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Introduction

• Black holes are the most fundamental objects in any theory of gravity,
and as such they can provide powerful probes for investigating some of
the subtle global features of the theory.

• In ordinary Einstein gravity, by itself or coupled to “standard” matter,
there are powerful no-hair theorems or uniqueness theorems which imply
strong restrictions on the parameter space of possible black-hole solutions.
For example, in Einstein-Maxwell theory the most general black hole is
characterised by its mass, angular momentum and charge.

• More general theories of gravity comprise Einstein gravity with higher-
order curvature terms, such as arise in the low-energy limit of string
theory. In string theory, there are an infinite number of higher-order
terms, involving arbitrarily large powers of the curvature and its covariant
derivatives.

• We may first consider a theory with just a finite number of higher-order
terms. Of particular interest is the case of Einstein gravity with additional
quadratic curvature terms only, since this is actually renormalisable (Stelle
1977), albeit at the price of having ghosts.



• One may perhaps find a regime where quadratic curvatures dominate over
yet higher order terms (Starobinsky,...). In string theory, maybe there are
regions in the String Theory Landscape where the quadratic curvature
terms are dominant (Brigante, Hong Liu, Myers, Shenker, Yaida).

• In any case, it is worthwhile to investigate exactly what are the black-hole
solutions in quadratic-curvature modified gravity, since it is a tractable
problem. (In more than four dimensions, for example, Einstein with a
Gauss-Bonnet term admits exact solutions for black holes (Deser & Boul-
ware).)

• We consider spherically-symmetric black holes. In four dimensions, unlike
higher dimensions, any solution of of Einstein gravity remains a solution
when quadratic curvature terms are added. Thus the Schwarzschild black
hole is a solution in the quadratic theory. The question is whether there
exist any other acceptable spherically-symmetric black-hole solutions.

• For example, can there exist non-standard black holes in a regime where
cubic and higher terms can be neglected? If so, these solutions would be
representative of new solutions even in string theory.

• As we shall see, there in fact exists a second branch of such black
holes in Einstein plus quadratic gravity. This branch intersects the usual
Schwarzschild branch, and in the cross-over region, can be studied per-
turbatively.

• The new features of the higher-derivative theory are associated with ad-
ditional modes in the spectrum of the theory; the massive spin-2 and
spin-0 modes. The new black holes involve condensates of the (ghost-
like) massive spin-2 modes.



General Expectations in Quadratic Gravity

• Since the Gauss-Bonnet combination of quadratic curvatures is a total
derivative in four dimensions, the most general action for the quadratic
theory (without cosmological constant) can be taken to be

I =

∫
d4x
√
−g (R− αCµνρσCµνρσ + β R2) .

If one linearises the theory around a Minkoswki background, the fluc-
tuations will obey equations which can be separated into a factorised
fourth-order spin-2 equation and a second-order spin-0 equation:

(�−m2
2)�hµν = 0 , (�−m2

0)φ = 0 ,

where m2
2 = 1/(2α) and m2

0 = 1/(6β).

• The massive spin-2 and spin-0 modes will lead to terms with Yukawa-type
behaviour 1/r e±mr at large distances. Generically, terms with both signs
in the exponential will occur, and the terms with the rising exponentials
will give rise to fatal pathological behaviour in the asymptotic region.

• The real question, therefore, is whether it is possible to fine tune the
parameters in the general solutions so as to be able to remove the rising
Yukawa terms.

• Are there any such fine tunings, aside from Schwarzschild?



A Trace No-Hair Theorem

• We can study the static solutions of the theory by considering metrics of
the form

ds2 = −λ2 dt2 + hijdx
idxj ,

where λ and hij depend only on the spatial coordinates xi.

• The equations of motion for the quadratic theory are

Rµν − 1
2
Rgµν − 4αBµν + 2β R(Rµν − 1

4
Rgµν) + 2β(gµν�−∇µ∇ν)R = 0 ,

where Bµν = (∇ρ∇σ + 1
2
Rρσ)Cµρνσ is the Bach tensor. Taking the trace

gives

β (�−m2
0)R = 0 .

• Multiplying by λR and integrating over the spatial domain outside the
putative horizon of the black hole gives∫

d3x
√
h
[
Di(λRDiR)− λ(DiR)2 −m2

0 λR
2
]

= 0 ,

where Di are covariant derivatives in the spatial metric hij. Since by
definition λ vanishes on the horizon, it follows that if DiR goes to zero
sufficently rapidly at infinity then the surface term gives no contribution
and hence the non-positivity of the remaining integrand implies

R = 0 .



• This partial no-hair theorem (due to W. Nelson) provides a considerable
simplification of the problem. It means we immediately have a second-
order equation of motion, and in fact if we use the spherically-symmetric
ansatz

ds2 = −h(r) dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θ dφ2) ,

we can reduce the equations of motion to two second-order ODEs for
h(r) and f(r).

• Nelson tried to go further, by applying a similar technique to the trace-
free part of the equations of motion, and claiming this led to a complete
no-hair theorem, namely that Rµν = 0. This would have meant that the
Schwarzschild metric was the only spherically-symmetric static black hole
solution in the quadratic theory.

• However, we found that Nelson had some crucial sign errors in his calcu-
lation, and what he had thought to be a strictly non-positive integrand
actually had a mix of terms with both signs. Thus no definite conclusion
could be reached.

• On the basis that “what is not forbidden is allowed,” this raises the
possibility of non-Schwarzschild spherically-symmetric static black holes
in the quadratic theory. With the simplification of knowing that they
must satisfy R = 0, this means we can wolog drop the R2 term in the
action and just consider Einstein-Weyl gravity.



Numerical Solution of the Equations

• The R = 0 condition enables us to reduce the equations for h and f to
two coupled non-linear 2nd-order ODEs. Unfortunately these appear not
to be explcitly solvable, and we therefore resort to numerical analysis.

• We begin by making Taylor expansions of h(r) and f(r) near to a putative
horizon at r = r0:

h = c
[
(r − r0) + h2 (r − r0)2 + h3 (r − r0)3 + · · ·

]
,

f = f1 (r − r0) + f2 (r − r0)2 + f3 (r − r0)3 + · · · .
The constant c is a trivial, absorbable into a rescaling of the time coor-

dinate. Plugging into the equations of motion, one can solve for all the
coefficients hi and fi with i ≥ 2 in terms of the two non-trivial parameters
r0 and f1. The Schwarzschild solution itself corresponds to f1 = 1/r0, so
if we write

f1 =
1 + δ

r0
,

then non-vanishing δ characterises the extent to which the near-horizon
solution deviates from Schwarzschild.



• We can now use the shooting method to construct solutions numerically.
Namely, we set initial conditions just outside the horizon, by choosing
values for r0 and δ and making use of the near-horizon Taylor expansions.
We then integrate the equations out numerically to large r.

• It is convenient to fix the scale size in the problem by making a choice
for the coupling constant α for the Weyl-squared term in the action. We
take α = 1

2
. The parameters r0 and δ are then both non-trivial.

• For generic r0 and δ, the outward integration runs into a singularity,
in which the metric functions h(r) and f(r) rapidly diverge either to
+∞ or −∞. By very delicate fine tuning of the parameters, one can
systematically extend outwards the limit rmax before which the singularity
is reached. Increasing the precision allows integrating out further–ad
infinitum.

• In the non-singular fine-tuned solutions, h(r) and f(r) asymptotically ap-
proach constants, with f(r)→ 1. The asymptotic constant value for h(r)
can be adjusted by choosing the trivial parameter c so that h(∞) = 1.
Thus we obtain well behaved asymptotically flat black hole solutions.



• Procedure: Pick a value for r0, and then fine tune δ to get asymptotically
Minkowskian behaviour. For any r0 there is always at least one such
solution, with δ = 0 (to within numerical rounding errors), corresponding
to the Schwarzschild black hole.

• In addition, if r0 is greater than a certain minimum value rmin
0 ≈ 0.876,

we found that there exists a second choice of δ = δ∗ that gives a second,
non-Schwarzschild, black hole.

• Here are two examples, showing the f(r) (blue) and h(r) (red) metric
functions for the non-Schwarzschild black hole, for r0 = 1 (LHS), and
r0 = 2 (RHS). In order to avoid an asymptotic overlay of the h and
f curves, we have chosen the trivial scaling c so that the function h
asymptotically approaches 3

4
rather than 1.
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• The metric functions in the r0 = 1 case are looking very like those in
Schwarzschild. In the r0 = 2 case they aproach their asymptotic values
from above, suggesting negative mass.



Properties of the Non-Schwarzschild Black Holes

• The mass of the non-Schwarzschild black hole is given by the usual ADM
formula for asymptotically flat spacetimes, which amounts to 1

2
the coef-

ficient of the 1/r term in gtt (assuming a canonical normalisation for t so
that gtt → −1 at infinity).

• The mass of the Schwarzschild (dotted line) and the non-Schwarzschild
(solid line) black holes as a function of horizon radius r0 are shown below:
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• We originally thought the solid curve for the non-Schwarzschild black hole
terminated at the left-hand end at r0 = rmin

0 . The non-Schwarzschild and
Schwarzschild branches coalesce here, at r0.

• In a further, recent, analysis, we find that the non-Schwarzschild branch
in fact continues through to small r0 values also. (The previous numerical
analysis became delicate at r0 = Rmin.)



Negative Mass?

• The negative mass of the non-Schwarzschild black holes for r0 > rm=0
0

clearly violates the normal behaviour seen for black holes in general rela-
tivity, for which the positive energy theorem guarantees the non-negativity
of the mass for any system of physically reasonable matter coupled to
gravity.

• In fact the behaviour we are seeing here is very like what would happen if
we looked at ordinary Schwarzschild black holes in pure Einstein gravity,
but with a minus sign in front of the Einstein-Hilbert action. The mass,
calculated as a Noether charge for the sign-reversed action, would be
negative, and it would become more and more negative as the radius r0

of the black hole was increased.

• The negativity of the mass for large non-Schwarzschild black holes can
be understood as being a consequence of the ghost-like nature of the
massive spin-2 modes in quadratic gravity:

m2
2

� (�−m2
2)

=
1

�
−

1

(�−m2
2)
.

Effectively, we are seeing that whereas a condensation of massless spin-2
gravitons in a normal black hole gives rise to a spacetime with positive
energy, a condensation of massive spin-2 modes, which are ghostlike, can
give rise to a spacetime with negative energy.



Linearisation Around Schwarzschild

• The non-Schwarzschild black holes form a distinct branch that only in-
tersects the Schwarzschild branch at r0 = rmin

0 . They have positive mass
only when

r0 ≤ rm=0
0 ≈ 1.143 .

• For r0 close to rmin
0 , the non-Schwarzschild black hole is perturbatively

close to the Schwarzschild black hole. Apart from this case, the non-
Schwarzschild black holes cannot in general be obtained by a linearised
analysis around Schwarzschild.

• If we look for black hole solutions in a linearised analysis around Schwarzschild,
then Rµν = 0 in the Schwarzschild background, and by the trace no-hair
theorem the varied Ricci scalar is zero, δR = 0. Then gµν δRµν = 0, and
the linearised Bianchi identity implies ∇µ δRµν = 0. Thus the linearised
equations of motion imply that δRµν is transverse and traceless, obeying

(∆L +m2
2) δRµν = 0 ,

where ∆L is the Lichnerowicz operator,

∆L δRµν = −� δRµν − 2Rµρνσ δR
ρσ

in the Schwarzschild background. For m2
2 > 0, this requires that ∆L have

a negative-eigenvalue mode.

• As first discussed by Gross, Perry, Yaffe (1982), Schwarzschild has just
one normalisable negative-eigenvalue TT mode, with λ ≈ −0.7677 r−2

0 .



• In our numerical analysis we set α = 1
2
, which implies the massive spin-

2 field has m2
2 = 1/(2α) = 1. Thus for the solution linearised around

Schwarzschild we require λ = −m2
2, and hence 0.7677r−2

0 ≈ 1, which gives

r0 ≈
√

0.7677 ≈ 0.876. This indeed reproduces the rmin
0 horizon radius

for which our numerical analysis indicated the bifurcation of the non-
Schwarzschild branch of black holes. (The possibility of this bifurcation
was foreseen by Brian Whitt (1985).)

• Analogous non-Schwarzschild spherically-symmetric black holes can arise
in higher dimensions. In dimension n ≥ 5 there are three independent
quadratic-curvature invariants; RµνρσRµνρσ, Rµν Rµν and R2. (The Gauss-
Bonnet combination is no longer a total derivative in n ≥ 5.) Only the
theories without the RµνρσRµνρσ term continue to admit Schwarzschild as
a solution, so for a linearised analysis we must restrict attention to the
subset of theories:

I =

∫
dnx
√
−g(R+ c1R

µν Rµν + c2R
2) .

• There is a normalisable negative-eigenvalue Lichnerowicz TT mode in
each dimension, and so a similar phenomenon of a bifurcating non-
Schwarzschild branch arises. However, since the trace of the field equation
now has quadratic-curvature terms,

(1− 1
2
n)(R+ c1�R) + (c1 + 2c2)(n− 1)�R+ 2(1− 1

4
n)(c1R

µνRµν + c2R
2) = 0 ,

we no longer have a trace no-hair theorem R = 0 for spherically-symmetric
black holes, and so a numerical analysis moving out from the bifurcation
along the non-Schwarzschild branch is much more complicated. (But we
can still prove δR = 0 for perturbations away from Schwarzschild, which
is why a negative Lichnerowicz TT mode again signals a bifurcation.)



Time Dependent Stability?

• One can now study time-dependent perturbations around Schwarzschild,
so look for instabilities. The perturbations in δRµν are again TT, and sat-
isfy (∆L +m2

2) δRµν = 0. Since δRµν = 1
2
∆Lδgµν, the metric perturbations

will likewise be TT and satisfy (∆L +m2
2) δgµν = 0.

• The spherically-symmetric time-dependent TT perturbations take the
form

ψµνdx
µdxν = e−iωt

[
h(r)ψ0(r) dt2 + h−1(r)ψ1(r) dr2 + 2χ(r) dtdr + r2 ψ̄(r) dΩ2

n−2

]
where h(r) = 1− r3−n is the n-dimensional Schwarzschild metric function.
The equations can be boiled down to a second-order ODE for ψ1(r).

• We are interested in knowing when there exist such time-dependent solu-
tions for which ω has a positive imaginary part, signalling run-away expo-
nential time dependence. This same question was addressed by Gregory
& LaFlamme (1993), in the context of five-dimensional black strings,
ds2

5 = ds2
4 + dz2, where ds2

4 is the Schwarzschild metric. For z dependence
ei kz, the problem reduces to studying time-dependent TT modes in four
dimensions, satisfying (∆L + k2)ψµν = 0.

• If λ̄ = −0.7677r−2
0 denotes the Gross-Perry-Yaffe negative eigenvalue of

the static mode, it turns out that time-dependent modes with an imag-
inary part to ω occur for Lichnerowicz eigenvalues λ̄ < ∆L < 0. In our
context, this means that a runaway instability will occur for Schwarzschild
black holes whose radius is less than the critical value at the bifurcation
point.



Time Dependent Stability?

• The situation regarding the classical stability of the Schwarzschild branch
of black holes is thus understood. The stability, or otherwise, of the
non-Schwarzschild branch requires further investigation:

0.8 1.0 1.2 1.4
r0

1.0

0.5

0.5

M

Unstable
Classically stable

Stability unknown



Asymptotically AdS Black Holes

• Adding a cosmological term −2Λ
√
−g to the action gives rise (for neg-

ative Λ) to asymptotically AdS solutions. The trace no-hair result now
shows that black holes solutions must have R = 4Λ, which again greatly
simplifies the equations. Again, we get two second-order ODEs, which
can only be solved numerically (apart from Schwarzschild-AdS, which is
an exact solution).

• The numerical “shooting” method now becomes rather easy, since instead
of 1/r e±m2r asymptotics, the two possible asymptotic behaviours are both
inverse power-law 1/ra±, i.e. a+ > a− > 0. (For appropriate range of
massive spin-2 mass m2.)

• A similar situation occurs with simpler systems such as two-derivative
Einstein-Scalar or Einstein-Proca theories. When Λ = 0, there in fact
exist no-hair theorems showing that the black black-hole solutions cannot
carry any scalar or Proca “hair.” But when Λ < 0, the asymptotic fall-offs
for the scalar or Proca field are such that solutions with non-vanishing
scalar or Proca hair can easily arise. (Can only solve numerically.)



Conclusions

• Even though Einstein plus quadratic gravity generically has rising as well
as falling Yukawa terms in the asymptotic solutions, one can fine tune
the parameters in static spherically symmetric solutions and thereby find
a second branch of solutions, over and above Schwarzschild. They have
positive mass for r0 < 1.143

√
2α, and they are perturbatively close to

Schwarzschid for r0 ≈ 0.876
√

2α.

• Knowing what the black hole solutions in the theory are numerically allows
us to see what one should or should not try to prove analytically.

• For example, we now know that one should not try to prove in general
that spherically-symmetric non-Schwarzschild black holes can’t exist in
Einstein + quadratic gravity.

• It also shows that black holes can exist that are not perturbatively close
to Schwarzschild.

• Interesting questions remain, including:

Stability of the non-Schwarzschild black holes?

Can one live with the ghosts/phantoms/poltergeists of higher-derivative
gravity?

Do these black holes have any relevance in string theory, where there are
higher-order curvature corrections to arbitrarily high order?

Might there exist no-hair theorems even in string theory?


