Well-balanced schemes for gas-flow in pipeline networks

Yogiraj Mantri, Michael Herty, Sebastian Noelle

RWTH Aachen University Research Training Group "Energy, Entropy and Dissipative Dynamics"

Orleans, 19. November 2018

Solutions to the classical balance law

Classical solutions: $U \in C^1(\mathbb{R} \times [0, T))$ solves $U_t + F(U)_x = S(U, x)$ in $\mathbb{R} \times (0, T)$, (1) $U(x, 0) = U_0(x)$ in \mathbb{R} .

Weak solutions: $U \in BV(\mathbb{R} \times (0, T))$ solves

$$\int_{0}^{T} \int_{\mathbb{R}} \left(-U\varphi_t - F(U)\varphi_x + S(U)\varphi \right) dx dt = \int_{\mathbb{R}} U_0\varphi_0 dx \qquad (2)$$

for any smooth, compactly supported test function $\varphi.$

Semidiscrete finite volume schemes:

$$\frac{d}{dt}U_{K}(t) + \frac{\mathcal{F}_{R} - \mathcal{F}_{R}}{\Delta x} = S_{K}.$$
(3)

Equilibrium variables

Chertock, Herty, Özcan 2017: equilibrium variables

$$V := F + R := F - \int^{x} S$$
(4)

Classical solutions:

$$U_t + V_x = 0. (5)$$

Finite volume scheme:

$$\frac{d}{dt}U_{K}(t) + \frac{\mathcal{V}_{R} - \mathcal{V}_{R}}{\Delta x} = 0.$$
 (6)

Advantage: reconstruction in V gives automatic well-balancing.

Outline

Advanced application: pipeline networks

- Introduction
- Coupling Conditions
- Well-balanced Scheme
- Numerical examples

Basic structure: conservation laws versus balance laws

- Localized weak solutions
- Semi-discrete limit
- Equilibrium variables and one-sided fluxes

Pipeline networks

1D model for network of pipes

U within the pipes given by Isothermal Euler equations

$$(\rho_i)_t + (q_i)_x = 0$$

$$(q_i)_t + \left(\frac{q_i^2}{\rho_i} + p(\rho_i)\right)_x = -\frac{f_{g,i}}{2D_i}\frac{q_i|q_i|}{\rho_i}$$
(7)

Isothermal pressure $p(\rho) = a^2 \rho$ Coupling conditions at node $\phi(U_1^*, U_2^*, ..., U_M^*) = 0$

Energy, Entropy, and Dissipative Dynamics

- Schemes which preserve a steady state exactly are called well-balanced schemes
- Why do we need well-balanced schemes?
 - Nonlinear coupling conditions at the junction
 - Imbalance of flux and source terms

$$\mathcal{U}_t^{\bullet} + F(U)_x = S(U)$$

Leads to spurious oscillations for near equilibrium flows

- We extend the approach of Chertock, Herty, Özcan[2017] to model flow at the junctions
- Assumptions
 - Subsonic flow
 - Flow is unidirectional

Isothermal Euler equations

Eigenvalues,

$$\begin{split} \lambda_1 &= \frac{q}{\rho} - \sqrt{p'(\rho)} < 0 \\ \lambda_2 &= \frac{q}{\rho} + \sqrt{p'(\rho)} > 0 \end{split}$$

 Both characteristic fields are genuinely nonlinear

$$abla \lambda_i(U).r_i(U) = \pm \frac{a}{\rho} \neq 0$$

Figure: Phase plot for incoming pipe

Figure: Conservative variables at the junction

Figure: Phase plot for outgoing pipe

$$U_i^* = \bar{U}_i(\sigma_i; U_i^o)$$

Coupling Conditions

- Coupling conditions at junction given by Banda, Herty, Klar[2006];Herty, Seaid[2007]; etc
 - Mass balance at the junction

$$\sum_{i\in I^-} A_i q_i^* = \sum_{j\in I^+} A_j q_j^*$$

Constant pressure at the junction

$$p(\rho_k^*) = p^* \quad \forall k \in I^- \cup I^+$$
 (9)

 Existence and Uniqueness of solution for these coupling conditions given by Colombo, Garavello[2006]
 For compressor

$$q_1^* = q_2^*$$

 $p(\rho_2^*) = CRp(\rho_1^*)$ (10)

Well-balanced Scheme

Equilibrium variables, V remain constant at steady state

$$U_t + V_x = 0,$$
 (11)
 $V(U) = F(U) - \int^x S$ (12)

For isothermal Euler equations

$$(\rho_i)_t + (K_i)_x = 0$$

 $(q_i)_t + (L_i)_x = 0$ (13)

$$K_{i} = q_{i}, \quad L_{i} = \frac{q_{i}^{2}}{\rho_{i}} + p(\rho_{i}) + R_{i}(x),$$

$$R_{i}(x) = \int_{x_{0}}^{x} \frac{f_{g,i}}{2D_{i}} \frac{q_{i}|q_{i}|}{\rho_{i}} dx \qquad (14)$$

RWITH

Coupling conditions in terms of equilibrium variables

$$P(K, L, R) = \frac{L - R + \sqrt{(L - R)^2 - 4a^2K^2}}{2}$$
(15)

Mass balance

$$\sum_{i \in I^{-}} A_i K_i^* = \sum_{j \in I^+} A_j K_j^*$$
(16)

• Constant pressure, p^* at junction

$$P(K_i^*, L_i^*, R_i^*) = p^*$$
(17)

• R_i at junction is constant, $R_i^* = R_i^o$ Similarly coupling conditions for compressor,

$$K_1^* = K_2^*$$

$$P(K_2^*, L_2^*, R_2^*) = CR \ P(K_1^*, L_1^*, R_1^*)$$
(18)

Wave curves in terms of equilibrium variables

The 1-wave curve for incoming pipe and 2-wave curve for outgoing pipe are monotonic in the subsonic region

$$V_i^* = \bar{V}_i(\sigma; V_i^o)$$

Figure: K-L plot for Lax curves of incoming pipe

Figure: K-L plot for Lax curves of outgoing pipe

The solution to the coupling conditions gives flux entering the pipes from the junction

Lemma

Consider a nodal point with $|I^-| \ge 1$ incoming and $|I^+| \ge 1$ outgoing adjacent pipes. $\widehat{V}_i = (\widehat{K_i}, \widehat{L_i}), i \in I^{\pm}$ be the corresponding equilibrium variables, with integrated source terms \widehat{R}_i .

Then there exists an open neighborhood $\mathcal{V} \subset \mathbb{R}^{2M \times M}$ of $(\widehat{V}, \widehat{R}) := (\widehat{V}_i, \widehat{R}_i)_{i \in I^{\pm}}$ such that for any $(V^o, R^o) \in \mathcal{V}$ there exists a unique V^* such that $(V^*, R^o) \in \mathcal{V}$ fulfill the coupling conditions (16) and (17).

Figure: Equilibrium variables at the junction

Proof:

- We check the well-posedness of the coupling conditions in terms of equilibrium variables using approach of Colombo, Garavello[2006]
- Coupling Conditions

$$\Psi(V) = \begin{bmatrix} \sum_{i \in I^{-}} A_i K_i - \sum_{j \in I^{+}} A_j K_j \\ p(V_1) - p(V_2) \\ \vdots \\ p(V_{M-1}) - p(V_M) \end{bmatrix}$$

$$\Psi(\widehat{V}) = 0$$

$$D_{\sigma}\Psi = \begin{bmatrix} A_{1}\frac{dK_{1}}{d\sigma_{1}} & \dots & |I^{-}| terms & -A_{j}\frac{dK_{j}}{d\sigma_{j}} & \dots & |I^{+}| terms \\ \frac{dp_{1}}{d\sigma_{1}} & -\frac{dp_{2}}{d\sigma_{2}} & 0 & \dots & 0 \\ 0 & \frac{dp_{2}}{d\sigma_{2}} & -\frac{dp_{3}}{d\sigma_{3}} & 0 & \dots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{dp_{M-1}}{d\sigma_{M-1}} & -\frac{dp_{M}}{d\sigma_{M}} \end{bmatrix}$$

RWTH

Entropy, and

$$det(D_{\sigma}\Psi) = (-1)^{M-1} \sum_{i \in I^{-}} \left(A_{i} \frac{dK_{i}}{d\sigma_{i}} \prod_{k \in I^{\pm}, k \neq i} \frac{dp_{k}}{d\sigma_{k}} \right) \\ + (-1)^{M} \sum_{j \in I^{+}} \left(A_{j} \frac{dK_{j}}{d\sigma_{j}} \prod_{k \in I^{\pm}, k \neq j} \frac{dp_{k}}{d\sigma_{k}} \right)$$

$$\frac{dK_i}{d\sigma_i}(\sigma_i=0) = \begin{cases} < 0 & \forall i \in I^- \\ > 0 & \forall i \in I^+ \end{cases}, \quad \frac{dp_i}{d\sigma_i}(\sigma_i=0) > 0$$

$det(D_{\sigma}\Psi) \neq 0$

Thus by IFT there exists neighborhood \mathcal{V} for the point $(\widehat{V}_i, \widehat{R}_i)$, such that for all initial data (V^o, R^o) , the solution to the coupling condition exists and and converges to the steady state $(\widehat{V}_i, \widehat{R}_i)$.

Well-balanced scheme

Central Upwind Scheme

$$\frac{dU_i^j}{dt} = -\frac{\mathcal{V}_i^{j+1/2} - \mathcal{V}_i^{j-1/2}}{\Delta x}$$
(19)

At the junction

$$\mathcal{V}_{i}^{N+1/2} = V_{i}^{*}, \ i \in I^{-}$$

 $\mathcal{V}_{i}^{1/2} = V_{i}^{*}, \ i \in I^{+}$ (20)

with $V_i^o = V_i^{N,E}$, $i \in I^-$ and $V_i^o = V_i^{1,W}$, $i \in I^+$ $V_i^{j,E/W}$ are piecewise linear reconstruction for V_i^j

$$V_{i}^{j,E} = V_{i}^{j} + \frac{\Delta x}{2} (V_{x})_{i}^{j}, \ V_{i}^{j,W} = V_{i}^{j} - \frac{\Delta x}{2} (V_{x})_{i}^{j}$$
(21)

$$(V_x)_i^j = \mathsf{minmod}\Big(\theta \frac{V_i^{j+1} - V_i^j}{\Delta x}, \frac{V_i^{j+1} - V_i^{j-1}}{2\Delta x}, \theta \frac{V_i^j - V_i^{j-1}}{\Delta x}\Big), \quad \theta \in [1, 2]$$

Minmod function is defined as,

$$\min(v_1, v_2, \dots, v_n) = \begin{cases} \min(v_1, v_2, \dots, v_n) & \text{if } v_i > 0 \forall i \\ \max(v_1, v_2, \dots, v_n) & \text{if } v_i < 0 \forall i \\ 0 & \text{otherwise} \end{cases}$$
(23)

Well-balanced scheme

The integral of source term is calculated using second-order quadrature with $R_i^{1/2} = R_k^{N+1/2} = 0 \quad \forall i \in I^+, k \in I^-$

$$R_{i}^{j+1/2} = R_{i}^{j-1/2} + \Delta x \frac{f_{g,i}}{2D_{i}} \frac{q_{i}^{j}|q_{i}^{j}|}{\rho_{i}^{j}}, \ R_{k}^{j-1/2} = R_{k}^{j+1/2} + \Delta x \frac{f_{g,k}}{2D_{k}} \frac{q_{k}^{j}|q_{k}^{j}|}{\rho_{k}^{j}}.$$
 (24)

 Flux for interior cell boundaries of each pipe is same as that used by Chertock, Herty, Özcan[2017]

$$\mathcal{V}_{i}^{j+1/2} = \frac{a_{i,+}^{j+1/2} V_{i}^{j,E} - a_{i,-}^{j+1/2} V_{i}^{j+1,W}}{a_{i,+}^{j+1/2} - a_{i,-}^{j+1/2}} + \alpha_{i}^{j+1/2} (U_{i}^{j+1,W} - U_{i}^{j,E}) \mathcal{H}\Big(\frac{|V_{i}^{j+1} - V_{i}^{j}|}{\Delta x} \frac{|\Omega|}{\max_{i} \{V_{i}^{j}\}}\Big)$$
(25)

$$\mathcal{H}(\phi) = rac{(C\phi)^m}{1+(C\phi)^m}, \quad C, m > 0$$

• $a_{i,+}^{j+1/2}, a_{i,-}^{j+1/2}$ are maximum and minimum eigenvalues respectively and $\alpha_i^{j+1/2} = \frac{a_{i,+}^{i+1/2} a_{i,-}^{j+1/2}}{a_{i,+}^{j+1/2} - a_{i,-}^{j+1/2}}$

Energy, Entropy, and Dissipative Dynamics

Lemma

The numerical scheme given by (19) and flux defined by (25) preserves the steady state across a node of M adjacent pipes and coupling conditions given by (16) and (17).

Proof:

- Steady state defined by constant flux within each pipe and satisfying coupling condition at junction
- The definition of the numerical fluxes in (25) ensure equilibrium variables are constant in each pipe
- From previous lemma, coupling conditions have unique solution

Steady state at junction of pipes

Initial conditions

- 1 incoming, 1 outgoing pipe $K_1 = K_2 = 0.15$ and $L_1 = L_2 = 0.4$
- 1 incoming, 2 outgoing pipe $K_1 = 0.15, K_2 = K_3 = 0.075$ and $p^* = 0.332$ or $L_1 = 0.4, L_2 = L_3 = 0.3492$
- 2 incoming, 1 outgoing pipe $K_3 = 0.15$, $K_1 = K_2 = 0.075$ and $p^* = 0.332$ or $L_3 = 0.4$, $L_1 = L_2 = 0.3492$

Table: Comparison of L-1 errors between well-balanced(WB) and non well-balanced(NWB) scheme at steady state for a junction at time T=1

		1 Incoming, 1 Outgoing		1 Incoming, 2 Outgoing		2 Incoming, 1 Outgoing	
No. of cells in each pipe	L1-error for variable	WB	NWB	WB	NWB	WB	NWB
100	K	8.74×10^{-17}	1.56×10 ⁻⁷	1.30×10^{-16}	9.63x10 ⁻⁸	1.14×10^{-16}	8.67×10 ⁻⁸
	L	1.27×10^{-16}	2.43×10^{-7}	7.74×10^{-17}	8.94×10^{-8}	8.30×10^{-17}	1.87×10^{-7}

Steady state for compressor

Initial condition $K_1 = K_2 = 0.15$ and $p_1^* = 0.332, p_2^* = CRp_1^*$

Table: Comparison of L-1 errors between well-balanced(WB) and non well-balanced(NWB) scheme at steady state with a compressor at different compression ratios at time T=1

	CR=1.5		CR=2.0		CR=2.5	
L1-error or variable	WB	NWB	WB	NWB	WB	NWB
K	3.91×10^{-17} 5.59×10 ⁻¹⁶	1.05×10^{-7} 1.01×10^{-7}	1.30×10^{-16} 7.74×10 ⁻¹⁷	9.63×10^{-8} 8.94×10 ⁻⁸	4.72×10^{-16} 3.61 \times 10^{-17}	9.68×10^{-8} 8.89 \times 10^{-7}
	L1-error or variable K L	L1-error or variable WB K 3.91×10 ⁻¹⁷ L 5.59×10 ⁻¹⁶	$\begin{array}{c} & \\ L1\text{-error} \\ \text{vr variable} \end{array} \begin{array}{c} & \\ \hline WB & NWB \\ \hline \\ K & 3.91 \times 10^{-17} & 1.05 \times 10^{-7} \\ L & 5.59 \times 10^{-16} & 1.01 \times 10^{-7} \end{array}$	$\begin{array}{c c} & CR=1.5 & CR=\\ \hline \\ L1-error \\ rvariable & WB & NWB & WB \\ \hline \\ K & 3.91 \times 10^{-17} & 1.05 \times 10^{-7} & 1.30 \times 10^{-16} \\ L & 5.59 \times 10^{-16} & 1.01 \times 10^{-7} & 7.74 \times 10^{-17} \end{array}$	$\begin{array}{c c} & CR{=}1.5 & CR{=}2.0 \\ \hline \\ & V \\$	$\begin{array}{c c} CR=1.5 & CR=2.0 & CR=0 \\ \hline U1-error \\ vr variable & WB & NWB & WB & NWB & WB \\ \hline K & 3.91 \times 10^{-17} & 1.05 \times 10^{-7} & 1.30 \times 10^{-16} & 9.63 \times 10^{-8} & 4.72 \times 10^{-16} \\ L & 5.59 \times 10^{-16} & 1.01 \times 10^{-7} & 7.74 \times 10^{-17} & 8.94 \times 10^{-8} & 3.61 \times 10^{-17} \end{array}$

Entropy, and circother Demonster

1 incoming, 1 outgoing pipes

Initial condition $K_i = K_i^* + \eta_i e^{-100(x-0.5)^2}$, $L_i = L_i^*$ $K_i^* = 0.15$, $L_i^* = 0.4$, $\eta = 10^{-3}$

1 incoming, 2 outgoing pipes

Initial condition $K_i = K_i^* + \eta_i e^{-100(x-0.5)^2}$, $L_i = L_i^*$ $K_1^* = 0.15, K_2^* = K_3^* = 0.075, \eta_1^* = 10^{-6}, \eta_2^* = \eta_3^* = 0.5 \times 10^{-6}$

Summary:

• Equilibrium and near equilibrium flows are resolved accurately for a junction of gas pipelines.

Work in progress:

- more complex networks
- higher order DG
- study of energy dissipation and entropy production

References

- M.Banda, M. Herty, and A. Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. *Netw. Heterog. Media*, 2006.
- R.Colombo, and M. Garavello. A well posed Riemann problem for the p-system at a junction. *Netw. Heterog. Media*, 2006.
- A. Chertock, M. Herty, and S. Özcan. Well-balanced central-upwind schemes for 2×2 systems of balance laws. Proceedings of the XVI International Conference on Hyperbolic Problems, Springer(accepted), 2017.
- Y. Mantri, M. Herty, and S. Noelle. Well-balanced scheme for gas-flow in pipeline networks. *IGPM report 480*, RWTH Aachen University, 2018.

Outline

Advanced application: pipeline networks

- Introduction
- Coupling Conditions
- Well-balanced Scheme
- Numerical examples

Basic structure: conservation laws versus balance laws

- Localized weak solutions
- Semi-discrete limit
- Equilibrium variables and one-sided fluxes

Solutions to the classical balance law

Classical solutions:

$$U_t + F_x = S \tag{26}$$

Weak solutions:

Energy, Entropy, and Dissipative Dynamics

$$\int_{0}^{T} \int_{\mathbb{R}} \left(-U\varphi_{t} - F\varphi_{x} + S\varphi \right) dx dt = \int_{\mathbb{R}} U_{0}\varphi_{0} dx \qquad (27)$$

Localization

Space-time cell

$$K:=(a,b)\times (0,\Delta t).$$

Interior cell: $\varepsilon \ll \Delta t$

$$\mathcal{K}_{arepsilon} := \{ (x,t) \in \mathcal{K} | \ \mathsf{dist} ((x,t), \partial \mathcal{K}) > arepsilon \}$$

Cut-off test function: $\varphi_{\varepsilon} \in C_0^1(\bar{K})$ such that

For a piecewise smooth weak solution,

$$0 = \iint_{K_{\varepsilon}} \left(-U\varphi_{t} - F\varphi_{x} + S\varphi \right) dx dt + \iint_{K \setminus K_{\varepsilon}} \left(-U\varphi_{\varepsilon,t} - F\varphi_{\varepsilon,x} + S\varphi \right) dx dt$$
(28)

As $\varepsilon \to 0$, the integral over the boundary strip,

$$-\iint_{\mathcal{K}\setminus\mathcal{K}_{\varepsilon}}\Big(\varphi_{\varepsilon,t},\varphi_{\varepsilon,x}\Big)(\cdot,\cdot)d\mathsf{x}dt$$

becomes a Dirac measure and we obtain

Theorem (localized weak solution) Let U be a p.w. smooth weak solution and φ a (globally defined) test function. Then, for any subcell,

$$0 = \int_{0}^{\Delta t} \int_{a}^{b} \left(-U\varphi_{t} - F\varphi_{x} + S\varphi \right) dx dt + \int_{a}^{b} \hat{U}_{K} \varphi|_{t=0}^{\Delta t} dx + \int_{0}^{\Delta t} \hat{F}_{K} \varphi|_{x=a}^{b} dt.$$
(29)

where \hat{U}_{K} and \hat{F}_{K} are interior traces w/r cell K.

Entropy, and

Semi-discrete limit

$$\begin{aligned} & [x_L, x_R] \times [0, \Delta t] & \text{grid cell} \\ & s := \max_K \rho(F'(u)) & \text{maximal wave speed} \\ & y_L := x_L + s\Delta t & y_R := x_R - s\Delta t \end{aligned}$$

Consider the domain $K = K_L \cup K_C \cup K_R$

Entropy, and Dissipative Dynamics Consider K_C . Divide (29) by Δt :

$$0 = \frac{1}{\Delta t} \int_{0}^{\Delta t} \int_{y_{L}}^{y_{R}} \left(-U\varphi_{t} - F\varphi_{x} + S\varphi \right) dx dt$$

+
$$\int_{y_{L}}^{y_{R}} \frac{\hat{U}(\Delta t) - \hat{U}(0)}{\Delta t} \varphi dx$$

+
$$\frac{\varphi(x_{R}, 0)}{\Delta t} \int_{0}^{\Delta t} F(U(y_{R})) dt - \frac{\varphi(x_{L}, 0)}{\Delta t} \int_{0}^{\Delta t} F(U(y_{L})) dt$$

+
$$\mathcal{O}(\Delta t).$$
(30)

Energy, Entropy, and Dissipative Dynamics For K_L ,

$$0 = \int_{x_L}^{y_L} \frac{\hat{U}(\Delta t) - \hat{U}(0)}{\Delta t} dx$$

+ $\frac{1}{\Delta t} \int_{0}^{\Delta t} F(U(y_L)) dt - \frac{1}{\Delta t} \int_{0}^{\Delta t} \hat{F}(U(x_L)) dt$
+ $\mathcal{O}(\Delta t).$ (31)

Similarly for K_R .

Classical finite volume scheme

Add the weak formulations over K_L , K_C , K_R , let $\varphi = \varphi(x)$ and pass to the limit:

$$0 = \lim_{\Delta t \to 0} \int_{x_L}^{x_R} \frac{\hat{U}(\Delta t) - \hat{U}(0)}{\Delta t} \varphi \, dx + \left(\varphi(x) \,\widehat{F}(U(x,t))\right)|_{x=x_L}^{x_R} + \int_{x_L}^{x_R} \left(-F\varphi_x + S\varphi\right) dx \qquad (32)$$

Due to the Rankine-Hugoniot condition, the flux is the solution of the Riemann problem at the interface.,

$$\widehat{\mathcal{F}}(U(x_L, t)) = \mathcal{F}_L = \mathcal{F}_{\text{Riem}}(U(x_L-), U(x_L+)).$$
(33)

One-sided equilibrium fluxes

Similarly, in (U, V) variables,

$$0 = \lim_{\Delta t \to 0} \int_{x_L}^{x_R} \frac{\hat{U}(\Delta t) - \hat{U}(0)}{\Delta t} \varphi \, dx$$
$$+ \left(\varphi(x) \, \hat{V}(U, x)\right)|_{x=x_L}^{x_R} + \int_{x_L}^{x_R} \left(-V\varphi_x\right) dx \qquad (34)$$

However,

Entropy, and Dissipative Dynamics

$$\widehat{V}(U, x_L) = \mathcal{F}_L + \widehat{R}_L^+ =: \widehat{V}_L^+$$
(35)
$$\widehat{V}(U, x_R) = \mathcal{F}_L + \widehat{R}_R^- =: \widehat{V}_R^-$$
(36)

Finite volume updates

Traditional update:

$$\frac{d}{dt}U_{K}(t) = -\frac{\mathcal{F}_{R} - \mathcal{F}_{L}}{\Delta x} + S_{K}$$
(37)

Chertock et al. update:

$$\frac{d}{dt}U_{\mathcal{K}}(t) = -\frac{\widehat{V}_{R}^{-} - \widehat{V}_{L}^{+}}{\Delta x}$$
(38)

Energy, Entropy, and Dissipative Dynamics Possible advantages of one-sided equilibrium fluxes

- simplify numerical flux (see pp. 17 18)
- a new look on reconstructions
- pipeline networks
- multi-D

$$\operatorname{div} R = S.$$

