Shallow magma reservoirs as elastic-plated gravity currents

Chloé Michaut ENS Lyon

Balance Laws 2018

1/Laccolith 5/ Sill 4/ Dyke

Magma ascent in the crust depends on:

- magma buoyancy _
- the state of stress
- in the crust.

Laccoliths : shallow intrusions spreading as elastic-plated gravity currents

Flow of water below ice sheet: lake drainage in Greenland

Das et al, science, 2008

Driving Pressure

а

 $P = \rho_m g(h-z) + \rho_r g d + D \nabla_r^4 h$ Driving Pressure = Magma weight + **Elastic bending**

 $D = \frac{Ed^3}{12(1 - v^{*2})}$

 Q_0, w_{inj}

Flexural wavelength

Balance between gravity and bending

$$\Lambda = (Ed^3/12(1-\nu^2)\rho_m g)^{1/4}$$

Timescale

$$\tau = \frac{\pi \Lambda^2 H}{Q_0}$$

Characteristic thickness

$$H = \left(\frac{12\eta_h Q_0}{\pi\rho_m g}\right)^{1/4}$$

Michaut, 2011 Lister et al, 2013 Hewitt et al, 2015

Laminar flow + Lubrication assumptions

$$\frac{\partial h}{\partial t} = \frac{\rho_m g}{12\mu r} \frac{\partial}{\partial r} \left(rh^3 \frac{\partial h}{\partial r} \right) + \frac{D}{12\mu r} \frac{\partial}{\partial r} \left(h^3 r \frac{\partial}{\partial r} (\Delta_r^2 h) \right) + w(r, t)$$
Magma weight
Elastic bending
Michaut, 2011
Lister et al, 2013
Hewitt et al, 2015

Laminar flow + Lubrication assumptions

$$\frac{\partial h}{\partial t} = \frac{\rho_m g}{12\mu r} \frac{\partial}{\partial r} \left(rh^3 \frac{\partial h}{\partial r} \right) + \frac{D}{12\mu r} \frac{\partial}{\partial r} \left(h^3 r \frac{\partial}{\partial r} (\Delta_r^2 h) \right) + w(r, t)$$
Magma weight
Elastic bending
Michaut, 2011
Lister et al, 2013
Hewitt et al, 2015

$$\frac{\partial h'}{\partial t'} = \frac{\partial}{\partial r'} \left(r' h'^3 \frac{\partial h'}{\partial r'} \right) + \frac{\partial}{\partial r'} \left(h'^3 r' \frac{\partial}{\partial r'} (\Delta_r'^2 h') \right) + \frac{32}{\gamma^2} \left(\frac{1}{4} - \frac{r'^2}{\gamma^2} \right)$$

$$\gamma = \frac{a}{\Lambda}$$

Michaut, 2011 Lister et al, 2013 Hewitt et al, 2015

Two asymptotic spreading regimes h(t), R(t).

Michaut, 2011 Michaut et al, 2013 Lister et al, 2013 Thorey and Michaut, 2014

Two asymptotic spreading regimes h(t), R(t).

Two asymptotic spreading regimes h(t), R(t).

Two asymptotic spreading regimes

Laccoliths at Elba Island

9 laccoliths between 1.9 and 3.7 km depth

Cooling coupled to the flow

Cooling in the bending regime

Cooling in the bending regime

Cooling in the bending regime

Thorey & Michaut, JFM 2016

Lunar floor-fractured craters (FFCs)

Regular impact craters

Floor-fractured craters ~10 to 100 km radius Number : ~200

Flow below a crater

Crater-centered intrusion – floor-fractured craters

LROC WAC - Oblique Komarov FFC ~80 km in diameter

LROC NAC - Oblique Karpinskiy FFC ~90 km in diameter

NASA/GSFC/Arizona State University

Two types of floor appearance at lunar floor-fractured craters

Uplifted convex floor FFC Briggs, 37 km in diameter

Uplifted flat floor with a circular moat

FFC Warner, 35 km in diameter

Thorey & Michaut, 2014

 Q_0, w_{inj}

$$\begin{split} \frac{\partial h}{\partial t} &= \frac{\rho_m g}{12\mu} \frac{1}{r} \frac{\partial}{\partial r} \left(rh^3 \frac{\partial h}{\partial r} \right) + \frac{\rho_c g}{12\mu} \frac{1}{r} \frac{\partial}{\partial r} \left(rh^3 \frac{\partial d(r)}{\partial r} \right) \\ &+ \frac{E}{144\mu (1-\nu^2)} \frac{1}{r} \frac{\partial}{\partial r} \left(rh^3 \frac{\partial}{\partial r} \nabla_r^2 d(r)^3 \nabla_r^2 h(r) \right) + w(r,t) \end{split}$$

Intrusion shape and floor appearance depends on

Thorey & Michaut, JGR 2014

Shallow magmatic intrusions are present below floor-fractured craters

Thorey & Michaut, JGR 2014

0.5

0.5

0.5

Data: Wöhler et al (2009)

Data: Rocchi et al (2002), Wöhler et al (2009)

A lot of evidence of shallow solidified magma reservoirs at the surface of the Moon, mostly below craters and surrounding mare basalt area.

Conclusions

- Laccoliths spreading is controlled by the elastic deformation of the overlying plate.
- Laccoliths' shapes provide information on their depth.
- Cooling significantly slows down their spreading by rapidly increasing the viscosity of the tip.
- Topography also influences the spreading of shallow intrusions.
- Shallow intrusions are numerous in the lunar crust.

Cooling

$$\eta(T) = \frac{\eta_h \eta_c (T_i - T_0)}{\eta_h (T_i - T_0) + (\eta_c - \eta_h) (T - T_0)}$$

Potential gravitational signature of FFCs

 $h_0 = 2 \text{ km}$ $\Delta \rho = 500 \text{ kg m}^{-3}$

Thorey, Michaut and Wieczorek, EPSL 2015

Gravitational signature of FFCs: GRAIL's data

Thorey, Michaut and Wieczorek, EPSL 2015

Gravitational signature of FFCs: GRAIL's data

GRAIL's data confirm the presence of intrusions below floor-fractured craters

Thorey, Michaut and Wieczorek, EPSL 2015