisfied, then
- If $q_{j}^{\mathrm{E}}=0$, then $h_{j}^{\mathrm{E}}=\sqrt{\frac{2\left(K_{j}^{\mathrm{E}}-R_{j+\frac{1}{2}}\right)}{g}}$
- If $q_{j}^{\mathrm{E}} \neq 0$, then

$$
h_{j}^{\mathrm{E}}=2 \sqrt{P} \cos \left(\frac{1}{3}[\Theta+2 \pi k]\right), \quad k=0,1,2
$$

where

$$
P:=\frac{2\left(K_{j}^{\mathrm{E}}-R_{j+\frac{1}{2}}\right)}{3 g} \quad \text { and } \quad \Theta:=\arccos \left(-\frac{\left(q_{j}^{\mathrm{E}}\right)^{2}}{g P^{3 / 2}}\right)
$$

Only two roots are positive (subsonic and supersonic cases). We single out the physically relevant solution by choosing a root that is closer to the corresponding value of h_{j}^{E} given in $(*)$

Well-Balanced Algorithm

- Update the cell averages in time:

$$
\begin{aligned}
\frac{d}{d t} \bar{h}_{j} & =\frac{a_{j+\frac{1}{2}}^{+} q_{j}^{\mathrm{E}}-a_{j+\frac{1}{2}}^{-} q_{j+1}^{\mathrm{W}}}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}}+\frac{a_{j+\frac{1}{2}}^{+} a_{j+\frac{1}{2}}^{-}}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}}\left(h_{j+1}^{\mathrm{W}}-h_{j}^{\mathrm{E}}\right) \\
\frac{d}{d t} \bar{q}_{j} & =\frac{a_{j+\frac{1}{2}}^{+} K_{j}^{\mathrm{E}}-a_{j+\frac{1}{2}}^{-} K_{j+1}^{\mathrm{W}}}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}}+\frac{a_{j+\frac{1}{2}}^{+} a_{j+\frac{1}{2}}^{-}}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}}\left(q_{j+1}^{\mathrm{W}}-q_{j}^{\mathrm{E}}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& a_{j+\frac{1}{2}}^{+}=\max \left\{u_{j+1}^{\mathrm{W}}+\sqrt{g h_{j+1}^{\mathrm{W}}}, u_{j}^{\mathrm{E}}+\sqrt{g h_{j}^{\mathrm{E}}}, 0\right\} \\
& a_{j+\frac{1}{2}}^{-}=\min \left\{u_{j+1}^{\mathrm{W}}+\sqrt{g h_{j+1}^{\mathrm{W}}}, u_{j}^{\mathrm{E}}+\sqrt{g h_{j}^{\mathrm{E}}}, 0\right\}
\end{aligned}
$$

Numerical Tests

Example 1 - Accuracy Test, No Friction

- Initial data and the bottom topography: function are

$$
h(x, 0)=5+e^{\cos (2 \pi x)}, \quad q(x, 0)=\sin (\cos (2 \pi x)), \quad B(x)=\sin ^{2}(\pi x)
$$

- 1-periodic boundary conditions are imposed on $[0,1]$
- Reference solution is computed on a very fine mesh with 51200 uniform grid cells, time is $t=0.1$.

Number of	h		q	
grid cells	L^{1}-error	Rate	L^{1}-error	Rate
50	$1.51 \mathrm{e}-03$	-	$1.21 \mathrm{e}-00$	-
100	$3.06 \mathrm{e}-04$	2.30	$2.26 \mathrm{e}-01$	2.42
200	$6.68 \mathrm{e}-05$	2.20	$4.90 \mathrm{e}-02$	2.21
400	$1.54 \mathrm{e}-05$	2.12	$1.17 \mathrm{e}-02$	2.06
800	$3.76 \mathrm{e}-06$	2.04	$2.95 \mathrm{e}-03$	1.99
1600	$9.29 \mathrm{e}-07$	2.02	$7.34 \mathrm{e}-04$	2.01

Example 2 - Convergence to Steady States, no Friction

- Three sets of initial conditions:
- Supercritical flow with

$$
\begin{aligned}
& h(x, 0)=2-B(x), \quad q(x, 0) \equiv 0 \\
& h(0, t)=2, \quad q(0, t)=24
\end{aligned}
$$

- Subcritical flow with

$$
\begin{aligned}
& h(x, 0)=2-B(x), \quad q(x, 0) \equiv 0 \\
& q(0, t)=4.42, \quad h(25, t)=2
\end{aligned}
$$

- Transcritical flow without a shock with

$$
\begin{aligned}
& h(x, 0)=0.66-B(x), \quad q(x, 0) \equiv 0 \\
& q(0, t)=1.53, \quad h(25, t)=0.66
\end{aligned}
$$

- Continuous bottom topography:

$$
B(x)= \begin{cases}0.2-0.05(x-10)^{2}, & \text { if } 8 \leq x \leq 12 \\ 0, & \text { otherwise }\end{cases}
$$

Example 3 - Convergence to Steady States, with Friction ($n=0.5$)

- The same three sets of initial conditions as in Example 2:
- Supercritical flow with

$$
\begin{aligned}
& h(x, 0)=2-B(x), \quad q(x, 0) \equiv 0 \\
& h(0, t)=2, \quad q(0, t)=24
\end{aligned}
$$

- Subcritical flow with

$$
\begin{aligned}
& h(x, 0)=2-B(x), \quad q(x, 0) \equiv 0 \\
& q(0, t)=4.42, \quad h(25, t)=2
\end{aligned}
$$

- Transcritical flow without a shock with

$$
\begin{aligned}
& h(x, 0)=0.66-B(x), \quad q(x, 0) \equiv 0 \\
& q(0, t)=1.53, \quad h(25, t)=0.66
\end{aligned}
$$

- Continuous bottom topography:

$$
B(x)= \begin{cases}0.2-0.05(x-10)^{2}, & \text { if } 8 \leq x \leq 12 \\ 0, & \text { otherwise }\end{cases}
$$

Example 4 - Convergence to Steady States, with Friction ($n=0.5$)

- The same three sets of initial conditions as in Example 2:
- Supercritical flow with

$$
\begin{aligned}
& h(x, 0)=2-B(x), \quad q(x, 0) \equiv 0 \\
& h(0, t)=2, \quad q(0, t)=24
\end{aligned}
$$

- Subcritical flow with

$$
\begin{aligned}
& h(x, 0)=2-B(x), \quad q(x, 0) \equiv 0 \\
& q(0, t)=4.42, \quad h(25, t)=2
\end{aligned}
$$

- Transcritical flow without a shock with

$$
\begin{aligned}
& h(x, 0)=0.66-B(x), \quad q(x, 0) \equiv 0 \\
& q(0, t)=1.53, \quad h(25, t)=0.66
\end{aligned}
$$

- Discontinuous bottom topography:

$$
B(x)= \begin{cases}0.2, & \text { if } 8 \leq x \leq 12 \\ 0, & \text { otherwise }\end{cases}
$$

Example 5 - Small Perturbations of Moving-Water Equilibria, with Friction ($n=0.5$)

- Two sets of initial conditions:
- Supercritical flow with

$$
q(x, 0) \equiv 24, \quad K(x, 0) \equiv 307.624
$$

- Subcritical flow with

$$
q(x, 0) \equiv 4.42, \quad K(x, 0) \equiv 31.7705
$$

- Discontinuous bottom topography:

$$
B(x)= \begin{cases}0.2, & \text { if } 8 \leq x \leq 12 \\ 0, & \text { otherwise }\end{cases}
$$

We add 0.001 for $x \in[4.5,5.5]$ to the corresponding water depth. We compute the solutions until the final time $t=1$ using either 100 or 1000 uniform grid cells.

Shallow Water System with Coriolis Force

$$
\left\{\begin{array}{l}
h_{t}+(h u)_{x}+(h v)_{y}=0 \\
(h u)_{t}+\left(h u^{2}+\frac{g}{2} h^{2}\right)_{x}+(h u v)_{y}=-g h B_{x}+f h v \\
(h v)_{t}+(h u v)_{x}+\left(h v^{2}+\frac{g}{2} h^{2}\right)_{x}=-g h B_{y}-f h u
\end{array}\right.
$$

- h : water height
- u, v : fluid velocity
- B: bottom topography
- g : gravitational constant
- f : Coriolis parameter; $f \equiv 0 \Longrightarrow$ Saint Venant system of shallow water.

Steady States

$$
\left\{\begin{array}{l}
h_{t}+(h u)_{x}+(h v)_{y}=0 \\
(h u)_{t}+\left(h u^{2}+\frac{g}{2} h^{2}\right)_{x}+(h u v)_{y}=-g h B_{x}+f h v \\
(h v)_{t}+(h u v)_{x}+\left(h v^{2}+\frac{g}{2} h^{2}\right)_{y}=-g h B_{y}-f h u
\end{array}\right.
$$

- "Lake at rest": $u \equiv 0, v \equiv 0, h+B \equiv$ Const
- Geostrophic equlibria ("jets in the rotational frame") are both stationary and constant along the streamlines:

$$
\begin{aligned}
& u \equiv 0, v_{y} \equiv 0, h_{y} \equiv 0, B_{y} \equiv 0, K \equiv \mathrm{Const} \\
& v \equiv 0, u_{x} \equiv 0, h_{x} \equiv 0, B_{x} \equiv 0, L \equiv \mathrm{Const}
\end{aligned}
$$

Here,

$$
K:=g(h+B-V) \quad \text { and } \quad L:=g(h+B+U)
$$

are the potential energies defined through the primitives of the Coriolis force $(U, V)^{T}$:

$$
V_{x}:=\frac{f}{g} v \quad \text { and } \quad U_{y}:=\frac{f}{g} u
$$

2-D Well-Balanced Scheme

- Define
conservative variables: $\boldsymbol{U}:=(h, h u, h v)^{T}$
equilibrium variables: $\boldsymbol{W}:=(u, v, K, L)^{T}$
fluxes in the x - and y-directions: $\boldsymbol{f}(\boldsymbol{U}, B)$ and $\boldsymbol{g}(\boldsymbol{U}, B)$
- Assume that at time t the cell averages are available

$$
\overline{\boldsymbol{U}}_{j, k}(t):=\frac{1}{\Delta x \Delta y} \iint_{C_{j, k}} \boldsymbol{U}(x, y, t) d x d y
$$

- Solve by the well-balanced scheme

$$
\begin{aligned}
\left\{\overline{\boldsymbol{U}}_{j, k}(t)\right\} & \rightarrow \tilde{\boldsymbol{U}}(\cdot, t) \rightarrow\left\{\mathbf{W}_{j, k}^{\mathrm{E}, \mathrm{~W}, \mathrm{~N}, \mathrm{~S}}(t)\right\} \rightarrow\left\{\boldsymbol{U}_{j, k}^{\mathrm{E}, \mathrm{~W}, \mathrm{~N}, \mathrm{~S}}(t)\right\} \\
& \rightarrow\left\{\mathcal{F}_{j+\frac{1}{2}, k}(t), \boldsymbol{\mathcal { G }}_{j, k+\frac{1}{2}}(t)\right\} \rightarrow\left\{\overline{\boldsymbol{U}}_{j, k}(t+\Delta t)\right\}
\end{aligned}
$$

Example - 2-D Stationary Vortex

[E. Audusse, R. Klein, D. D. Nguyen, and S. Vater, 2011]

$$
h(r, 0)=1+\varepsilon^{2}\left\{\begin{array}{l}
\frac{5}{2}\left(1+5 \varepsilon^{2}\right) r^{2} \\
\frac{1}{10}\left(1+5 \varepsilon^{2}\right)+2 r-\frac{1}{2}-\frac{5}{2} r^{2}+\varepsilon^{2}\left(4 \ln (5 r)+\frac{7}{2}-20 r+\frac{25}{2} r^{2}\right) \\
\frac{1}{5}\left(1-10 \varepsilon+4 \varepsilon^{2} \ln 2\right),
\end{array}\right.
$$

$$
u(x, y, 0)=-\varepsilon y \Upsilon(r), \quad v(x, y, 0)=\varepsilon x \Upsilon(r), \quad \Upsilon(r):=\left\{\begin{array}{lc}
5, & r<\frac{1}{5} \\
\frac{2}{r}-5, & \frac{1}{5} \leq r<\frac{2}{5} \\
0, & r \geq \frac{2}{5},
\end{array}\right.
$$

Domain: $[-1,1] \times[-1,1], \quad r:=\sqrt{x^{2}+y^{2}}$
Boundary conditions: a zero-order extrapolation in both x - and y-directions
Parameters: $B \equiv 0, \quad f=1 / \varepsilon$ and $g=1 / \varepsilon^{2}$ with $\varepsilon=0.05$

LIFE IS LIKE MATH

IF IT GOES TOO EASY SOMETHING IS WRONG

Asymptotic Perserving Methods

Explicit Discretization

Eigenvalues of the flux Jacobian:

$$
\left\{u \pm \frac{1}{\varepsilon} \sqrt{h}, u\right\} \quad \text { and } \quad\left\{v \pm \frac{1}{\varepsilon} \sqrt{h}, v\right\}
$$

This leads to the CFL condition

$$
\Delta t_{\mathrm{expl}} \leq \nu \cdot \min \left(\frac{\Delta x}{\max _{u, h}\left\{|u|+\frac{1}{\varepsilon} \sqrt{h}\right\}}, \frac{\Delta y}{\max _{v, h}\left\{|v|+\frac{1}{\varepsilon} \sqrt{h}\right\}}\right)=\mathcal{O}\left(\varepsilon \Delta_{\min }\right)
$$

where $\Delta_{\text {min }}:=\min (\Delta x, \Delta y)$

- $0<\nu \leq 1$ is the CFL number
- Numerical diffusion: $\mathcal{O}\left(\lambda_{\text {max }} \Delta x\right)=\mathcal{O}\left(\varepsilon^{-1} \Delta x\right)$.
- We must choose $\Delta x \approx \varepsilon$ to control numerical diffusion and the stability condition becomes

$$
\Delta t=\mathcal{O}\left(\varepsilon^{2}\right)
$$

Low Froude Number Flows

Low Froude number regime $(0<\varepsilon \ll 1) \Longrightarrow$ very large propagation speeds

Explicit methods:

- very restrictive time and space dicretization steps, typically proportional to ε due to the CFL condition;
- too computationally expensive and typically impractical.

Implicit schemes:

- uniformly stable for $0<\varepsilon<1$;
- may be inconsistent with the limit problem;
- may provide a wrong solution in the zero Froude number limit.

Goal: to design robust numerical algorithms, whose accuracy and efficiency is independent of ε

Some Refernces

- Harlow, Welch; 1965
- Chorin; 1967
- Harlow, Amsden; 1971
- Klainerman, Majda; 1981
- Turkel; 1987
- Abarbanel, Duth, Gottlieb; 1989
- Gustafsson, Stoor; 1991
- Klein; 1995
- Colella, Pao; 1999
- Guillard, Viozat; 1999
- Guillard, Murrone; 2004
- Kadioglu, Sussman, Osher, Wright, Kang; 2005

Asymptotic-Preserving (AP) Methods

Introduced in [Klar; 1998, Jin; 1999], see also [Jin, Levermore; 1991],
[Golse, Jin, Levermore; 1999].
Idea:

- asymptotic passage from one model to another should be preserved at the discrete level;
- for a fixed mesh size and time step, AP method should automatically transform into a stable discretization of the limitting model as $\varepsilon \rightarrow 0$.

AP Methods - References

[Degond, Jin, Liu; 2007]
[Degond, Hua, Navoret; 2011]
[Degond and M. Tang; 2011]
[Berthon, Turpault; 2011]
[Cordier, Degond, Kumbaro; 2012]
[Haack, Jin, Liu; 2012]
[Arun, Noelle, Lukáčová-Medvid'ová, Munz; 2014]
[Miczek, Roepke, Edelmann; 2015]
[Bispen, Lukáčová-Medvid'ová, Yelash; 2017]
[Feireisl, Klingenberg, Markfelder; preprint 2017]
Though the existing AP schemes work perfectly well for many simpler models, their applicability to more complicated systems is rather limited: They works very well for large $(\varepsilon \sim 1)$ and intermediate $\left(\varepsilon \sim 10^{-1}\right)$ values of ε, but may become inefficient for smaller ε numbers.

Theorem. A new hyperbolic flux splitting method coupled with the described fully discrete scheme, which is asymptotic preserving in the sense that it provides a consistent and stable discretization of the limiting system as the Froude number $\varepsilon \rightarrow 0$.

Joint work with Alexander Kurganov and Xin Liu

Example - 2-D Stationary Vortex

[E. Audusse, R. Klein, D. D. Nguyen, and S. Vater, 2011]

$$
\begin{aligned}
& h(r, 0)=1+\varepsilon^{2}\left\{\begin{array}{l}
\frac{5}{2}\left(1+5 \varepsilon^{2}\right) r^{2} \\
\frac{1}{10}\left(1+5 \varepsilon^{2}\right)+2 r-\frac{1}{2}-\frac{5}{2} r^{2}+\varepsilon^{2}\left(4 \ln (5 r)+\frac{7}{2}-20 r+\frac{25}{2} r^{2}\right) \\
\frac{1}{5}\left(1-10 \varepsilon+4 \varepsilon^{2} \ln 2\right),
\end{array}\right. \\
& u(x, y, 0)=-\varepsilon y \Upsilon(r), \quad v(x, y, 0)=\varepsilon x \Upsilon(r), \quad \Upsilon(r):= \begin{cases}5, & r<\frac{1}{5} \\
\frac{2}{r}-5, & \frac{1}{5} \leq r<\frac{2}{5} \\
0, & r \geq \frac{2}{5},\end{cases}
\end{aligned}
$$

Domain: $[-1,1] \times[-1,1], \quad r:=\sqrt{x^{2}+y^{2}}$
Boundary conditions: a zero-order extrapolation in both x - and y-directions

Comparison of non-AP and AP methods, $\varepsilon=1$

Comparison of non-AP and AP methods, $\varepsilon=0.1$

Comparison of non-AP and AP methods, $\varepsilon=0.01$

Comparison of non-AP and AP methods, CPU times

	$\varepsilon=1$		$\varepsilon=0.1$		$\varepsilon=0.01$	
Grid	AP	Explicit	AP	Explicit	AP	Explicit
40×40	0.18 s	0.16 s	0.06 s	1.25 s	0.03 s	10.53 s
80×80	1.57 s	1.32 s	0.29 s	4.73 s	0.18 s	47.0 s
200×200	24.11 s	21.36 s	5.36 s	163.36 s	3.37 s	804.15 s

Smaller values: $\varepsilon=10^{-3}$ and $\varepsilon=10^{-4}$

Smaller times: 200×200, larger times: 500×500

THANK YOU!

