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Introduction

» HHLL correlators: computing to all orders in w
» Application of HHLL correlators: phase shift

Common themes: holography and geometry.

1812.03120, 1904.00060, 1907.00867, 1909.05775, 2002.12254,
2005.06877 (in collaboration with R. Karlsson, M.Kulaxizi, G.S.
Ng, P. Tadic )
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Introduction

The two-point function of the stress-tensor in a CFT in d
spacetime dimensions, (T, Tog) ~ Cr contains the central charge
Ct. We will be interested in the C+—o0 limit.

A heavy operator Oy will have conformal dimension Ay ~ Cr
with u ~ Ay /Cr fixed. If the heavy state created by Oy on a
sphere of radius R is thermal, then in the large R limit

Ay Du/R R € 4y
~ O BHIR R C R TR
b=y T vl(sh ¢y T ¢t

where £ is the energy density, T is the temperature.
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Introduction

Consider heavy-heavy-light-light (HHLL) correlator
(OH(00)OL(1)OL(z,2)OH(0))

where O, has conformal dimension A; = O(1). In the T-channel
(z,Zz—1) conformal block decomposition includes stress-tensor
sector: operators made out of stress tensor.

Stress tensor OPE fixed by Ward identity.

A Ay

(O x Oy —T, L xOp) NN %
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Introduction

Stress-tensor sector at O(u?) is a result of an infinite sum over
double stress tensor operators: T,,0q ...030" T,s.

TwOu, - .0y, Top, leading twist 7 = 2(d — 2);
T Taw, Ty - 0u0 Top, 7 =2(d —2) +2
T T, T0Tow, Tl - 03,07 Topg, 7 =2(d —2) +4

d—2
Leading twist k-stress tensors contribute [u(1 — Z) 2 |%. Will
consider lightcone limit simultaneously with p—oco0.
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Introduction

The results in d = 4 are

(OHOHOLO) M =p[(1 - 2)(1 = 2)] 241 - 2)fi(2)

L, (-2 A
<(1)H(9H(,)L(,)L>(2)—:U’2 [(1 — Z)(]. _ Z)]AL (AL i 2> X

(81— 4B~ 3P + (B0 - 8)h()i()
+ Do+ DAE)A)]

where f,(z) = (1 — 2)? 2F1(a,a,2a3,1 — 2).
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Introduction

One can continue this procedure and compute the stress-tensor
sector to any desired order in p. The result has the form:

(OHOHOLO)) ~ exp <AL > k(- 2)‘122]"}'("))
k

In the limit A;—o00, each F(K) has a finite limit. Eg.

F@) _ ~56(E) + 2H()A(2) + PA(2)K()
> 28800
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Introduction: comments

We can read off the OPE coefficients )‘OLOLTﬁV to leading order in

1/Ct. We did not use holography, but recover the OPE
coefficients which have been computed using holography (and get
many more).

Consistent with universality of the leading twist OPE coefficients:
they don't depend on higher derivative corrections in the bulk.

The closest analog of the HHLL Virasoro vacuum block.
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Outline

HHLL correlators to all orders
Correlator on S9-1
Holography

Phase shift
Motivation

Phase shift from gravity
Phase shift from CFT

Summary
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HHLL correlators to all orders

Correlator on S9=1
Holography

Correlator on S9!

Correlator (OyOyOO}) can be viewed as 2-point function
(O101)0,, in the state created by Oy at t = fo0.

S|

) (At _ (At
Cross ratios z = e/('R T8¢) 7 — /(T —A¢)
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HHLL correlators to all orders Correlator on §9—1

Holography

Correlator on S9-1

Will keep
Ax~ = 72 - (At/R — Ap) ~ ip72(1 — 2)

fixed as u—o00, z—1. Large volume limit (R—00) means

Ax™ ~ R%—)oo, Axt ~ 1/R—0; z—1 [hypergeometric
functions in f; become 1]. Equivalently, only operators Ty, ... Tos
contribute [AxT = (At + Ax)/R]

Ax— (A +3\3
Folims = — Iog(Ax+AX_)+X1(20X)

(AX_)2(AX+)6 1583(AX_)3(AX+)9
10080 648648000 Y
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HHLL correlators to all orders Correlator on §9—1

Holography

Correlator on S9-1

For comparison, in d =2
Fld=2 = Foold=2 = —logsinh ( v 5 A +>
which in the infinite volume limit becomes simply

Foold=2 =~ — log sinh <\/2EAX+> )

There is no dependence on x~ and all operators have twist zero.
No analog of the Virasoro block in d > 2 was known.
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HHLL correlators to all orders ) ) cd—1
Correlator on S

Holography

Holography

Asymptotically AdSy441 black hole of mass M.

ds? = —f dt*> + f1dr?® + r?dQ3_,

where ) g
r uRe™
F=1l+m— a2

and
GyM  (5IM

H= Rd—2 = Rd-2
p = (Rs/R)I=2 for y < 1and pu~ (Rs/R)? ~ TYRY for > 1.
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HHLL correlators to all orders 1

Correlator on S
Holography

Holography

Rescale coordinates as x~ = (t — go),uﬁ and y = ru‘ﬁ and
consider the —o0 limit keeping x*, y fixed (here R = 1)

1 1 _ dy2

d52 = —Z (1 — yd_2> (dX+)2 - _y2dX+ dx -+ 7

Two Killing vectors, 04 and O_ give rise to two conserved
quantities, K and K. Geodesic equation (spacelike) becomes

V4 AKK 4+ (y 2=y K2 —y? =0.
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HHLL correlators to all orders 1

Correlator on S
Holography

Holography

Convenient to take the large volume limit — planar horizon.

°° d
Axt ~ 4K/ 4 T
v y2(y~9K2 —4KK, + y?)?
> —2K, +y 9K
Ax™ ~ 2/ dy r+y T
o o y?2(y 9K?2 —4KK, + y?)2

A
d
KAZQ/ 4 T
v (y=9K2 — 4KK, + y?)2

Foo = —£ but it’s UV-divergent, need to regularize.
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HHLL correlators to all orders 1

Correlator on S
Holography

Holography

Define

le(x) _ /°° du I-(x) _ /“ (1 557) du
4 w u'? (udt2— 4ud+x)%7 4 w u'z (udt2— 4ud+x)%

Then the solution for the length is

Or =~ log(AxTAx™) — log[ly(a)l—(a)] + le()

where « is determined by

di2 d—2 d+2

(-Ax) 7 (AxD) T = alT (a) 117 (a)

and

Ay d
/g(X):2/ wrdu  Hiogh,
uo (ud+2—4ud + X)i
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HHLL correlators to all orders 1

Correlator on S
Holography

Holography

d = 2: recover HHLL Virasoro block:

VRAXT
2 )

—Llf|g=2 ~ —logsinh

d = 4: new result; expansion in A, = Ax~(Ax*t)3 agrees with
known data:
A A2 1583A3
—lflgegq ~ —log(Ax~ AxT)+—X X X
fla=a = —log(Ax"Ax)+ o5 + 15080 * 648648000
3975313A%

49401031680000 o
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HHLL correlators to all orders ) ) -
Correlator on S

Holography

Holography

Foold—4 with log(AxTAx™) term subtracted as a function of
Ax—(AxT)3.
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HHLL correlators to all orders 1

Correlator on S
Holography

Holography: comments.

- o\ d=2 di2
Note that the expansions above are wrt T9(A%~) 2 Axt 2 .

Generally, the full correlator contains contributions other than the
stress-tensor sector. In holographic CFTs, these are multi-trace
operators including O;. In d = 2 they all decouple: finite
temperature correlator in the large volume limit is exactly the
(limit of) HHLL Virasoro block.

In d > 2 such operators might survive, but decouple in the
A > 1 limit.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Motivation

What is the stress tensor sector of an HHLL correlator good for?
Are there observables which are not sensitive to other contributions
(at least in holographic CFTs)?

One such observable: phase shift.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Motivation

High energy gravitational scattering amplitude (large s, finite t) is
described by the eikonal phase (a.k.a. the phase shift)

A~ eié(s,b)

where b is the impact parameter. This is the result of the
summation of infinite number of diagrams, but comes from the
exponentiation of
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Motivation

Consider light particle of mass m and energy E scattering off a
heavy particle of mass M. Assume M > E > m.

R D—-4
51 = Eb <b> N Y

Higher order terms can in principle be computed. R/b is the
expansion parameter. E.g.

2D—6
5@ = Eb (*ZS)
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Motivation

Similar expressions exist for scattering in AdSy11 (D =d +1):

o) o [ [ et (0)0()00)O(4)
X3 J Xq4
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Motivation

The phase shift can also be obtained by studying the propagation
of a null geodesic (1st particle) in a shock wave background
created by the 2nd particle.

/e

5(S,XL) = *Pl - Ax ~ Sn(XL)

where l(x ) is a propagator in the transverse space.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Motivation

HHLL case: consider
O / P (Op(t = 00)OL(x)OL(0)Om(t = —o0))

at large momenta, the correlator is dominated by a null geodesic
and §(p) =~ —p - Ax.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Phase shift

Killing vectors 0; and 0, (isometries w.r.t. time translation and
rotation of S971) give rise to conserved quantities pt and p¥:
2 d—2
r uR ot 0
I+ o5~ 5 PP =0

R rd=2 ) 9x N’
where A is an affine parameter. Null geodesics are labeled by the
impact parameter L;

ezL:Pt-i'P“"_i

pt—p¥ p

Minkowski results are recovered in the flat space limit: Rs/R < 1
(bn<1)and L~ b/R < 1.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Phase shift from gravity

Null geodesic equation g, x*x” = 0 (derivatives w.r.t. affine
parameter \) takes the form

SV 4 Ver(r) = 5 (0

vt = O (145 1)

where

2

One-dimensional motion. Can solve for f, t ~ pt and ¢ ~ p¥.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Phase shift from gravity

For 1+ = 0 all null geodesic reimerge at the same point
t =, = 7. Deviation from it parameterized by
Ax(L) = (At, Ay).

At:2/ —dr —m, A30:2/ Tdr—m
n r (4} r

These can be computed order by order in p.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Phase shift from gravity

The resulting phase shift § = —p*Ax;, can be expanded

§="> sk
k=1
We computed all 6(9) = \/—p2 §(K)(L). For example,

o) ~ \/—p2 e (d-1L 2F1(g —1,d -2, g +1,e72h

In the small impact parameter regime L < 1 we recover the
Minkowski result. The radius of convergence of the series
corresponds to the null geodesic approaching the circular null orbit.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

CFTind =2

In the d = 2 case the stress-tensor sector of the correlator is known
to all orders in p (Virasoro vacuum block):

1

(OH(0)O(00)OL(1)O(2)) ~ (sin [am + (At + p)])

AL

where @ = y/1 — u. The integral picks up the pole where the
argument of the sin vanishes and the phase shift is simply

§ = %p*(At + ) =my/—p2et <

=)

which agrees exactly with the gravity result.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Phase shift from CFT

d = 2 case provides a good illustration that the phase shift is only
sensitive to the stress tensor sector (not to multi trace operators
like O 0" O).

The full correlator of course contains such contributions, but the
Fourier transform kills them. This is similar to what happens in the
LLLL case.

Can't reproduce the correlator from the phase shift, but can

compute the phase shift from the Regge limit of the correlator:
l1-z=0e’,1—-Z=0e ", 0 = 0 with p fixed.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Phase shift from CFT

Generally, the Fourier transform looks like
/ P (OyOHOLOL) ~ (—p?)AL=? (1 s 4 )

where we expect §(K) ~ \/—p2 from gravity. Inverting the O(p)
term:
(OHOHOLO)W = i / e P (—p?)P 26 (p) ~

p

Note that 1/0 is consistent with the 1/07~1 behavor of the T,
conformal block (J = 2) in the Regge limit. () is reproduced
from the T,, exchange exactly.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Phase shift from CFT

At O(112) we encounter

O T O R

o2 c o
Quotation means comes from the Fourier transform of the
corresponding term. 1/o term can't compute from gravity:

6 ~ \/—p2 + O(1).

Note that 1/02 naively corresponds to the contribution of spin-3
operator, but in reality it comes from the sum of all double-stress
tensor operators, labeled by their spin.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Phase shift from CFT

The cross-channel sum produces

(OhOROLO)Y ~ 127 PYFTOPE goi(2,2)

/dé/dn/ —iP(—p?)AL=25 (pt—n—0) 6 (p~—n) vV (n, )

Hence, 6() = —y()(n, ¢) with n,£ > 1 and £/n = e** — 1.
Regge limit: —p? > 1; L finite. Note that L — 0 is the flat space

limit and L — oo is the limit where leading twist operators
dominate.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Phase shift from CFT

Similar analysis can be done at higher orders in 1. E.g.
6@ ~ 1) 4 A1 A1)
In the flat space limit 62 ~ —~(2),

The anomalous dimensions can be independently computed as an
energy shift in the AdS-Schwarzschild background. Or, the can be
taken from the bootstrap calculation.
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Motivation
Phase shift Phase shift from gravity
Phase shift from CFT

Phase shift from CFT

Consider d = 4: )
3n
1 _ 2"
K ]
35 (20 + n)n3 n?
2) _
i e R

which can be expanded in the large impact parameter regime:

(2) 17 n3 35 n4

TRy e e

which exactly matches the O(u?) leading and subleading
anomalous dimensions obtained from bootstrap.
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Summary

Summary

>

Studied the stress tensor sector of HHLL correlators.

v

In the double scaling limit, where all minimal twist multi stress
tensors contribute, obtained solution in the large volume limit.

v

Phase shift in AdS is determined by the stress tensor sector.
Computed to all orders in p.

Matched to the known HHLL correlator.

v

Andrei Parnachev CFT correlators and Black Holes. Part 2



Summary

> Is there a closed form for generic HHLL correlators?
» Symmetry of the lightcone correlator?
» Can we make progress deconstructing thermal CFTs?

> Applications. Hydrodynamics, thermalization, quantum
chaos...

» Inelastic scattering...

Thank you!
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