A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations

Alina Chertock

North Carolina State University chertock@math.ncsu.edu

joint work with Y. Cheng, M. Herty, A. Kurganov, S.N. Özcan and T. Wu

Systems of Balance Laws

$$U_t + f(U)_x + g(U)_y = S(U)$$

Examples:

- Gas dynamics with pipe-wall friction
- Euler equations with gravity/friction
- shallow water equations with Coriolis forces

Applications:

- astrophysical and atmospheric phenomena in many fields including supernova explosions
- (solar) climate modeling and weather forecasting

$$oldsymbol{U}_t + oldsymbol{f}(oldsymbol{U})_x + oldsymbol{g}(oldsymbol{U})_y = rac{1}{arepsilon}oldsymbol{S}(oldsymbol{U})$$

Examples:

- Iow Mach number compressible flows
- low Froude number shallow water flows
- diffusive relaxation in kinetic models

Applications:

- various two-phase flows such as bubbles in water
- unmostly incompressible flows with regions of high compressibility such as underwater explosions
- atmospheric flows

Systems of Balance Laws

$$oldsymbol{U}_t + oldsymbol{f}(oldsymbol{U})_x + oldsymbol{g}(oldsymbol{U})_y = oldsymbol{S}(oldsymbol{U})$$
 or $oldsymbol{U}_t + oldsymbol{f}(oldsymbol{U})_x + oldsymbol{g}(oldsymbol{U})_y = rac{1}{arepsilon}oldsymbol{S}(oldsymbol{U})$

- Challenges: certain structural properties of these hyperbolic problems (conservation or balance law, equilibrium state, positivity, assymptotic regimes, etc.) are essential in many applications;
- Goal: to design numerical methods that are not only consistent with the given PDEs, but
 - preserve the structural properties at the discrete level well-balanced numerical methods
 - remain accurate and robust in certain asymptotic regimes of physical interest – asymptotic preserving numerical methods

[P. LeFloch; 2014]

Well-Balanced (WB) Methods

$\boldsymbol{U}_t + \boldsymbol{f}(\boldsymbol{U})_x + \boldsymbol{g}(\boldsymbol{U})_y = \boldsymbol{S}(\boldsymbol{U})$

- In many physical applications, solutions of the system are small perturbations of the steady states;
- These perturbations may be smaller than the size of the truncation error on a coarse grid;
- To overcome this difficulty, one can use very fine grid, but in many physically relevant situations, this may be unaffordable;

Goal:

- to design a well-balanced numerical method, that is, the method which is capable of exactly preserving some steady state solutions;
- perturbations of these solutions will be resolved on a coarse grid in a non-oscillatory way.

Finite-Volume Methods – 1-D

 $\boldsymbol{U}_t + \boldsymbol{f}(\boldsymbol{U})_x = \boldsymbol{S}$

•
$$\overline{U}_k^n \approx \frac{1}{\Delta y} \int_{C_k} U(y, t^n) \, dy$$
: cell averages over $C_j := (x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}})$

• Semi-discrete FV method:

$$\frac{d}{dt}\overline{U}_{j}(t) = -\frac{\mathcal{F}_{j+\frac{1}{2}}(t) - \mathcal{F}_{j-\frac{1}{2}}(t)}{\Delta x} + \overline{S}_{j}$$

 $\mathcal{F}_{j+\frac{1}{2}}(t)$: numerical fluxes

 \overline{S}_j : quadrature approximating the corresponding source terms

• Central-Upwind (CU) Scheme:

[Kurganov, Lin, Noelle, Petrova, Tadmor, et al.; 2000–2007]

$$\{\overline{\boldsymbol{U}}_{j}(t)\} \to \widetilde{\boldsymbol{U}}(\cdot,t) \to \left\{\boldsymbol{U}_{j}^{\mathrm{E,W}}(t)\right\} \to \left\{\boldsymbol{\mathcal{F}}_{j+\frac{1}{2}}(t)\right\} \to \{\overline{\boldsymbol{U}}_{j}(t+\Delta t)\}$$

(**Discontinuous**) piecewise-linear reconstruction:

$$\widetilde{\boldsymbol{U}}(y,t) := \overline{\boldsymbol{U}}_j(t) + (\boldsymbol{U}_x)_j(x-x_j), \quad x \in C_j$$

It is conservative, second-order accurate, and non-oscillatory provided the slopes, $\{(U_y)_k\}$, are computed by a nonlinear limiter

Example — Generalized Minmod Limiter

$$(U_y)_j = \operatorname{minmod}\left(\theta \frac{\overline{U}_j - \overline{U}_{j-1}}{\Delta x}, \frac{\overline{U}_{j+1} - \overline{U}_{j-1}}{2\Delta x}, \theta \frac{\overline{U}_{j+1} - \overline{U}_j}{\Delta x}\right)$$

where

$$\operatorname{minmod}(z_1, z_2, \ldots) := \begin{cases} \min_j \{z_j\}, & \text{ if } z_j > 0 \quad \forall j, \\ \max_j \{z_j\}, & \text{ if } z_j < 0 \quad \forall j, \\ 0, & \text{ otherwise,} \end{cases}$$

and $\theta \in [1,2]$ is a constant

$$\{\overline{U}_{j}(t)\} \to \widetilde{U}(\cdot, t) \to \left\{ U_{j}^{\mathrm{E,W}}(t) \right\} \to \left\{ \mathcal{F}_{j+\frac{1}{2}}(t) \right\} \to \{\overline{U}_{j}(t+\Delta t)\}$$

 $U_j^{\rm E}$ and $U_j^{\rm W}$ are the point values at $x_{j+\frac{1}{2}}$ and $x_{j-\frac{1}{2}}$:

$$\overline{U}(y,t) = \overline{U}_j + (U_x)_j (x - x_j), \quad x \in C_j$$

$$\boldsymbol{U}_{j}^{\mathrm{E}} := \overline{\boldsymbol{U}}_{j} + \frac{\Delta x}{2} (\boldsymbol{U}_{x})_{j}$$
$$\boldsymbol{U}_{j}^{\mathrm{W}} := \overline{\boldsymbol{U}}_{j} - \frac{\Delta x}{2} (\boldsymbol{U}_{x})_{j}$$

$$\{\overline{\boldsymbol{U}}_{j}(t)\} \to \widetilde{\boldsymbol{U}}(\cdot,t) \to \left\{\boldsymbol{U}_{j}^{\mathrm{E,W}}(t)\right\} \to \left\{\boldsymbol{\mathcal{F}}_{j+\frac{1}{2}}(t)\right\} \to \{\overline{\boldsymbol{U}}_{j}(t+\Delta t)\}$$

$$\frac{d}{dt}\overline{U}_{j} = -\frac{\mathcal{F}_{j+\frac{1}{2}} - \mathcal{J}_{j-\frac{1}{2}}}{\Delta x} + \overline{S}_{j}$$

where

$$\begin{aligned} \mathcal{F}_{j+\frac{1}{2}} &= \frac{a_{j+\frac{1}{2}}^{+} f(\boldsymbol{U}_{j}^{\mathrm{E}}) - a_{j+\frac{1}{2}}^{-} f(\boldsymbol{U}_{j+1}^{\mathrm{W}})}{a_{j+\frac{1}{2}}^{+} - a_{j+\frac{1}{2}}^{-}} + \alpha_{j+\frac{1}{2}} \left(\boldsymbol{U}_{j+1}^{\mathrm{W}} - \boldsymbol{U}_{j}^{\mathrm{W}}\right) \\ \alpha_{j+\frac{1}{2}} &= \frac{a_{j+\frac{1}{2}}^{+} a_{j+\frac{1}{2}}^{-}}{a_{j+\frac{1}{2}}^{+} - a_{j+\frac{1}{2}}^{-}} \\ a_{j+\frac{1}{2}}^{+} &= \max\left\{\lambda(\boldsymbol{U}_{j}^{\mathrm{E}}), \lambda(\boldsymbol{U}_{j+1}^{\mathrm{W}}), 0\right\}, \quad a_{j+\frac{1}{2}}^{-} &= \min\left\{\lambda(\boldsymbol{U}_{j}^{\mathrm{E}}), \lambda(\boldsymbol{U}_{j+1}^{\mathrm{W}}), 0\right\} \end{aligned}$$

2-D extension is dimension-by-dimension

Non Well-Balanced Property – Example

$$\begin{cases} h_t + q_x = 0, \\ q_t + f_2(h, q)_x = -s(h, q) \end{cases}$$

For steady-state solution: q = Const and h = h(x)

Implementing the CU scheme results in

- The steady state would not be preserved at the discrete level;
- This would also true for the first-order version of the scheme;
- For smooth solutions, the balance error is expected to be of order $(\Delta x)^2$, but a coarse grid solution may contain large spurious waves.

Well-Balanced Methods

1-D 2×2 Systems of Balance Laws

$$\begin{cases} h_t + f_1(h, q)_x = 0, \\ q_t + f_2(h, q)_x = -s(h, q), \end{cases}$$

Steady state solution:

$$f_1(h,q)_x \equiv 0, \quad f_2(h,q)_x + s(h,q) \equiv 0$$

or

$$K := f_1(h, q) \equiv \text{Const}, \qquad \forall x, t$$
$$L := f_2(h, q) + \int^x s(h, q) d\xi \equiv \text{Const}$$

Numerical Challenges : to exactly balance the flux and source terms, i.e., to exactly preserve the steady states.

How to design a well-balanced scheme?

Well-Balanced Scheme

$$\begin{cases} h_t + f_1(h, q)_x = 0, \\ q_t + f_2(h, q)_x = -s(h, q) \end{cases}$$

• Incorporate the source term into the flux:

$$\begin{cases} h_t + f_1(h, q)_x = 0, \\ q_t + (f_2(h, q)_x + R)_x = 0, \end{cases} \qquad R := \int^x s(h, q) d\xi$$

• Rewrite

$$\begin{cases} h_t + K_x = 0, \\ q_t + L_x = 0 \end{cases}$$

where

$$K := f_1(h, q), \qquad L := f_2(h, q)_x + R$$

• Define

conservative variables $U = (h, q)^T$ equilibrium variables $\mathbf{W} := (K, L)^T$

Well-Balanced Scheme

 $\boldsymbol{U}_t + \boldsymbol{f}(\boldsymbol{U})_x = \boldsymbol{0}$

$$\boldsymbol{U} = \begin{pmatrix} h \\ q \end{pmatrix}, \quad \boldsymbol{f}(\boldsymbol{U}) = \boldsymbol{W} := \begin{pmatrix} K \\ L \end{pmatrix}$$

Semi-discrete FV method:

$$\frac{d}{dt}\overline{U}_{j}(t) = -\frac{\mathcal{F}_{j+\frac{1}{2}}(t) - \mathcal{F}_{j-\frac{1}{2}}(t)}{\Delta x}$$

Two major modifications:

• Well-balanced reconstruction – performed on the equilibrium rather than conservative variables:

 $\{\overline{\boldsymbol{U}}_{j}(t)\} \to \widetilde{\boldsymbol{U}}(\cdot,t) \to \left\{\boldsymbol{W}_{j}^{\mathrm{E},\mathrm{W}}(t)\right\} \to \left\{\boldsymbol{U}_{j}^{\mathrm{E},\mathrm{W}}(t)\right\} \to \left\{\boldsymbol{\mathcal{F}}_{j+\frac{1}{2}}(t)\right\} \to \{\overline{\boldsymbol{U}}_{j}(t+\Delta t)\}$

• Well-balanced evolution

Well-Balanced Reconstruction

Given: $\overline{U}_j(t) = (\overline{h}_j, \overline{q}_j)^T$ – cell averages **Need**: $\mathbf{W}_j^{\mathrm{E,W}} = (K_j^{\mathrm{E,W}}, L_j^{\mathrm{E,W}})^T$ – point values, where

$$K := f_1(h,q), \quad L := f_2(h,q)_x + R, \quad R := \int^{\infty} s(h,q)d\xi$$

r

• Compute $R_j = \int s(h,q)d\xi$ by the midpoint quadrature rule and using the following recursive relation:

$$\begin{aligned} R_{1/2} &\equiv 0, \quad R_j = \frac{1}{2} (R_{j-\frac{1}{2}} + R_{j+\frac{1}{2}}), \\ R_{j+\frac{1}{2}} &= R(x_{j+\frac{1}{2}}) = R_{j-\frac{1}{2}} + \Delta x \, s(x_j, \bar{h}_j, \bar{q}_j) \end{aligned}$$

• Compute the point values of K and L at x_j from the cell averages, \bar{h}_j and \bar{q}_j :

$$K_j = f_1(\overline{h}_j, \overline{q}_j), \qquad L_j = f_2(\overline{h}_j, \overline{q}_j) + R_j$$

Well-Balanced Reconstruction

• Apply the minmod reconstruction procedure to $\{K_j, L_j\}$ and obtain the point values at the cell interfaces:

$$K_{j}^{\rm E} = K_{j} + \frac{\Delta x}{2} (K_{x})_{j}, \quad L_{j}^{\rm E} = L_{j} + \frac{\Delta x}{2} (L_{x})_{j},$$
$$K_{j}^{\rm W} = K_{j} - \frac{\Delta x}{2} (K_{x})_{j}, \quad L_{j}^{\rm W} = L_{j} - \frac{\Delta x}{2} (L_{x})_{j}$$

• Finally, equipped with the values of $K_j^{E,W}$, $L_j^{E,W}$ and $R_{j\pm\frac{1}{2}}$, solve

$$K_{j}^{\mathrm{E}} = f_{1}(h_{j}^{\mathrm{E}}, q_{j}^{\mathrm{E}}), \qquad L_{j}^{\mathrm{E}} = f_{2}(h_{j}^{\mathrm{E}}, q_{j}^{\mathrm{E}}) + R_{j+\frac{1}{2}},$$
$$K_{j}^{\mathrm{W}} = f_{1}(h_{j}^{\mathrm{W}}, q_{j}^{\mathrm{W}}), \qquad L_{j}^{\mathrm{W}} = f_{2}(h_{j}^{\mathrm{W}}, q_{j}^{\mathrm{W}}) + R_{j-\frac{1}{2}}$$

for $U_j^{\mathrm{E,W}} = (h_j^{\mathrm{E,W}}, q_j^{\mathrm{E,W}})^T$.

Proof of the Well-Balanced Property

Theorem. The central-upwind semi-discrete schemes coupled with the well-balanced reconstruction and evolution is well-balanced in the sense that it preserves the corresponding steady states exactly.

1-D Saint-Venant System of Shallow Water with Friction

$$\begin{cases} h_t + q_x = 0\\ q_t + \left(hu^2 + \frac{g}{2}h^2\right)_x = -ghB_x - g\frac{n^2}{h^{7/3}}|q|q \end{cases}$$

- *h* water depth
- u velocity
- q := hu discharge
- B(x) bottom elevation
- g the constant gravitational acceleration
- *n* Manning friction coefficient.

Shallow Water Equations

$$\begin{cases} h_t + q_x = 0\\ q_t + \left(hu^2 + \frac{g}{2}h^2\right)_x = -ghB_x - g\frac{n^2}{h^{7/3}}|q|q \end{cases}$$

- Well-balanced scheme should exactly balance the flux and source terms so that the steady states are preserved:
 - Moving Steady-state solutions (no friction $n \equiv 0$):

$$q = \text{Const}, \quad \frac{u^2}{2} + g(h+B) = \text{Const}$$

- Stationary steady-state solutions (lake at rest):

$$u = 0, \quad h + B = \text{Const}$$

Well-Balanced Methods – Some References

- Shallow water models (preserving "lake at rest" steady states):
 - LeVeque (1998) incorporating the source term into the Riemann solver
 - Jin (2001) well-balanced source term averaging
 - Perthame, Simeoni (2001) kinetic scheme
 - Kurganov, Levy (2002) central-upwind scheme
 - Gallouët, Hérard, Seguin (2003) Roe-type scheme
 - Audusse, Bouchut, Bristeau, Klein, Perthame (2004) hydrostatic reconstruction
 - Russo (2005) staggered central scheme
 - Xing, Shu (2005, 2006) WENO schemes
 - Noelle, Pankratz, Puppo, Natvig (2006) high-order schemes
 - Lukácová-Medvidová, Noelle, Kraft (2007) FVEG scheme
 - Berthon, Marche (2008) relaxation schemes
 - Fjordholm, Mishra, Tadmor (2008, 2011) energy stable schemes
 - Abgrall, Audusse, Bristeau, Castro, Chertock, Dawson, Donat, Epshteyn, George, Karni, Klingenberg, Mohammadian, Parés, Ricchiuto, ...

Well-Balanced Methods – Some References

- Shallow water models (preserving moving steady states):
 - Noelle, Shu, Xing (2007, 2009, 2011) WENO schemes
 - Russo, Khe (2009, 2010) staggered central schemes
 - Xing (2014) discontinuous Galerkin method
 - Y. Chen, A. Kuragnov (2016) central-upwind scheme
 - Y. Chen, A. Chertock, M. Herty, A. Kurganov (2017; preprint) central-upwind scheme
- Shallow water models (positivity preserving schemes):
 - Perthame, Simeoni (2001) kinetic scheme
 - Audusse, Bouchut, Bristeau, Klein, Perthame (2004) hydrostatic reconstruction
 - Kurgnov, Petrova (2007) central-upwind scheme with continuous piecewise linear bottom reconstruction
 - Berthon, Marche (2008) relaxation schemes
 - Bollermann, Noelle, Lukáčová-Medvid'ová (2011) special timequadrature for the fluxes
 - Bollermann, Chen, Kurganov, Noelle (2013): well-balanced reconstruction of wet/dry fronts

Moving Steady States with Friction

$$\begin{cases} h_{t} + q_{x} = 0 \\ g_{t} + \left(hu^{2} + \frac{g}{2}h^{2}\right)_{x} = -ghB_{x} - g\frac{n^{2}}{h^{7/3}}|q|q \end{cases}$$

We incorporate the source term in the discharge equation into its flux term:

$$\begin{cases} h_t + q_x = 0, \\ q_t + \left(\frac{q^2}{h} + \frac{g}{2}h^2 + R\right)_x = 0 \end{cases}$$

General (moving-water) steady state can be expressed in terms of K and L:

$$q \equiv \text{Const}, \quad K \equiv \text{Const}$$

where

$$K := \frac{q^2}{h} + \frac{g}{2}h^2 + R$$
$$R(x,t) := g \int_{-\infty}^{x} \left[h(\xi,t)B_x(\xi) + \frac{n^2}{h^{7/3}(\xi)}|q(\xi)|q(\xi)\right]d\xi$$

21

Given: $\overline{U}_j(t) = (\overline{h}_j, \overline{q}_j)^T$ – cell averages

• Compute equilibrium variables $(\bar{q}_j, K_j)^T$ at x_j from the above cell averages:

$$\bar{q}_j, \quad K_j = \frac{\bar{q}_j^2}{\bar{h}_j} + \frac{g}{2}\bar{h}_j^2 + \frac{R_{j+\frac{1}{2}} + R_{j-\frac{1}{2}}}{2},$$

where

$$\begin{split} R(x_{j+\frac{1}{2}},t) &\approx R_{j+\frac{1}{2}} := g \sum_{m=j_{\ell}}^{j} \left\{ \bar{h}_{m} (B_{m+\frac{1}{2}} - B_{m-\frac{1}{2}}) + \frac{n^{2}}{\bar{h}_{m}^{7/3}} |\bar{q}_{m}| \bar{q}_{m} \Delta x \right\} \\ &= R_{j-\frac{1}{2}} + \frac{g}{2} \bigg[\bar{h}_{j} (B_{j+\frac{1}{2}} - B_{j-\frac{1}{2}}) + \frac{n^{2}}{\bar{h}_{j}^{7/3}} |\bar{q}_{j}| \bar{q}_{j} \Delta x \bigg] \end{split}$$

• Apply the minmod reconstruction procedure to $\{K_j, L_j\}$ and obtain the point values at the cell interfaces:

$$q_j^{\mathrm{E,W}} = q_j \pm \frac{\Delta x}{2} (q_x)_j, \quad K_j^{\mathrm{E,W}} = K_j \pm \frac{\Delta x}{2} (K_x)_j$$

• Compute point values $h_j^{E,W}$ by solving the nonlinear algebraic equations

$$\varphi(h) := \frac{(q_j^{\mathrm{E,W}})^2}{h} + \frac{g}{2}h^2 + R_{j\pm\frac{1}{2}} - K_j^{\mathrm{E,W}} = 0,$$

which does not have any positive solutions unless

$$(q_j^{\mathrm{E,W}})^4 \le \frac{8(K_j^{\mathrm{E,W}} - R_{j\pm\frac{1}{2}})^3}{27g}$$

Consider $h_j^{\rm E}$

• If the inequality is not satisfied, we reconstruct $w = \overline{h} + B$ and set

$$h_j^{\rm E} = w_j^{\rm E} - B_{j+\frac{1}{2}} \tag{(*)}$$

• If the inequality is satisfied, then

$$- \text{ If } q_j^{\text{E}} = 0, \text{ then } h_j^{\text{E}} = \sqrt{\frac{2\left(K_j^{\text{E}} - R_{j+\frac{1}{2}}\right)}{g}} \\ - \text{ If } q_j^{\text{E}} \neq 0, \text{ then} \\ h_j^{\text{E}} = 2\sqrt{P}\cos\left(\frac{1}{3}\left[\Theta + 2\pi k\right]\right), \quad k = 0, 1, 2,$$

where

$$P := \frac{2\left(K_j^{\rm E} - R_{j+\frac{1}{2}}\right)}{3g} \quad \text{and} \quad \Theta := \arccos\left(-\frac{\left(q_j^{\rm E}\right)^2}{gP^{3/2}}\right)$$

Only two roots are positive (subsonic and supersonic cases). We single out the physically relevant solution by choosing a root that is closer to the corresponding value of $h_i^{\rm E}$ given in (*)

• Update the cell averages in time:

$$\frac{d}{dt}\bar{h}_{j} = \frac{a_{j+\frac{1}{2}}^{+}q_{j}^{\mathrm{E}} - a_{j+\frac{1}{2}}^{-}q_{j+1}^{\mathrm{W}}}{a_{j+\frac{1}{2}}^{+} - a_{j+\frac{1}{2}}^{-}} + \frac{a_{j+\frac{1}{2}}^{+}a_{j+\frac{1}{2}}^{-}}{a_{j+\frac{1}{2}}^{+} - a_{j+\frac{1}{2}}^{-}}(h_{j+1}^{\mathrm{W}} - h_{j}^{\mathrm{E}})
\frac{d}{dt}\bar{q}_{j} = \frac{a_{j+\frac{1}{2}}^{+}K_{j}^{\mathrm{E}} - a_{j+\frac{1}{2}}^{-}K_{j+1}^{\mathrm{W}}}{a_{j+\frac{1}{2}}^{+} - a_{j+\frac{1}{2}}^{-}} + \frac{a_{j+\frac{1}{2}}^{+}a_{j+\frac{1}{2}}^{-}}{a_{j+\frac{1}{2}}^{+} - a_{j+\frac{1}{2}}^{-}}(q_{j+1}^{\mathrm{W}} - q_{j}^{\mathrm{E}})$$

with

$$a_{j+\frac{1}{2}}^{+} = \max\left\{u_{j+1}^{\mathrm{W}} + \sqrt{gh_{j+1}^{\mathrm{W}}}, u_{j}^{\mathrm{E}} + \sqrt{gh_{j}^{\mathrm{E}}}, 0\right\}$$
$$a_{j+\frac{1}{2}}^{-} = \min\left\{u_{j+1}^{\mathrm{W}} + \sqrt{gh_{j+1}^{\mathrm{W}}}, u_{j}^{\mathrm{E}} + \sqrt{gh_{j}^{\mathrm{E}}}, 0\right\}$$

Numerical Tests

Example 1 – Accuracy Test, No Friction

• Initial data and the bottom topography: function are

 $h(x,0) = 5 + e^{\cos(2\pi x)}, \quad q(x,0) = \sin(\cos(2\pi x)), \quad B(x) = \sin^2(\pi x)$

- 1-periodic boundary conditions are imposed on [0,1]
- Reference solution is computed on a very fine mesh with 51200 uniform grid cells, time is t = 0.1.

Number of	h		q		
grid cells	L^1 -error	Rate	L^1 -error	Rate	
50	1.51e-03	_	1.21e-00	_	
100	3.06e-04	2.30	2.26e-01	2.42	
200	6.68e-05	2.20	4.90e-02	2.21	
400	1.54e-05	2.12	1.17e-02	2.06	
800	3.76e-06	2.04	2.95e-03	1.99	
1600	9.29e-07	2.02	7.34e-04	2.01	

Example 2 – Convergence to Steady States, no Friction

- Three sets of initial conditions:
 - Supercritical flow with

$$h(x,0) = 2 - B(x), \quad q(x,0) \equiv 0,$$

 $h(0,t) = 2, \quad q(0,t) = 24;$

- Subcritical flow with

$$h(x,0) = 2 - B(x), \quad q(x,0) \equiv 0,$$

 $q(0,t) = 4.42, \quad h(25,t) = 2;$

- Transcritical flow without a shock with

$$h(x,0) = 0.66 - B(x), \quad q(x,0) \equiv 0,$$

 $q(0,t) = 1.53, \quad h(25,t) = 0.66.$

• **Continuous** bottom topography:

$$B(x) = \begin{cases} 0.2 - 0.05(x - 10)^2, & \text{if } 8 \le x \le 12, \\ 0, & \text{otherwise.} \end{cases}$$

Example 3 – Convergence to Steady States, with Friction (n = 0.5)

- The same three sets of initial conditions as in Example 2:
 - Supercritical flow with

$$h(x,0) = 2 - B(x), \quad q(x,0) \equiv 0,$$

 $h(0,t) = 2, \quad q(0,t) = 24;$

- Subcritical flow with

$$h(x,0) = 2 - B(x), \quad q(x,0) \equiv 0,$$

 $q(0,t) = 4.42, \quad h(25,t) = 2;$

- Transcritical flow without a shock with

$$h(x,0) = 0.66 - B(x), \quad q(x,0) \equiv 0,$$

 $q(0,t) = 1.53, \quad h(25,t) = 0.66.$

• **<u>Continuous</u>** bottom topography:

$$B(x) = \begin{cases} 0.2 - 0.05(x - 10)^2, & \text{if } 8 \le x \le 12, \\ 0, & \text{otherwise.} \end{cases}$$

Example 4 – Convergence to Steady States, with Friction (n = 0.5)

- The same three sets of initial conditions as in Example 2:
 - Supercritical flow with

$$h(x,0) = 2 - B(x), \quad q(x,0) \equiv 0,$$

 $h(0,t) = 2, \quad q(0,t) = 24;$

- Subcritical flow with

$$h(x,0) = 2 - B(x), \quad q(x,0) \equiv 0,$$

 $q(0,t) = 4.42, \quad h(25,t) = 2;$

- Transcritical flow without a shock with

$$h(x,0) = 0.66 - B(x), \quad q(x,0) \equiv 0,$$

 $q(0,t) = 1.53, \quad h(25,t) = 0.66.$

• **Discontinuous** bottom topography:

$$B(x) = \begin{cases} 0.2, & \text{if } 8 \le x \le 12, \\ 0, & \text{otherwise.} \end{cases}$$

Example 5 – Small Perturbations of Moving-Water Equilibria, with Friction (n = 0.5**)**

- Two sets of initial conditions:
 - Supercritical flow with

$$q(x,0) \equiv 24, \quad K(x,0) \equiv 307.624,$$

- Subcritical flow with

$$q(x,0) \equiv 4.42, \quad K(x,0) \equiv 31.7705,$$

• **Discontinuous** bottom topography:

$$B(x) = \begin{cases} 0.2, & \text{if } 8 \le x \le 12, \\ 0, & \text{otherwise.} \end{cases}$$

We add 0.001 for $x \in [4.5, 5.5]$ to the corresponding water depth. We compute the solutions until the final time t = 1 using either 100 or 1000 uniform grid cells.

Shallow Water System with Coriolis Force

$$\begin{cases} h_t + (hu)_x + (hv)_y = 0\\ (hu)_t + \left(hu^2 + \frac{g}{2}h^2\right)_x + (huv)_y = -ghB_x + fhv\\ (hv)_t + (huv)_x + \left(hv^2 + \frac{g}{2}h^2\right)_x = -ghB_y - fhu \end{cases}$$

- *h*: water height
- u, v: fluid velocity
- *B*: bottom topography
- g: gravitational constant
- f: Coriolis parameter; $f \equiv 0 \implies$ Saint Venant system of shallow water.

Steady States

$$\begin{cases} h_t + (hu)_x + (hv)_y = 0\\ (hu)_t + \left(hu^2 + \frac{g}{2}h^2\right)_x + (huv)_y = -ghB_x + fhv\\ (hv)_t + (huv)_x + \left(hv^2 + \frac{g}{2}h^2\right)_y = -ghB_y - fhu \end{cases}$$

- "Lake at rest": $u \equiv 0, v \equiv 0, h + B \equiv \text{Const}$
- Geostrophic equilibria ("jets in the rotational frame") are both stationary and constant along the streamlines:

$$u \equiv 0, v_y \equiv 0, h_y \equiv 0, B_y \equiv 0, K \equiv \text{Const}$$

 $v \equiv 0, u_x \equiv 0, h_x \equiv 0, B_x \equiv 0, L \equiv \text{Const}$

Here,

$$K := g(h + B - V) \quad \text{and} \quad L := g(h + B + U)$$

are the potential energies defined through the primitives of the Coriolis force $(U,V)^T$:

$$V_x:=rac{f}{g}v$$
 and $U_y:=rac{f}{g}v$

2-D Well-Balanced Scheme

• Define

conservative variables: $\boldsymbol{U} := (h, hu, hv)^T$

equilibrium variables: $\boldsymbol{W} := (u, v, K, L)^T$

fluxes in the x- and y-directions: f(U, B) and g(U, B)

• Assume that at time t the cell averages are available

$$\overline{\boldsymbol{U}}_{j,k}(t) := \frac{1}{\Delta x \Delta y} \iint_{C_{j,k}} \boldsymbol{U}(x, y, t) \, dx dy,$$

• Solve by the well-balanced scheme

$$\{\overline{U}_{j,k}(t)\} \to \widetilde{U}(\cdot,t) \to \left\{\mathbf{W}_{j,k}^{\mathrm{E},\mathrm{W},\mathrm{N},\mathrm{S}}(t)\right\} \to \left\{U_{j,k}^{\mathrm{E},\mathrm{W},\mathrm{N},\mathrm{S}}(t)\right\} \\ \to \left\{\mathcal{F}_{j+\frac{1}{2},k}(t), \mathcal{G}_{j,k+\frac{1}{2}}(t)\right\} \to \left\{\overline{U}_{j,k}(t+\Delta t)\right\}$$

j+1/2

k + 1/2

k - 1/2

k

i - 1/2

Example — 2-D Stationary Vortex [E. Audusse, R. Klein, D. D. Nguyen, and S. Vater, 2011]

$$h(r,0) = 1 + \varepsilon^{2} \begin{cases} \frac{5}{2}(1+5\varepsilon^{2})r^{2} \\ \frac{1}{10}(1+5\varepsilon^{2}) + 2r - \frac{1}{2} - \frac{5}{2}r^{2} + \varepsilon^{2}(4\ln(5r) + \frac{7}{2} - 20r + \frac{25}{2}r^{2}) \\ \frac{1}{5}(1-10\varepsilon + 4\varepsilon^{2}\ln 2), \end{cases}$$

$$\int 5, \qquad r < \frac{1}{5}$$

$$u(x,y,0) = -\varepsilon y \Upsilon(r), \quad v(x,y,0) = \varepsilon x \Upsilon(r), \quad \Upsilon(r) := \begin{cases} \frac{2}{r} - 5, & \frac{1}{5} \le r < \frac{2}{5} \\ 0, & r \ge \frac{2}{5}, \end{cases}$$

Domain: $[-1, 1] \times [-1, 1], \quad r := \sqrt{x^2 + y^2}$

Boundary conditions: a zero-order extrapolation in both x- and y-directions Parameters: $B \equiv 0$, $f = 1/\varepsilon$ and $g = 1/\varepsilon^2$ with $\varepsilon = 0.05$

LIFE IS LIKE MATH IF IT GOES TOO EASY SOMETHING IS WRONG

Asymptotic Perserving Methods

Explicit Discretization

Eigenvalues of the flux Jacobian:

$$\left\{ u \pm \frac{1}{\varepsilon}\sqrt{h}, u \right\}$$
 and $\left\{ v \pm \frac{1}{\varepsilon}\sqrt{h}, v \right\}$

This leads to the CFL condition

$$\Delta t_{\exp l} \leq \nu \cdot \min\left(\frac{\Delta x}{\max_{u,h}\left\{|u| + \frac{1}{\varepsilon}\sqrt{h}\right\}}, \frac{\Delta y}{\max_{v,h}\left\{|v| + \frac{1}{\varepsilon}\sqrt{h}\right\}}\right) = \mathcal{O}(\varepsilon\Delta_{\min}).$$

where $\Delta_{\min} := \min(\Delta x, \Delta y)$

- $0 < \nu \leq 1$ is the CFL number
- Numerical diffusion: $\mathcal{O}(\lambda_{max}\Delta x) = \mathcal{O}(\varepsilon^{-1}\Delta x).$
- We must choose $\Delta x \approx \varepsilon$ to control numerical diffusion and the stability condition becomes

$$\Delta t = \mathcal{O}(\varepsilon^2)$$

Low Froude Number Flows

Low Froude number regime ($0 < \varepsilon \ll 1$) \Longrightarrow very large propagation speeds

Explicit methods:

- very restrictive time and space dicretization steps, typically proportional to ε due to the CFL condition;
- too computationally expensive and typically impractical.

Implicit schemes:

- uniformly stable for $0 < \varepsilon < 1$;
- may be inconsistent with the limit problem;
- may provide a wrong solution in the zero Froude number limit.

Goal: to design robust numerical algorithms, whose accuracy and efficiency is independent of ε

Some Refernces

- Harlow, Welch; 1965
- Chorin; 1967
- Harlow, Amsden; 1971
- Klainerman, Majda; 1981
- Turkel; 1987
- Abarbanel, Duth, Gottlieb; 1989
- Gustafsson, Stoor; 1991
- Klein; 1995
- Colella, Pao; 1999
- Guillard, Viozat; 1999
- Guillard, Murrone; 2004
- Kadioglu, Sussman, Osher, Wright, Kang; 2005

Asymptotic-Preserving (AP) Methods

Introduced in [Klar; 1998, Jin; 1999], see also [Jin, Levermore; 1991],

[Golse, Jin, Levermore; 1999].

Idea:

- asymptotic passage from one model to another should be preserved at the discrete level;
- for a fixed mesh size and time step, AP method should automatically transform into a stable discretization of the limitting model as $\varepsilon \to 0$.

AP Methods – References

[Degond, Jin, Liu; 2007]

[Degond, Hua, Navoret; 2011]

[Degond and M. Tang; 2011]

[Berthon, Turpault; 2011]

[Cordier, Degond, Kumbaro; 2012]

[Haack, Jin, Liu; 2012]

[Arun, Noelle, Lukáčová-Medvid'ová, Munz; 2014]

[Miczek, Roepke, Edelmann; 2015]

[Bispen, Lukáčová-Medvid'ová, Yelash; 2017]

[Feireisl, Klingenberg, Markfelder; preprint 2017]

Though the existing AP schemes work perfectly well for many simpler models, their applicability to more complicated systems is rather limited: They works very well for large ($\varepsilon \sim 1$) and intermediate ($\varepsilon \sim 10^{-1}$) values of ε , but may become inefficient for smaller ε numbers.

Theorem. A new hyperbolic flux splitting method coupled with the described fully discrete scheme, which is asymptotic preserving in the sense that it provides a consistent and stable discretization of the limiting system as the Froude number $\varepsilon \to 0$.

Joint work with Alexander Kurganov and Xin Liu

Example — 2-D Stationary Vortex [E. Audusse, R. Klein, D. D. Nguyen, and S. Vater, 2011]

 $u(x, y, 0) = -\varepsilon y \Upsilon(r), \quad v(x, y, 0) = \varepsilon x \Upsilon(r), \quad \Upsilon(r) := \begin{cases} \frac{2}{r} - 5, & \frac{1}{5} \le r < \frac{2}{5} \\ 0, & r \ge \frac{2}{5}, \end{cases}$ Domain: $[-1, 1] \times [-1, 1], \quad r := \sqrt{x^2 + y^2}$

Boundary conditions: a zero-order extrapolation in both x- and y-directions

Comparison of non-AP and AP methods, $\varepsilon=1$

50

Comparison of non-AP and AP methods, $\varepsilon=0.1$

51

Comparison of non-AP and AP methods, $\varepsilon=0.01$

Comparison of non-AP and AP methods, CPU times

	$\varepsilon = 1$		arepsilon=0.1		$\varepsilon = 0.01$	
Grid	AP	Explicit	AP	Explicit	AP	Explicit
40×40	0.18 s	0.16 s	0.06 s	1.25 s	0.03 s	10.53 s
80 imes 80	1.57 s	1.32 s	0.29 s	4.73 s	0.18 s	47.0 s
200×200	24.11 s	21.36 s	5.36 s	163.36 s	3.37 s	804.15 s

Smaller values: $\varepsilon = 10^{-3}$ and $\varepsilon = 10^{-4}$

Smaller times: 200×200 , larger times: 500×500

THANK YOU!