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Outline

✤ Convince you that a system with a 3+1d photon and 
2+1d electron (relativistic cousin of graphene) is 
extremely interesting.

✤ Use that system to compute conductivities exactly, at 
any value of the interaction strength.



Many of the most significant developments in
high energy theory (and beyond) over the last thirty years 

involve boundaries and defects.

A

B

personal take on boundaries and defects:



A

B

D-branes as boundary conditions for open strings



A

B

In AdS/CFT, conformal boundary of anti-de 
Sitter space is where the conformal field 
theory “lives”.



A

B

For topological insulators, the insulating bulk 
material has conducting (massless) surface 
states that are protected by symmetry.



A

B

In field theory, entanglement is often 
measured with respect to spatial regions, 
leading to the importance of the “entangling 
surface”.



Would all of these developments have been “obvious” 
if we just understood quantum field theory in the 

presence of a boundary a little better to begin with?
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Mixed dimensional QED has 
something for everyone
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FnA = g ̄�A Dµ = rµ � igAµwhere boundary conditions:

•relation to graphene
•relation to large Nf QED3 (Kotikov-Teber ’13; Gaiotto ’14)
•behavior under electric-magnetic duality (Son ’17) 
•example of a bCFT with an exactly marginal coupling
•conformal symmetry anomalies
•supersymmetric versions 

•localization, exact results for transport

our work



Graphene

E±(q) ⇡ vF |q|+O(q/K)2

A tight binding model
with nearest neighbor 
hopping gives a nodal 
Fermi surface with linear 
dispersion relation.

vF ⇡ c

300

from Castro Neto et al. 2008



From Graphene  
to a  
Dirac Fermion

✤ There is an electron with momentum close to K that 
hops from the A lattice to the B lattice.  This is one two 
component “relativistic fermion”. 

✤ Ditto for  K’            a second fermion 

✤ The two electrons are related by time reversal and 
together assemble to make a four component Dirac 
fermion, but where spin has acquired a new peculiar 
meaning.



Interactions in Graphene

✤ Via phonons: Can be modeled by a gauge field that 
couples oppositely to the two two-component 
fermions.  Like QED3 with a funny coupling to the 
photon.

✤ Via photons: Can be modeled by an essentially 
instantaneous Coulombic interaction.  Magnetic 
effects are suppressed because vF is so small.



Son’s model of graphene
cond-mat/0701501
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•only electric interactions
•electrons travel at speed 

things to note
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beta function for the electron velocity
v gets larger at low energies.
Moral sense in which our mixed QED
is the IR fixed point of real world
graphene.



Mixed QED is a bCFT

The usual Ward identity for QED relates Z = Zg

The superficial degree of divergence of the photon self energy is one
(compared with two in four dimensional QED).

The gauge invariant prefactor pµp⌫ � �µ⌫p
2 ⇧µ⌫(p)of

cuts down the degree of divergence to -1.

 coupling is not perturbatively renormalized.=)

g0Z
1/2
Aµ

Z = gZg

In other words,          is finite.ZAµ



Putting Graphene Like Theories to 
Work Computing Conductivity



We can compute the hemisphere partition function (or path integral) for 
super graphene exactly, as a function of the coupling, through a technique 

called localization.  The partition function in turn will allow us to compute a 
variety of current-current correlation functions.  The current correlation 

functions give us conductivities. 

The Plan:



(y, f)

(Aµ, l, l’, X ,Y)

electron and 
complex scalar super partner

one photon, 
two photini, 

and two real scalars

Super GrapheneN = 2

(there is a simpler supersymmetric model,
but it won’t allow us to use localization)

2=2

4=4



            Super GrapheneN = 2
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Claim: the coupling     is not renormalized.g

We can add a theta angle too, suppressed here.



Where does our localization result 
come from?

✤ We put together a bunch of earlier results

✤ Localization of SUSY gauge theories on S4 (Pestun ’07)

✤ Localization of Chern-Simons theories on S3 
(Kapustin, Willett, Yaakov ’09)

✤ Localization on a 4d hemisphere but without 
boundary degrees of freedom (Gava, Narain, Muteeb, 
Giraldo-Rivera ’16)



Localization

�S = 0

�2W (x) = 0

The partition function

Suppose we have a symmetry of the action 
(for us, it will be SUSY)

Construct a W(x) such that

Modify the partition function:

Turns out it doesn’t depend on t!

Stokes Theorem
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Localization Continued

Z(t) =

Z

M
e�S(x)�t�W (x)dxAs Z(t) does not depend on t, we can make t

as large as we want and evaluate by saddle point

For cleverly chosen W(x), the result can be 
much, much simpler than the original problem

In our case, a path integral over the function space of the 7 fields 
reduces to an ordinary integral

But first a trivial example…



A Trivial Example:  
Gaussian on the Plane
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A Trivial Example:  
Gaussian on the Plane
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From which we learn we can do a change of variables: r ! r
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rotational symmetry

Perhaps not a very good 
illustration of the power 

of the method….



A more impressive use of the technique: 
super graphene on the hemisphere
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Relation to the S3 partition function
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Kapustin, Willett, Yaakov (2009) found the same result for SUSY Chern-
Simons theory on an S3, but with t equal to the integer Chern-Simons level

Since the bulk is free, we believe we can use many of the results that 
were derived in this case, e.g. relation to current-current correlation 
functions and the concept of extremizing |Z| with respect to the q.



Symmetries

✤ The main reason we needed the more complicated SUSY model 
was to preserve a U(1) R-symmetry.

✤ The q parametrize how other abelian symmetries can mix with 
the U(1) R-symmetry.  There is a particular mixture required to 
preserve conformal symmetry, minimizes |Z|.

✤ qf flavor symmetry; qt topological symmetry; qg gauge symmetry

✤ The magic of localization will let us compute two point 
functions of currents associated with these symmetries.



Current-Current Correlation 
Functions

By symmetry, a current-current correlation function in a conformal field 
theory is fixed up to one complex number
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The hemisphere and flat space are related by a conformal transformation. 
Thus S in flat space can be determined through a computation on the 

hemisphere. 

⌃ = 2⇡(�H + i�)This number is also the regular and Hall conductivity:



Extremization

The dependence of Z on the q tells us these conductivities.
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(Closset, Dumitrescu, Festuccia, Komargodski, Seiberg 2012)

where      is determined byq⇤

Fancier version of the R-extremization procedure of Jafferis (2010).

Relies on SUSY and the fact that the q are scalar components of vector super 
fields that couple to the respective symmetry currents.



An Exact Conductivity
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Very special that we can do this!points numerical

curves are saddle point approximations



Another Exact Conductivity
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Before addressing where the small t curves come from 
and the meaning of the starred point, I want to make
a few remarks.



Remarks

✤ We are usually limited to computations at weak coupling, and, when 
there is a known weak-strong coupling duality, strong coupling.  
Here we can do the computation at any value of the coupling.

✤ It may be possible to extend these results to other transport 
coefficients.  Given the Lorentz and gauge symmetry, Ward identities 
can relate the charge conductivity to the thermoelectric coefficient 
and the heat conductivity (Herzog, 2009).

✤ This is a zero temperature result with no background charge density 
or magnetic field — may be a bit limiting in a condensed matter 
context however.…



01

Thin Films and the 
Notion of a Quantum 
Phase Transition

Haviland, Liu, Goldman, 
PRL, 1989

Resistivity

Phase transition at T=0 as
a function of thickness 

of the sample

sense in which we are computing 
resistivity at the critical point

in a similar system

thin films of bismuth
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There is a duality that maps this theory to a dual
weakly coupled description when the original theory
is strongly coupled.

n+ = 1 , n� = 0 theory

Back to Duality



Duality
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Duality lets us do a saddle point approximation close to t = 1/2.

Self-duality lets us calculate the conductivity -- the starred point.



Where did it come from?

There is a method for doing a Gaussian integral by contour integration
that generalizes to our case
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Using this Contour Method

This contour method will only allow us to perform the partition 
function integral for rational t, when the theory decouples and 
looks like 3d Chern-Simons.

Even though we can’t do the integral in general, we can in general 
relate it to another through Fourier transform.

This is the seed relation for producing the duality.
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Conductivity at Self-Duality ⌃gg =
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Conductivity at Self-Duality 
Continued

⌃gg ⌃gt ⌃tt, , and are not independent
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Last Steps

At self duality, we expect ⌃gg = ⌃0
gg

However, that’s not quite true because of the quadratic terms in q
in our duality relation.
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Another self-dual example

We can play a similar game with the n+ = n- = 1 theory.

However, it turns out not to be self-dual.  The dual theory has extra
fields neutral under the gauged U(1) symmetry.

Playing with dilogarithm identities, there is a modification 
of the n+ = n- = 1 theory which is self-dual and 
in fact which only exists at the self-dual point t = i.

One finds again ⌃gg =
⌧

2



Discussion of Self-Duality and 
Conductivity

✤ The idea that a complexified conductivity should 
transform under an element of SL(2,Z) is an old one in 
the condensed matter literature (e.g. Lutken and Ross ’92).

✤ Usually S is taken to transform the same way as t.  (e.g. 
Witten ’03, in a large n limit)

✤ Such a rule would imply S = t at self-duality.  However, 
we saw something a bit more intricate and S = t/2.

⌃ ! a⌃+ b

c⌃+ d



Summary

✤ Calculated the hemisphere partition function of super-
graphene.

✤ Determined the conductivity exactly at arbitrary 
values of the coupling.

✤ Found a pair of theories that exhibit self-duality and 
determined the conductivity analytically at the point 
of self-duality.



Larger Vision: Structure of QFT

✤ Looking for new insights into QFT by studying defect 
and boundary CFT.

✤ Provide a more local view of QFT by figuring out how 
to deal with boundaries.
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Extra Slides



Mixed QED is a boundary 
conformal field theory

✤ Conformal field theories play a special role in the 
landscape of quantum field theories more generally — 
fixed points of the renormalization group flow.

✤ Mixed QED has vanishing beta function for g and no 
dependence on energy or (tangential) length scales.

✤ Slick argument — we can write the action so that the 
coupling appears multiplying the kinetic terms of the 
photons in the bulk.  But the bulk is free.  



Z
d�ei⇡⌧�

2+`(1�qf�qg+i�)+`(1�qf+qg�i�)+2⇡qt� =

=
e`(1�2qf )

p
�i⌧

Z
dk e�i⇡k2/⌧+`(qf+qt+ik)+`(qf�qt�ik)+2⇡(k�iqt)qg

modified n+ = n- = 1 theory.

n+ = n- = 1 theory

e`(qf�1/2)+`(qf )

Z
d� ei⇡⌧�

2+`(1�qf�qg+i�)+`(1�qf+qg�i�)+2⇡qt� =

=
e`(1/2�qf )+`(1�qf )

p
�i⌧

Z
dk e�i⇡k2/⌧+`(qf+qt+ik)+`(qf�qt�ık)+2⇡qgk�2⇡iqtqg



           Super GrapheneN = 1

Sbulk =

Z

M
d4x

✓
�1

4
Fµ⌫Fµ⌫ +

g2✓

16⇡2
Fµ⌫ eFµ⌫ +

i

2
�̄�µ@µ�+

1

2
D2

◆

Sbry =

Z

@M
d3x

✓
i e �ADA � |DA�|2 + |F |2 + ig

�e�+ �⇤ � e �+�
�

� 1

4
�̄�5e⌘�

5

�� g2✓

8⇡2
e�+�+

◆



Relation to large Nf QED3
(Kotikov-Teber ’13)

photon propagator for mixed dimensional QED 
(don’t FT the normal direction y) 

�i
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p
⌘AB (Feynman gauge)

propagator for large Nf QED3, resummed

�i
⌘AB

p2(1 +⇧(p)) where

Compensated by vertices, 3d e drops out of the amplitudes.
For scattering processes on the boundary (y=0), 
the Feynman rules are the same in the IR with the identification 
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Instability at small Nf  / large g

✤ With Nf four-component massless fermions, there is a 
U(2Nf) flavor symmetry.

✤ Arguments going back to Pisarski (1984) that 
spontaneous generation of a mass gap below a critical 
Nf  can break the symmetry to U(Nf)xU(Nf) in QED3.  
Toy model for chiral symmetry breaking in QCD.

✤ Mixed QED gives physical meaning to a fractional 
value for the critical Nf.



Behavior under EM Duality
(Hsiao-Son ’17)

Using recent progress in 2+1 dimensional non-SUSY dualities

Integrating out aB and Aµ yields same mixed QED theory but with a new 

Z
d3x


i ̄�A(@A � iaA) � 1

4⇡
✏ABCAA@BaC

�
� 1

4g2

Z
d4xF 2

µ⌫

g̃ = 8⇡/g

Can use the duality to calculate the current-current and stress tensor 
correlation function at the self-dual point and at infinite coupling — 
calculate transport coefficients. 

(similar in spirit to H, Kovtun, Sachdev, Son ’07)

(one 2 component fermion)



Transport Results

J = �EOhm’s Law: Boundary condition:

At the self-dual point, 

Relativistic Ward identities then allow one to compute 
heat conductivity and the thermoelectric effect (see my 2009 review).

(we used a similar 
argument back in 2007)
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