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The model
Tight-binding Hamiltonian:

- creation operator for electrons with spin s

Interaction:

Only V00 and V01 are taken into account

V00
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Motivation (1)

Ulybyshev et al, Phys. Rev. Lett. 111, 056801 (2013)
D. Smith and L. von Smekal, PRB 89, 195429 (2014)

Check the role of Coulomb interaction at various distances



Motivation (2)

1) Minimally extended Hubbard model which still host AFM, 
SM and CDW phases.  

2) Mapping of full long-range interaction into V00 potential: M. 
Schuler et. al., arXiv 1302.1437: effective on-site 
interaction = V00  - V01



Previous calculations
I. Herbut, arXiv: cond-mat/0606195: 
renormalization group study

Raghu et al, arXiv:0710.0030,  
appearance of topological phase

Нарушение киральной симметрии в 
графене

Исходная симметрия эффективно-полевой теории — U(4). Она 
может быть нарушена по нескольким каналам, с появлением 
разных фермионных конденсатов. Сейчас исследованы два 
канала, соответствующие фермионным конденсатам:

                    -  антиферромагнитное состояние 
                    
                    -  состояние с ненулевым экситонным конденсатом

С точки зрения микроскопической теории эти два состояния 
состояния соответствуют разным нарушениям подрешеточной 
симметрии.

Антиферромагнетик — 
разделение спина электрона по 
подрешеткам.
Экситонная фаза — разделение 
заряда по подрешеткам
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In low energy effective field theory:

- antiferromagnetic condensate

- charge density wave



Quantum Monte Carlo basics
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Discrete Euclidean time:

Hubbard-Stratonovich transformation:

Final expression for Euclidean propagator:



Mass term and susceptibility (1)
Standard in Lattice QCD: introduction of small mass term and 
zero mass extrapolation

For antiferromagnetic phase transition mass term is equal for 
fermions and holes, thus Mel. = M*h.



Mass term and susceptibility (2) 
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x,"âx," � â†
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x,"âx," + â†
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Zero mass runs

”Geometrical mass” means that the Dirac point doesn’t coincide with any lattice momentum. In this case the free
Hamiltonian already has a gap and we do not need any explicit mass term. The following lattice sizes were used to
introduce ”geometrical mass”: Lx = Ly = 8; Lx = Ly = 14; Lx = Ly = 20; Lx = Ly = 26.

Identification of the phase transition using configurations generated with geometrical mass.
Since we didn’t introduce any seed for phase transition the value of any condensate is always zero. Calculation of

susceptibilities is also senseless in this case: they will not show any peak at the point of the phase transition. The
reason for this fact is a bit more non-trivial.
Susceptibility can be defined as

χ ∼ ⟨∆2⟩ − ⟨∆⟩2,

where ∆ is the corresponding order parameter. Once we passed the phase transition the double well potential for the
order parameter becomes more and more deep, thus the distribution of ∆ around its peaks becomes more and more
narrow and ⟨∆2⟩ → ⟨∆⟩2. It means that χ → 0 and we observe the decay of susceptibility after the phase transition.
Thus the non-zero value of the condensate is necessary condition for observation the peak in susceptibility. But in the
absence of the seed for spontaneous symmetry breaking ⟨∆⟩ = 0 even after the phase transition. So, the formation of
peak in χ is impossible in this case. In other words, calculation of susceptibility is senseless without introduction of
mass term which explicitly breaks the symmetry.
A bit different observable was used to identify the spontaneous symmetry breaking in ”geometrical mass” runs. We

define average spin per sublattice in the following way:
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is the spin operator for the lattice site x = (α, ξ) (α = 0, 1 is sublattice

index and ξ is elementary cell coordinates). σi, i = 1, 2, 3 is the Pauli matrix. The sum over both sublattices is used
to reduce statistical errors.
Obviously this observable can be expressed in terms of two-point fermionic green functions g(x, y) = ⟨âx,↑â†y,↑⟩ =
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x,t,y,t (M is fermionic operator for electrons):
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Propagators g(x, y) for several Euclidean time slices can be stored in separate file to use them in all subsequent
calculations. Due to large correlation between different time slices, it’s enough to calculate propagator only in each
20-th time slice. Format of storage is described in ExampleRead.cpp.
Nonzero value of this observable in the large lattice limit signals the infinite correlation length for current spin

component. It is just the other definition of ordering.
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FIG. 7: Extrapolation of the difference of particle number
densities on simple sublattices ∆N to the limit m → 0 as
a function of substrate dielectric permittivity ϵ at different
lattice parameters. Solid lines are the weighted splines which
are plotted to guide the eye.
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FIG. 8: Susceptibility χN of the difference of particle number
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dielectric permittivity ϵ at different lattice parameters. Solid
lines are the weighted splines which are plotted to guide the
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3. GRAPHENE CONDUCTIVITY FROM THE
GREEN-KUBO RELATIONS

3.1. Basic definitions and lattice observables

In this Section we study numerically the conductivity
of graphene monolayer, that is, the linear response of the
electric current to the applied homogeneous electric field.
In order to define the operator of electric current within
the tight-binding model (9), we consider the time evolu-

tion d
dt q̂ (s, ξ) = −i

[

q̂ (s, ξ) , Ĥ
]

of the charge operator

(4). This leads to the charge conservation equation of
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weighted splines which are plotted to guide the eye.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1  2  3  4  5  6  7  8  9  10

<<
∆

N
2 >>

ε

m/κ = 0.2, conn.
m/κ = 0.2, disc.

m/κ = 0.3, conn.
m/κ = 0.3, disc.

m/κ = 0.5, conn.
m/κ = 0.5, disc.

FIG. 10: A comparison of connected and disconnected contri-
butions to the dispersion of the difference of particle number
densities (50) on simple sublattices ⟨⟨∆2

N ⟩⟩ for the 184 lattice
at κ∆τ = 0.2.

the form

d

dt
q̂ (s, ξ) =

∑

b

Ĵb (s, ξ) , (51)

where t is the real (Minkowski) time and Ĵa (s, ξ) is the
operator of the electric current flowing through the lattice
link which goes in direction a and originates from lattice
site with coordinates (s, ξ). It is equal to the difference
of the currents Ĵσ,a (s, ξ) of “particles” and “holes”:

Ĵb (ξ) = Ĵ↑,b (ξ)− Ĵ↓,b (ξ)

Ĵσ,b (ξ) = iκ ψ̂†
σ (β, ξ + ρb) e

∓iθ̂b(ξ)ψ̂σ (α, ξ)−

−iκ ψ̂†
σ (α, ξ) e

±iθ̂b(ξ)ψ̂σ (β, ξ + ρb) ,

Ĵb (α, ξ) ≡ Ĵb (ξ) , Ĵb (β, ξ) ≡ Ĵb (ξ − ρb) . (52)

arXiv:1304.3660  

arXiv:1206.0619 



Problem with different orders
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x,#âx,#)�
X

x2B

(â†
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Sign of CDW mass term is different for electrons and holes.
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- different signes



Role of mass term in Hybrid 
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We evolve Hubbard field according to artificial Hamiltonian: 
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If one-particle Hamiltonian has zero modes, 
we are not safe from having zero modes of 
fermonic operator M in presence of interaction

Algorithm experiences difficulties in the vicinity of zero modes



Geometric mass
If lattice is finite, Dirac points can fall somewhere in between 

lattice momenta 

Since symmetry is preserved, order 
parameter is always zero!

1

Zero mass runs

”Geometrical mass” means that the Dirac point doesn’t coincide with any lattice momentum. In this case the free
Hamiltonian already has a gap and we do not need any explicit mass term. The following lattice sizes were used to
introduce ”geometrical mass”: Lx = Ly = 8; Lx = Ly = 14; Lx = Ly = 20; Lx = Ly = 26.

Identification of the phase transition using configurations generated with geometrical mass.
Since we didn’t introduce any seed for phase transition the value of any condensate is always zero. Calculation of

susceptibilities is also senseless in this case: they will not show any peak at the point of the phase transition. The
reason for this fact is a bit more non-trivial.
Susceptibility can be defined as

χ ∼ ⟨∆2⟩ − ⟨∆⟩2,

where ∆ is the corresponding order parameter. Once we passed the phase transition the double well potential for the
order parameter becomes more and more deep, thus the distribution of ∆ around its peaks becomes more and more
narrow and ⟨∆2⟩ → ⟨∆⟩2. It means that χ → 0 and we observe the decay of susceptibility after the phase transition.
Thus the non-zero value of the condensate is necessary condition for observation the peak in susceptibility. But in the
absence of the seed for spontaneous symmetry breaking ⟨∆⟩ = 0 even after the phase transition. So, the formation of
peak in χ is impossible in this case. In other words, calculation of susceptibility is senseless without introduction of
mass term which explicitly breaks the symmetry.
A bit different observable was used to identify the spontaneous symmetry breaking in ”geometrical mass” runs. We

define average spin per sublattice in the following way:
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to reduce statistical errors.
Obviously this observable can be expressed in terms of two-point fermionic green functions g(x, y) = ⟨âx,↑â†y,↑⟩ =
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Propagators g(x, y) for several Euclidean time slices can be stored in separate file to use them in all subsequent
calculations. Due to large correlation between different time slices, it’s enough to calculate propagator only in each
20-th time slice. Format of storage is described in ExampleRead.cpp.
Nonzero value of this observable in the large lattice limit signals the infinite correlation length for current spin

component. It is just the other definition of ordering.
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Hamiltonian already has a gap and we do not need any explicit mass term. The following lattice sizes were used to
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narrow and ⟨∆2⟩ → ⟨∆⟩2. It means that χ → 0 and we observe the decay of susceptibility after the phase transition.
Thus the non-zero value of the condensate is necessary condition for observation the peak in susceptibility. But in the
absence of the seed for spontaneous symmetry breaking ⟨∆⟩ = 0 even after the phase transition. So, the formation of
peak in χ is impossible in this case. In other words, calculation of susceptibility is senseless without introduction of
mass term which explicitly breaks the symmetry.
A bit different observable was used to identify the spontaneous symmetry breaking in ”geometrical mass” runs. We
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Propagators g(x, y) for several Euclidean time slices can be stored in separate file to use them in all subsequent
calculations. Due to large correlation between different time slices, it’s enough to calculate propagator only in each
20-th time slice. Format of storage is described in ExampleRead.cpp.
Nonzero value of this observable in the large lattice limit signals the infinite correlation length for current spin
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Finite value of           in thermodynamic limit is equivalent to 
nonzero correlation of spins at infinity (ordered phase).

1

Zero mass runs

”Geometrical mass” means that the Dirac point doesn’t coincide with any lattice momentum. In this case the free
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reason for this fact is a bit more non-trivial.
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where ∆ is the corresponding order parameter. Once we passed the phase transition the double well potential for the
order parameter becomes more and more deep, thus the distribution of ∆ around its peaks becomes more and more
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is the spin operator for the lattice site x = (α, ξ) (α = 0, 1 is sublattice

index and ξ is elementary cell coordinates). σi, i = 1, 2, 3 is the Pauli matrix. The sum over both sublattices is used
to reduce statistical errors.
Obviously this observable can be expressed in terms of two-point fermionic green functions g(x, y) = ⟨âx,↑â†y,↑⟩ =

M−1
x,t,y,t (M is fermionic operator for electrons):
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Propagators g(x, y) for several Euclidean time slices can be stored in separate file to use them in all subsequent
calculations. Due to large correlation between different time slices, it’s enough to calculate propagator only in each
20-th time slice. Format of storage is described in ExampleRead.cpp.
Nonzero value of this observable in the large lattice limit signals the infinite correlation length for current spin

component. It is just the other definition of ordering.

Нарушение киральной симметрии в 
графене

Исходная симметрия эффективно-полевой теории — U(4). Она 
может быть нарушена по нескольким каналам, с появлением 
разных фермионных конденсатов. Сейчас исследованы два 
канала, соответствующие фермионным конденсатам:

                    -  антиферромагнитное состояние 
                    
                    -  состояние с ненулевым экситонным конденсатом

С точки зрения микроскопической теории эти два состояния 
состояния соответствуют разным нарушениям подрешеточной 
симметрии.

Антиферромагнетик — 
разделение спина электрона по 
подрешеткам.
Экситонная фаза — разделение 
заряда по подрешеткам

<SxSy> ~ C at one sublattice even 
for infinitely distant sites 
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Supplemental material

More close view at average spin is presented in the
figures S1 and S2. They demonstrate dependence of
⟨S3

2⟩ and ⟨S1
2⟩ on bare mass in presence of vacancies

(S2) and without them (S1). S is a full spin for some
region of the lattice: Si =

∑

x∈R Sx,i, where Sx,i =

1/2(â†x,↑, â†x,↓)σi
(

âx,↑

âx,↓

)

; σi are Pauli matrices. S(α)
i

is a spin for particular sublattice α = 1, 2. Since ⟨S(α)
i

2
⟩

are even in bare mass, we use the following polynomial
extrapolation: φ(m) = c0 + c1m2 + c2m4. It is clearly
seen that both sublattice and SU(2) spin symmetry are
restored in the limit of zero mass in absence of vacancies

(⟨S(α)
1

2
⟩ = ⟨S(α)

3

2
⟩ at both sublattices in the limit m → 0,

see S1). Another situation can be observed in presence of

adatoms at S2. We show ⟨S(α)
i

2
⟩ for the lattice with 5 %

adatoms choosing the region where adatoms are concen-
trated mostly at one sublattice (region R1 in the figure
2 in the main text). It is clear that both sublattice and

SU(2) spin symmetry are broken: ⟨S(α)
1

2
⟩ ≠ ⟨S(α)

3

2
⟩ at

both sublattices even in the zero mass limit.
Now let us turn to spin-spin correlations for different

spatial configurations of adatoms. Figures S3 and S4

demonstrate the dependence of ⟨S(α)
i

2
⟩ on the size of the

system. In the region R1 (see figure 2) adatoms are con-
centrated at the 2d sublattice, while in the region R2
adatoms are placed equivalently at different sublattices.

In the first case (S3) S(α)
3 spin components at different

sites within one sublattice are correlated with each other:

(S(1,2)
3 )

2
∼ Nν with ν > 1. The strongest correlation

is within the 1st sublattice (the “red” one in the fig-

ure 2) while S(α)
1 are almost uncorrelated. Again, S(α)

1

and S(α)
3 spin components behave differently because of

spontaneously broken SU(2) symmetry. Since there is no
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FIG. S1: Dependence of ⟨Si
2⟩ on bare mass in absence

of adatoms. Lattice size is 36× 36, T=0.125 eV. S is
full spin of a 6 6 cells region of the lattice. Data for the

second sublattice is not shown since it is exactly
identical to the first one.

difference between S(α)
1 and S(α)

2 , the SU(2) symmetry
is broken up to U(1) rotations. From the calculation of
full spin (it includes both sublattices) we see that both
S3 and S1 are anticorrelated at different sublattices, be-
cause ν sufficiently decreases in both cases. In the second

configuration of adatoms (figure S4) S(α)
3 and S(α)

1 are
correlated equivalently inside one sublattice. All com-
ponents of electron spin at different sublattices are again
anticorrelated. Thus we really have a spontaneous break-
ing of SU(2) spin symmetry and sublattice Z2 symmetry
leading to antiferromagnetic spin ordering.
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FIG. S2: Dependence of ⟨Si
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of 5% adatoms. Lattice size is 36× 36, T=0.125 eV. S
is full spin of the region R1 (see fig. 2 in the main text).
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Calculation is performed on the lattice with 5 %
adatoms inside the regions R1 (see fig. 2 in the main
text). T=0.125 eV. All the results are shown in the

m → 0 limit.
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Finite-size scaling of order 
parameter (4)

Exact location of the phase transition point
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FIG. 4: (Color online) (a) Single-particle gap ∆sp and spin
gap ∆s as a function of U at λ/t = 0.1. The values shown
were obtained from an extrapolation to the thermodynamic
limit. The dip in ∆sp and the closing of ∆s are consistent
with Uc/t = 4.95(5). The inset shows the mean-field results
for the single-particle gap and the magnetic order parameter.
(b) Energy derivative with respect to U [Eq. (16)] across the
TBI–AFMI transition at λ/t = 0.1 [Uc/t = 4.95(5)].

derivative

∂F

∂U
= ⟨12

∑

i

(c†ici − 1)2⟩ , (16)

corresponding to the expectation value of the interaction
term or, equivalently, the average double occupation, at
λ/t = 0.1. The continuous variation of this quantity
across Uc/t = 4.95(5) suggests a continuous transition.

Having established the phase boundary of the magnetic
transition at large U/t, we now consider the universality
class. Given the remaining U(1) spin symmetry in the
presence of spin-orbit coupling, the transition is expected
to be in the 3D XY universality class. An intuitive pic-
ture is based on local magnetic moments, which already
exist in the magnetically disordered phase for U > 0, and
order at Uc. The onset of phase coherence at U = Uc cor-
responds to a U(1) symmetry breaking. This scenario is
in accordance with the behavior of the spin gap ∆s in
Fig. 4. The excitons are massive in the disordered phase
(U < Uc), but condense in the ordered phase (U ≥ Uc)
where ∆s = 0.

The conjectured 3D XY universality can be tested us-
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FIG. 5: (Color online) Rescaled transverse magnetic struc-
ture factor Sxy

AF/N defined in Eq. (15) as a function of U at
λ/t = 0.1, for different lattice sizes L. Assuming the scal-
ing form (17), (a) shows L2β/νSxy

AF/N . The intersection of
curves for different system sizes yields Uc/t = 4.96(4) for the
critical point. (b) The scaling collapse obtained by plotting
L2β/νSxy

AF/N as a function of L1/ν(U − Uc)/Uc. The QMC
data are fully consistent with the critical exponents z = 1,
ν = 0.6717(1) and β = 0.3486(1) of the 3D XY model.33

ing the zero-temperature, finite-size scaling forms

Sxy
AF/N = L−2β/νf1[(U − Uc)L

1/ν ] (17)

and

∆s/t = L−zf2[(U − Uc)L
1/ν ] . (18)

Here f1 and f2 are dimensionless functions. The relevant
critical exponents for the 3D XY model are z = 1, ν =
0.6717(1) and β = 0.3486(1).33

Using the same value λ/t = 0.1 as before, we show in
Fig. 5(a) L2β/νSxy

AF/N as a function of U for different
system sizes L. If the scaling form Eq. (17) with the
critical exponents of the 3D XY model is correct, we
expect to see an intersect of curves for different L at U =
Uc. As shown in Fig. 5(a), this prediction is indeed borne
out by the QMC data, and we deduce Uc/t = 4.96(4),
in agreement with Fig. 3. Replotting L2β/νSxy

AF/N as
a function of L1/ν(U − Uc)/Uc in Fig. 5(b) produces a

Example calculation of pure 
Hubbard model on 
hexagonal lattice

Kane-Meld-Hubbard model: 
arXiv: 1111.3949



Hubbard model simulations 
(only on-site interaction)
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Hubbard model simulations 
(only on-site interaction)
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Connection between time 
discretization and spin symmetry (1)

At neutrality point g(x,x)=0.5 (ideally), thus two correlators 
should be equivalent

1

Zero mass runs

”Geometrical mass” means that the Dirac point doesn’t coincide with any lattice momentum. In this case the free
Hamiltonian already has a gap and we do not need any explicit mass term. The following lattice sizes were used to
introduce ”geometrical mass”: Lx = Ly = 8; Lx = Ly = 14; Lx = Ly = 20; Lx = Ly = 26.

Identification of the phase transition using configurations generated with geometrical mass.
Since we didn’t introduce any seed for phase transition the value of any condensate is always zero. Calculation of

susceptibilities is also senseless in this case: they will not show any peak at the point of the phase transition. The
reason for this fact is a bit more non-trivial.
Susceptibility can be defined as

χ ∼ ⟨∆2⟩ − ⟨∆⟩2,

where ∆ is the corresponding order parameter. Once we passed the phase transition the double well potential for the
order parameter becomes more and more deep, thus the distribution of ∆ around its peaks becomes more and more
narrow and ⟨∆2⟩ → ⟨∆⟩2. It means that χ → 0 and we observe the decay of susceptibility after the phase transition.
Thus the non-zero value of the condensate is necessary condition for observation the peak in susceptibility. But in the
absence of the seed for spontaneous symmetry breaking ⟨∆⟩ = 0 even after the phase transition. So, the formation of
peak in χ is impossible in this case. In other words, calculation of susceptibility is senseless without introduction of
mass term which explicitly breaks the symmetry.
A bit different observable was used to identify the spontaneous symmetry breaking in ”geometrical mass” runs. We

define average spin per sublattice in the following way:

⟨S(i)⟩ =

√√√√ ⟨
(∑

x=(1,ξ) Ŝ
(i)
x

)2
⟩+ ⟨

(∑
x=(2,ξ) Ŝ

(i)
x

)2
⟩

L4
.

L is the lattice size, Ŝ(i)
x = 1

2 (â
†
x,↑, â

†
x,↓)σi

(
âx,↑
âx,↓

)
is the spin operator for the lattice site x = (α, ξ) (α = 0, 1 is sublattice

index and ξ is elementary cell coordinates). σi, i = 1, 2, 3 is the Pauli matrix. The sum over both sublattices is used
to reduce statistical errors.
Obviously this observable can be expressed in terms of two-point fermionic green functions g(x, y) = ⟨âx,↑â†y,↑⟩ =

M−1
x,t,y,t (M is fermionic operator for electrons):

⟨
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⎞

⎟⎠ .

Propagators g(x, y) for several Euclidean time slices can be stored in separate file to use them in all subsequent
calculations. Due to large correlation between different time slices, it’s enough to calculate propagator only in each
20-th time slice. Format of storage is described in ExampleRead.cpp.
Nonzero value of this observable in the large lattice limit signals the infinite correlation length for current spin

component. It is just the other definition of ordering.
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Zero mass runs

”Geometrical mass” means that the Dirac point doesn’t coincide with any lattice momentum. In this case the free
Hamiltonian already has a gap and we do not need any explicit mass term. The following lattice sizes were used to
introduce ”geometrical mass”: Lx = Ly = 8; Lx = Ly = 14; Lx = Ly = 20; Lx = Ly = 26.

Identification of the phase transition using configurations generated with geometrical mass.
Since we didn’t introduce any seed for phase transition the value of any condensate is always zero. Calculation of

susceptibilities is also senseless in this case: they will not show any peak at the point of the phase transition. The
reason for this fact is a bit more non-trivial.
Susceptibility can be defined as
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where ∆ is the corresponding order parameter. Once we passed the phase transition the double well potential for the
order parameter becomes more and more deep, thus the distribution of ∆ around its peaks becomes more and more
narrow and ⟨∆2⟩ → ⟨∆⟩2. It means that χ → 0 and we observe the decay of susceptibility after the phase transition.
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absence of the seed for spontaneous symmetry breaking ⟨∆⟩ = 0 even after the phase transition. So, the formation of
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Ŝ(1)
x Ŝ(1)
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Connection between time 
discretization and spin symmetry (2)2
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Propagators g(x, y) for several Euclidean time slices can be stored in separate file to use them in all subsequent
calculations. Due to large correlation between different time slices, it’s enough to calculate propagator only in each
20-th time slice. Format of storage is described in ExampleRead.cpp.
Nonzero value of this observable in the large lattice limit signals the infinite correlation length for current spin

component. It is just the other definition of ordering.

Results.
Simulations were performed for two temperatures: T=0.125 eV (80 time slices) and 0.0625 eV (160 time slices).

On-site interaction is equal to 9 eV and 11 eV.
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Propagators g(x, y) for several Euclidean time slices can be stored in separate file to use them in all subsequent
calculations. Due to large correlation between different time slices, it’s enough to calculate propagator only in each
20-th time slice. Format of storage is described in ExampleRead.cpp.
Nonzero value of this observable in the large lattice limit signals the infinite correlation length for current spin

component. It is just the other definition of ordering.

Results.
Simulations were performed for two temperatures: T=0.125 eV (80 time slices) and 0.0625 eV (160 time slices).

On-site interaction is equal to 9 eV and 11 eV.

Lattice operator in momentum space:
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On-site interaction is equal to 9 eV and 11 eV.
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Results.
Simulations were performed for two temperatures: T=0.125 eV (80 time slices) and 0.0625 eV (160 time slices).

On-site interaction is equal to 9 eV and 11 eV.

In continuous time and zero temperature:
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In discrete time there are corrections to the integral of the order 
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Simulations were performed for two temperatures: T=0.125 eV (80 time slices) and 0.0625 eV (160 time slices).

On-site interaction is equal to 9 eV and 11 eV.



Connection between time 
discretization and spin symmetry (3)
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Propagators g(x, y) for several Euclidean time slices can be stored in separate file to use them in all subsequent
calculations. Due to large correlation between different time slices, it’s enough to calculate propagator only in each
20-th time slice. Format of storage is described in ExampleRead.cpp.
Nonzero value of this observable in the large lattice limit signals the infinite correlation length for current spin

component. It is just the other definition of ordering.

Results.
Simulations were performed for two temperatures: T=0.125 eV (80 time slices) and 0.0625 eV (160 time slices).

On-site interaction is equal to 9 eV and 11 eV.

In principle, it’s possible to avoid time discretization for free fermions: 
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Influence of time discretization 
on physical results
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High temperature phase 
diagram
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Low temperature phase 
diagram
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Conclusion

1) Preliminary results on the phase diagram for extended 
Hubbard model are presented. The line of AFM phase 
transition violates both V00=const and V00-V01=const laws. 

2)  Several ways to identify phase transition are discussed. 
Standard lattice techniques doesn’t work well and we 
should employ finite size scaling of squared order 
parameter. 

3) Special attention should be payed to lattice artifacts 
connected with discretization of euclidean time.


