Innate immunity in a biomineralized context: trade-offs or synergies?
Innate immunity in a biomineralized context: trade-offs or synergies?

CONVENORS

Prof. Maxwell Hincke
LE STUDIUM RESEARCH PROFESSOR
FROM: Innovation in Medical Education & Cellular and Molecular Medicine, University of Ottawa - CA
IN RESIDENCE AT: Avian Biology & Poultry Research (BOA) / Centre INRAE Val de Loire, University of Tours - FR

Dr Sophie Réhault-Godbert
Avian Biology & Poultry Research (BOA) / Centre INRAE Val de Loire, University of Tours - FR

ORGANIZING COMMITTEE

Sophie Gabillet, General Secretary
Dr Aurélien Montagu, Scientific Relations Manager
Maurine Villiers, Communication & Events Manager
LE STUDIUM Loire Valley Institute for Advanced Studies • Région Centre-Val de Loire • FR
Created in 1996 on the CNRS campus in Orleans La Source, LE STUDIUM has evolved to become the multidisciplinary Loire Valley Institute for Advanced Studies (IAS), operating in the Centre-Val de Loire region of France. LE STUDIUM has its headquarters in the city centre of Orleans in a newly renovated 17th century building. The amazing facilities are shared with the University of Orleans. In 2014 new developments and programmes linked to the smart specialisation of the Centre-Val de Loire region came to strengthen existing IAS collaborative relationships with the local and the international community of researchers, developers and innovators.

LE STUDIUM IAS offers to internationally competitive senior research scientists the opportunity to discover and work in one of the IAS’s affiliate laboratories from the University of Tours, the University of Orleans, National Institute of Applied Sciences (INSA) Centre Val de Loire and ESAD Orléans, as well as of nationally accredited research institutions located in the region Centre-Val de Loire (BRGM, CEA, CNRS, INSERM, INRAE). Our goal is to develop and nurture trans-disciplinary approaches as innovative tools for addressing some of the key scientific, socio-economic and cultural questions of the 21st century. We also encourage researchers’ interactions with industry via the IAS’s links with Poles of Competitiveness, Clusters, Technopoles, and Chambers of Commerce etc.

LE STUDIUM has attracted two hundred and thirty experienced researchers coming from 47 countries for long-term residencies. In addition to their contribution in their host laboratories, researchers participate in the scientific life of the IAS through attendance at monthly interdisciplinary meetings called LE STUDIUM THURSDAYS. Their presentations and debates enrich the regional scientific community at large (researchers of public and private laboratories, PhD students, research stakeholders’ representatives, etc...)

For the period 2015-2021, LE STUDIUM operates with an additional award from the European Commission in the framework of the Marie Skłodowska-Curie Actions (MSCA)-COFUND programme for the mobility of researchers. Since 2013, LE STUDIUM is also an official partner of the Ambition Research and Development 2020 programmes initiated by the Centre-Val de Loire Regional Council to support the smart specialisation strategy (S3) around 5 main axes: biopharmaceuticals, renewable energies, cosmetics, environmental metrology and natural and cultural heritage. New programmes are currently designed to include all major societal challenges.

Researchers are also invited and supported by the IAS to organise, during their residency and in collaboration with their host laboratory, a two-day LE STUDIUM CONFERENCE. It provides them with the opportunity to invite internationally renowned researchers to a cross-disciplinary conference, on a topical issue, to examine progress, discuss future studies and strategies to stimulate advances and practical applications in the chosen field. The invited participants are expected to attend for the duration of the conference and contribute to the intellectual exchange. Past experience has shown that these conditions facilitate the development or extension of existing collaborations and enable the creation of productive new research networks.

The present LE STUDIUM CONFERENCE named is “Innate immunity in a biomineralized context: trade-offs or synergies?” the 109th in a series started at the end of 2010 listed at the end of this booklet.

We thank you for your participation and wish you an interesting and intellectually stimulating conference. Also, we hope that scientific exchanges and interactions taking place during this conference will bring opportunities to start a productive professional relationship with presenting research laboratories and LE STUDIUM Loire Valley Institute for Advanced Studies.

Yves-Michel GINOT
Chairman
LE STUDIUM
Biomineralized structures can function as a barrier to the external environment, and as such are conceptually entwined with innate immune processes. Disentangling immune and biomineralization mechanisms represents a significant challenge for researchers trying to understand how organisms could integrate biomineral formation and plasticity with maintenance of critical innate immune protection. In fact, there is increasing evidence that immune proteins can serve genuine dual-functional roles, both in regulation of biomineralization, as well as resisting pathogens. This awareness is growing in models as diverse as the dual-functioning haemocytes of marine bivalves, and in mineralization / demineralization of the avian eggshell. Moreover, reef corals, in which calcification is coupled to the photosynthetic activity of their mutualistic symbiots, must adapt their innate immune system to achieve this tolerance. Cnidarian immune-related processes in response to abiotic stresses are increasingly implicated in loss of symbiosis and coral bleaching.

This conference aims to bring together scientists working with diverse models of biomineralization, for an exchange of perspectives on the innate immune function of the calcified barrier and the dual role played by specific genes / proteins in these two critical functions.
Dr Garima Kulshreshtha - Food safety of table eggs is modified by bird environment and behaviour as reflected by eggshell cuticle quality.

16:50 Break

SESSION 3: BONE

17:00 Dr Claudine Blin - The innate immune function and diversity of osteoclasts

17:20 Dr Natalie Reznikov - Application of deep learning for segmentation of 3D images in biomineralization research

SESSION 4: INTEGRATIVE WORKSHOP

17:40 Dr Joël Gautron - Avian eggshell biomineralization and innate immunity

18:10 End of the first day

WEDNESDAY 24TH MARCH 2021 - 13:30 - 16:45(GMT+1:00 - PARIS)

13:30 Prof. Maxwell Hincke & Dr Sophie Réhault-Godbert - Introduction to the second day

SESSION 5: THEME INVERTEBRATES (BIVALVES, SNAILS)

13:40 Prof Inna M. Sokolova - Multifunctionality of bivalve hemocytes: A potential source of trade-off between immunity and biomineralization?

14:00 Dr Frédéric Marin - Mollusk shell matrices: unexpected functions in biomineralization

14:20 Dr Sophie Berland - Probing the mechanical properties and biochemical defence offered by shell matrix proteins in bivalves

14:40 Dr Christine Paillard - The Brown Ring disease in clams, a double-edged defense mechanism for shell disease recovery!

15:00 Dr Robbie Rae - Biological armour used to kill parasites

15:20 Flash posters presentations: Dr Liu Chuang - Proteomics of shell matrix proteins from the cuttlefish bone reveals unique evolution for cephalopod biomineralization

15:25 Break (20 minutes)

SESSION 6: THEME CORALS

15:45 Dr Nikki Traylor-Knowles - Coral eco-immunity in a disease landscape of unknowns

16:05 Dr Jeroen Van de Water - Host-microbe interactions in octocoral holobionts

SESSION 7: INTEGRATIVE WORKSHOP

16:25 Prof. Marc McKee & Prof. Maxwell Hincke - Lessons learned and the path forward for innate immunity in biomineralization

16:45 End of the conference
TABLE OF CONTENTS

CONVENORS

Prof. Maxwell Hincke .. 12
The chorallantoic membrane: functional insight from proteomics

Dr Sophie Réhault-Godbert .. 13
The eggshell microbiome

SPEAKERS

Dr Liliana D’Alba .. 14
Eggshell mineralization in relation to nesting ecology in reptiles

Dr Sophie Berland .. 15
Probing the mechanical properties and biochemical defence offered by shell matrix proteins in bivalves

Dr Claudine Blin ... 16
The innate immune function and diversity of osteoclasts

Dr Ian Dunn .. 17
The genetics and function of the cuticle, the eggs antimicrobial outer barrier.

Dr Joël Gautron ... 18
Avian eggshell biomineralization and innate immunity

Dr Nicolas Guyot ... 19
Phylogenetic and structural evolution of egg antimicrobial proteins and peptides

Prof. Bernd Kaspers ... 20
The developing immune system of the chicken embryo

Dr Frédéric Marin ... 21
Mollusk shell matrices: unexpected functions in biomineralization

Prof. Marc McKee .. 22
The structure of avian (chicken) eggshell

Dr Christine Paillard .. 23
The Brown Ring disease in clams, a double-edged defense mechanism for shell disease recovery!

Dr Robbie Rae .. 24
Biological armour used to kill parasites

Dr Natalie Reznikov ... 25
Application of deep learning for segmentation of 3D images in biomineralization research

Prof. Alejandro Rodriguez Navarro .. 26
Mechanisms of eggshell biomineralization

Prof. Inna M. Sokolova ... 27
Multifunctionality of bivalve hemocytes: A potential source of trade-off between immunity and biomineralization?

Dr Nikki Traylor-Knowles ... 28
Coral eco-immunity in a disease landscape of unknowns

Dr Jeroen Van de Water ... 29
Host – Microbe Interactions in Octocoral Holobionts
In oviparous animals such as birds, embryonic development occurs in the egg; after oviposition, there is no further possibility of material exchange from the hen to fulfill the physiological needs of the embryo. In such a context, the egg must contain all resources required for survival and proper development of a living organism. During embryonic development, the chorionicallantoic membrane (CAM) is a placenta-like structure which is the nexus for many different physiological and metabolic processes including acid-base balance, respiration, and calcium solubilization from the eggshell that is re-allocated for bone and tissue formation. The highly vascularized CAM occupies a strategic position, as it forms a lining under the eggshell and surrounds the embryo from ED12 onwards. The cellular and genetic bases for its protective mechanisms remain to be fully elucidated. One approach to understanding the functions of the CAM is to identify its protein constituents and how they change during development. In this study, we have characterized the CAM proteome at two stages of development (ED12 and ED19), and assessed the embryonic blood serum proteome to determine its contribution. LC/MS/MS-based proteomics allowed the identification of 1470, 1445, and 791 proteins in CAM (ED12), CAM (ED19), and embryonic blood serum (EBS), respectively. In total, 1796 proteins were identified in the entire study. Of these, 175 identification of 1470, 1445, and 791 proteins in CAM (ED12), CAM (ED19), and embryonic blood serum proteome to determine its contribution. LC/MS/MS-based proteomics allowed the identification of 1470, 1445, and 791 proteins in CAM (ED12), CAM (ED19), and embryonic blood serum (EBS), respectively. In total, 1796 proteins were identified in the entire study. Of these, 175 constituents have been interpreted in the context of CAM functions, including Ca2+ solubilization (ED12), 177 (ED19), and 105 (EBS) were specific to these stages / compartments. These protein constituents have been interpreted in the context of CAM functions, including Ca2+ solubilization / transport and protection against invading pathogens.

The chorionicallantoic membrane: functional insight from proteomics.

Co-authors: Dr. Tamer Ahmed (University of Ottawa)

The eggshell microbiome

Avian eggs possess very efficient and orchestrated systems to protect the embryo during incubation, until hatch. Although the internal components of the egg are assumed to be sterile, the surface of the eggshell is covered by microbes (essentially bacteria) that may contribute to prevent eggshell colonization by pathogenic bacteria, through direct inhibition and/or competitive exclusion. The composition of the eggshell microbiome is a heritage from both maternal microbiota (caeca/faeces) where the egg meets caecal secretions in the cloacal segment during oviposition, and from the nesting environment (contaminated litter/feathers and air environment including dust). At laying time, the egg surface is still moisturized, but will progressively dehydrate during incubation. The surface characteristics of the egg, the loss of the moisture layer and the presence of antimicrobial molecules composing the cuticle are likely to dictate the bacterial communities that will survive on the surface of the eggshell. Although the literature on the composition of the eggshell microbiome of eggs originating from current commercial chicken hens is quite sporadic, this talk aims to provide an overview of the bacterial communities that colonize the chicken eggshell surface, and will discuss the role of the eggshell microbiota as the first barrier against pathogenic bacteria.

Dr Sophie Réhault-Godbert

Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement

INRAE, Université de Tours, UMR Biologie des Oiseaux et Aviculture 37380 Nouzilly - FR

Email: sophie.rehault-godbert@inrae.fr

Phone: +33 2 47 42 78 51

Sophie Réhault-Godbert is a protein biochemist working as a scientist in the team “Défenses de l’Oeuf, Valorisation, Evolution” at the “Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement”, France. The aim of her study is to explore the physiological functions of egg proteins and more specifically their contribution to egg defenses. She possesses an expertise in the physiology of chicken egg formation, in egg innate immunity and in the functional and structural characterization of egg proteins including proteases, antiproteases and antimicrobials. She is currently conducting researches on the role and the regulation of extraembryonic structures in egg defenses during chicken embryonic development. She authored 30 peer-reviewed articles, 8 book chapters, and holds two patents in the field of Egg Science.

Dr. Maxwell Hincke

LE STUDIUM Research Professor

University of Ottawa

451 Smyth Road, Ottawa - CA

Email: mhincke@uottawa.ca

Phone: +1-613-562-5800

Maxwell Hincke (Ph.D. Biochemistry, University of Alberta, Canada). LE Studium Research Professor with Centre INRAE Val de Loire, Université de Tours; Tenured Full Professor, Department of Cellular and Molecular Medicine and Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Canada. International authority on the proteins associated with the eggshell matrix / eggshell membranes and their function in eggshell mineralization and innate immune protection of the egg with over 110 peer-reviewed journal articles. Expert in biomedical applications of products derived from eggshell, eggshell membranes and chicken RBCs. Fundamental studies on eggshell strength and cuticle antimicrobial resistance are also underway.
Innate immunity in a biomineralized context: trade-offs or synergies?

LE STUDIUM
understanding about the importance of reptile eggs on vertebrate evolution and diversification. Inferences generated in this project will contribute to increase our understanding about the importance of reptile eggs on vertebrate evolution and diversification.

Eggshell mineralization in relation to nesting ecology in reptiles

Co-authors: Prof. Matthew Shawkey
Department of Biology, EON-unit, Universiteit Gent.

Egg morphology is essential for animal survival, mediating the interactions between embryos and their environment, and a result have evolved into an enormous diversity of forms and functions in modern vertebrates. Reptiles show considerable variation in the degree eggshell calcification, which through evolution shows a tendency to increase. Several hypotheses have been proposed to explain the advantages of intensified mineralization, for example that calcified eggshells increase protection of embryos from mechanical and biological stressors, modulate gas exchange and water physiology or that calcification might be a detoxification mechanism. However, these hypotheses still await experimental validation. Moreover, a vast proportion of reptiles successfully reproduce based on eggshells with incipient or no calcification. Thus, the questions of why the process of increasing calcification of eggshells occurred or about the advantages of shell calcification still remain. In this study I characterized eggshell structure and chemical composition of eggshells of 96 species, and performed comparative phylogenetic analyses to investigate the relationship between life-history, nesting ecology and functional properties on the evolution of calcification of reptile eggshells. The findings show that reptile eggs display larger diversity in egg phenotypes than previously thought and that this diversity is coupled with a large range of functional properties. Calcium content is correlated with adult body size but it seems a poor predictor of its functional performance. At a large scale, the nesting environment seems to play a minor role in determining the level of mineralization of eggshells but specific nesting microclimates might lead to particular calcification patterns. Inferences generated in this project will contribute to increase our understanding about the importance of reptile eggs on vertebrate evolution and diversification.

Probing the mechanical properties and biochemical defence offered by shell matrix proteins in bivalves

Co-authors: Dr Arul Marie¹, Dr Jaison Arivalagan²

¹UMR 7245 CNRS/ MNHN, Sorbonne Universités, Muséum national d’Histoire naturelle Paris, France
²Proteomics Center of Excellence, Northwestern University, Chicago, IL-60611, USA

Calcium carbonate is paired up with shell matrix proteins in the suited organo-mineral outer shell in molluscs. Advanced knowledge in the shell proteome is achieved with the development of proteomics providing insights in the biological control of biomineralization at the shell side. Four bivalve species of distant kinship were subjected to proteomics for sequence and function pattern analysis of their retrieved shell matrix proteins. Domains ruling for calcification mechanisms, e.g. carbonic anhydrase, chitin binding and tyrosinase remained common in all the species signifying sustained calcifying control proteins. Other shell proteins were fitted with functions beyond mineralization of which with relationship to immunity and especially the phenoloxidase pathway. Some populations of M. edulis, have adapted to the low saline Baltic Sea conditions, resulting in peculiar phenotype towards shell dwarism with oversize periostracum, increased organic content and disorganized mineralized layers. The shell proteome was analysed with focus on the modulation of the shell proteins as a meaning of adaptive response to unbalanced conditions for shell calcification. Interestingly, proteins with immunity-related domains appeared modulated. Provided the hypothesis that the shells have embraced evenly aspects of inheritance and adaptive response, decrypting this molecular information is critical to understand the biomineralization adaptation demands and to identify calcifiers populations resilience as well.

SPEAKERS

Dr Liliana D’Alba
Universiteit Gent
K.L. Ledeganckstraat 35
Gent - BE
Email: Liliana.dalba@ugent.be

Liliana D’Alba holds a M. Res. in Ecology and Environmental Biology and a Ph.D. in Evolutionary Biology from Glasgow University, UK. She currently works as a senior research scientist at the Evolution and Optics of Nanostructures research group at the University of Gent. Dr. D’Alba is an Integrative Biologist whose main research foci include: the production mechanisms and evolution of animal coloration and the functional and evolutionary morphology of vertebrate eggs. Her research integrates field and laboratory methods to answer a broad range of ecological, physiological, behavioral and evolutionary questions about birds and reptiles. She has authored 50 peer-reviewed articles, she has been invited over 15 times to give special talks at international conferences and symposiums and her work has been funded by more than five international research agencies including US-NSF, FWO-Belgium, The European Commission, National Geographic and CONACyT-Mexico.

Dr Sophie Berland
Département "Adaptations du Vivant", CNRS/MNHN Sorbonne Universités, Muséum national d’Histoire naturelle
43, rue Cuvier
75005 PARIS – FR
Email: sophie.berland@mnhn.fr
Phone: +33 1 40 79 35 92

I took my first degree in Life Sciences and my PhD, on the evolution of Sensory nervous system at the University of Pierre et Marie Curie (Paris). I then joined the National Museum of Natural History for the rest of my career where I am based in the department “Adaptations du Vivant” as a research engineer. Today in the scope of the team "Biodiversity, plasticity, adaptation and conservation, I attempt to unravel features of functional ecology and evolution of biological systems by highlighting adaptive and environmental signatures in biomineralized systems using new spectroscopic or imaging methods and proteomics.

Co-authors: Prof. Matthew Shawkey
Department of Biology, EON-unit, Universiteit Gent.
The innate immune function and diversity of osteoclasts

Osteoclasts are the cells responsible for bone resorption in steady state and bone destruction in chronic inflammatory diseases and osteoporosis. Up to recently, they have been considered only as a single population of bone-resorbing cells whose differentiation and activity are increasing in pathologies associated with bone destruction. However, recent data demonstrated that besides bone resorption, osteoclasts are innate immune cells. In particular, they present antigens and activate T cell responses towards tolerance in steady state. Moreover, they are also able to stimulate inflammatory T cells in the context of chronic inflammation. Using RNAseq on purified mature osteoclasts, we showed that these divergent immune effects are related to functionally and transcriptionally distinct subsets of osteoclasts. Therefore, bone destruction not only relies on an increased number of osteoclasts but also on the emergence of different osteoclast subsets having opposite immune outcomes. Taking advantage of the immune characteristics of these different subsets and in particular their different capacity to respond to danger signals arising from gut dysbiosis, we could specifically block the differentiation of inflammatory osteoclasts and reduced bone destruction in ovariectomized mice. These new data on the diversity and innate immune function of osteoclasts open very novel perspectives for fighting against inflammatory bone destruction.

Dr Claudine Blin
LP2M, CNRS, Université Côte d’Azur
Faculté de Médecine
28, Avenue de Valombrose
06107 Nice cedex 2 - FR
Email: claudine.blin@uinv-cotedazur.fr

I have worked in poultry science for over 40 years, starting on laying hen urolithiasis and deep pectoral myopathy. With the growth of molecular biology I moved into the genetic and genomic age, understanding the neuroendocrine control of reproduction and later moving into more classical quantitative genetics to locate chromosomal regions controlling traits including egg quality, broodiness and bone strength. This has continued and I have applied these skills to reproduction but particularly egg quality and osteoporosis in close collaboration with poultry breeders. This has led to new selection tools such as dynamic stiffness and a greater understanding of egg biology. I have authored around 96 publications and I lead a group of researchers on aspects of poultry research.

Prof. Ian Dunn
The Roslin Institute and Royal (Dick) School of Veterinary Studies
University of Edinburgh, Easter Bush
Midlothian, EH25 9RG, Scotland - UK
Email: ian.dunn@roslin.ed.ac.uk
Phone:+44 (0)131 651 9225

The genetics and function of the cuticle, the eggs antimicrobial outer barrier.

Avian eggs have a proteinaceous cuticle covering the outside of the eggshell forming a barrier to the transmission of microorganisms. Although the cuticle is similar to the organic matrix, its secretion is separate from the organic matrix and occurs just prior to oviposition. Using NGS sequence it was possible to investigate genes that might be involved in cuticle deposition, which suggested that an endogenous clock may control events in the uterus, including cuticle deposition. There is considerable variation within breeds of chicken and indeed between species in the quantity of cuticle deposition. Around 40% of the variation within chicken breeds is genetically determined. Environmental stressors explain some of the variation but the remainder is not known. Within the range of natural variation there are considerable differences in the antimicrobial protection that the cuticle affords the egg. The eggs with the best cuticle are not penetrated when challenged by E.coli and Salmonella. Interestingly, although the cuticle protein had intrinsic antimicrobial activity, we could not prove that the glycosylation level was important for this activity. The cuticle is a fascinating structure with antimicrobial effects but also on the shell, which has been rarely studied.
Dr Joël Gautron
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
INRAE, Université de Tours, UMR Biologie des Oiseaux et Aviculture
37380 Nouzilly - FR
Email: joel.gautron@inrae.com
Phone: +33 2 47 42 75 40

I’m research director and co-leader of the team "Egg defenses, enhancement, evolution". My research focuses on biochemistry and molecular biology related to the formation of eggs and their qualities. I worked on the formation of shells and the identification of proteins from the organic matrix of the eggshell, involved in the calcification process and coordinated several national and international research programs. My research also focuses on the high throughput methodologies used to identify and characterize the biological activities linked to the egg’s natural defenses. I have published more than 70 publications in international scientific journals, 12 book chapters, and have been invited to present my results at more than 30 congresses and I count about 120 papers at conferences.

Avian eggshell biomineralization and innate immunity

Dr Nicolas Guyot
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
INRAE, Université de Tours, UMR Biologie des Oiseaux et Aviculture
37380 Nouzilly - FR
nicolas.guyot@inrae.fr
Phone: +33 2 47 42 76 89

Nicolas Guyot is a research scientist at the French Research Institute for Agriculture, Food and Environment (INRAe) and conducts his research in the UMR Avian Biology and Poultry Research in Nouzilly, France. He completed his PhD in 2005 at the University of Tours after working on the biochemical characterization of recombinant protein inhibitors targeting the neutrophil serine proteases. From 2006 to 2010, he worked as a postdoc fellow on topics related to proteases and antiproteases in lung inflammation, successively at the Royal College of Surgeons in Ireland in Dublin and at the University of Reims Champagne-Ardenne. Since his recruitment at INRAe in 2010, he is developing research projects on the functional and structural characterization of egg antimicrobial peptides and proteins, and on the regulation of egg antibacterial activities induced by the hen physiology or by the egg environment.

Phylogenetic and structural evolution of egg antimicrobial proteins and peptides

The avian egg is designed to support the autonomous development of the chick embryo in the outside environment. It initially contains all the nutrients required for embryonic growth and provides efficient physical and immune protections primarily via the calcified eggshell and the numerous antimicrobial proteins and peptides. The antimicrobial content of eggs has been shaped during evolution to cope with the microbial pressure and potential contaminations. These antimicrobials are present within all parts of the egg, although they are mostly abundant and active in the egg white and in the perivitelline layer. Egg antimicrobial molecules show high structural and functional diversity, displaying bactericidal or bacteriostatic activities via different but complementary mechanisms (e.g. interaction with bacterial cells which further triggers permeabilization and bacterial death, decrease in the bioavailability of nutrients required for microbial growth, inhibition of microbial proteases involved in virulence). Interestingly, some of these antimicrobials lack orthologs in mammals and are specifically deposited in eggs by the hen during egg formation, which suggests that they have a specific role in the innate immune protection of the avian egg, or even other biological functions related to avian reproduction. The presentation will mainly focus on a selected panel of relevant egg antimicrobial proteins and peptides with a particular emphasis on their structural and phylogenetic features.
The developing immune system of the chicken embryo

Development of hematopoietic cells has been investigated intensively in the chicken embryo. Early hematopoietic stem cells develop in the aortic region and seed to primary lymphoid organs where they mature into T- and B-lymphocytes. Subsequently, they start to colonize the periphery at embryonic day 15/19 and around hatch, respectively. Monoclonal antibodies, recombinant cytokines and new in vivo technologies were instrumental to dissect these pathways. For example, bursal development is dependent on B cell activating factor of the TNF family (BAFF) as shown by retroviral mediated overexpression of BAFF or its decoy receptor (BCMA). This technology may be useful to study other regulatory systems including chemokines which media targeted migration during haematopoiesis. Using small soluble inhibitors, we recently could show that the chemokine receptor CXCR4 and its ligand CXCL12 are essential for the colonization of the bursa anlage by B-cell precursors. Microarray studies of the developing bursa identified a range of additional cytokines and chemokines, which may play an important role at distinct developmental stages. Amongst them, we found OPG and RANKL, which have been cloned in the chicken and would be available for future studies not only in B-cell but also in bone biology. Further progress came with the first gene knockout in chickens now enabling phenotypic studies and rescue experiments to better understand the functional role of such factors.

Mollusk shell matrices: unexpected functions in biomineralization

To construct their skeletons, all metazoans secrete a complex array of macromolecules that are supposed to display key-functions in biomineralization, such as crystal nucleation and crystal growth orientation. These macromolecules - generally less than 1% of the skeletal weight - are occluded during skeletal growth and can be retrieved and analyzed by dissolving the mineral phase. They comprise proteins, glycoproteins, peptides, polysaccharides, and sometimes, lipids, pigments and metabolites. They constitute collectively the ‘calcifying matrix’, from which proteins and glycoproteins are the most studied.

In the last decade, the coupling of high-throughput screening techniques (transcriptomics + proteomics) has allowed the identification of a large number of proteins of the ‘skeletal repertoires’, in diverse metazoan phyla. To give an idea, in mollusks, more than 1000 proteins are now listed as putative shell proteins, in about 30 different genera.

Proteomic data underline the diversity of these proteins, which goes along with the diversity of functions required for calcifying a skeleton. Beside expected members (acidic proteins, proteins with hydrophobic domains), shell proteomes (aka ‘shellomes’) reveal a large variety of proteins with very different low complexity domains. Above all, the surprise comes from the discovery of a huge set of proteins involved in immunity and defense mechanisms in general. This last aspect will be particularly discussed in my talk.
The structure of avian (chicken) eggshell

The functional properties of biomineralized structures found in Nature result from interactions between their hybrid components – both organic (mostly proteins) and inorganic (mineral) phases – to generate hierarchical organization across different length scales. In its dual function, the calcitic avian eggshell provides a protective barrier for the enclosed developing chick embryo while also serving to provide calcium for the growing chick skeleton by the process of shell dissolution. Here, a detailed structural analysis (including a description of nanostructure) is given for the eggshell produced by the domesticated chicken, along with changes that occur following eggshell dissolution – a shell-thinning and weakening process leading to hatching of the chick (pipping) which occurs after egg fertilization and incubation. Eggshell contains abundant proteins, and the localization of some of these (particularly osteopontin) will be described at the ultrastructural level, and correlated with generating nanostructure and shell hardness. X-ray and electron imaging and diffraction data, together with atomic force microscopy observations, describe an aligned nanostructure of mineral within the shell. A similar nanostructure could be reproduced in synthetic calcite crystals by the simple addition of osteopontin, which becomes occluded within the calcite to generate this mineralization pattern. Taken together, these findings are consistent with this protein’s mineral-binding and regulatory role in biomineralization in a large number of biological systems, and point to a highly conserved, mineral nanostructure-regulating activity of osteopontin conserved over at least 300 million years of evolution.

Marc D. McKee is a full professor at McGill University in Montreal, Canada Research Chair in Biominalization, with a joint appointment in Dentistry and Medicine. He received his Ph.D. from McGill University, followed by postdoctoral training at Harvard / The Children’s Hospital Boston, and then held appointments at the Forsyth Institute in Boston and the University of Montreal. His research focuses on biomineralization in bones and teeth, otoliths and eggshells, and in pathologic calcification. With over 238 publications and more than 28,500 citations, and for his accomplishments in biominalization research, he has received two Distinguished Scientist Awards from the International Association for Dental Research (1996 Young Investigator Award, 2003 Biological Mineralization Award), and an Elected Award (2019 Adele L. Boskey Award) from the American Society for Bone and Mineral Research. He is also the recipient of the 2018 C.P. Leblond Award honoring a Quebec scientist for exceptional involvement in bone research.

Christine Paillard, CNRS Research Director, coordinates a “Environment-Host-Pathogen-Microbiota Interactions” research group within the LEMAR at IUEM-UBO. She is interested in how environmental factors modulate host-host-pathogen interactions, with clams and abalones interacting with vibrios as the main model organisms; her interests include ecophysiology, host-pathogen coevolutionary arm race, immunology and microbiology. C. Paillard discovered Vibrio tapetis as the bacterial agent responsible for the shell disease Brown Ring Disease in clams. She is studying the adaptations of molluscs to temperature and acidification by combining integrative studies. In the clam model, she is currently studying how the microbiota in relation to immune defence could interfere with shell repair processes.

The Brown Ring disease in clams, a double-edged defense mechanism for shell disease recovery!

Brown Ring disease is caused by Vibrio tapetis, which, by adhering to newly secreted shell matrices, interferes with the biomineralization process. Colonization and alteration of the matrices induce the deposit of conchiolin on the inner surface of the valves, forming a characteristic brown deposit instead of contributing to shell growth. This defense mechanism consists firstly in coating the bacteria within the organic layers of melanized matrices, and secondly in covering the brown deposit with shell layers to achieve complete healing of the shell. This defense phenotype varies greatly depending on, (1) the host physiology, its immune response and its microbiota, (2) the pathogen virulence and its capacity to modulate shell fluid pH, and (3) the environmental conditions. The first barriers V. tapetis faces, the mantle epithelium and the extrapallial fluids, react rapidly and hemocytosis and the activation of enzymes. This early immune response does not induce a decrease of host physiological parameters, suggesting a commensal relationship. On the other hand, in advanced stages of disease or incomplete recovery, the microparasite induces immunodepression and interrupted shell growth, clearly showing trade-offs between immune defense and biomineralization processes. Thus, in the context of Brown Ring Disease, immunity and shell repair processes interact closely either in synergy or as trade-offs depending on their position along the mutualism-parasitism interaction gradient.
I studied at the University of Aberdeen for my PhD, then moved to the Max Planck Institute for Developmental Biology in Tuebingen for my postdoc. I began at LJMU in 2013 and recently became Reader in Ecological Genetics in 2020. My research is focused on studying parasitic nematodes (Phasmarhabditis hermaphrodita) and their interactions with pestiferous gastropods. This nematode has been formulated as a biological control agent (called Nemaslug®) available across northern Europe. I am interested in how it evolved to be the only nematode out the entire phylum Nematoda able to kill slugs and snails. To do this I study natural variation in virulence as well as their host finding behaviour and we have begun using genomics and transcriptomics to elucidate the associated molecular mechanisms.

Biological armour used to kill parasites

The co-evolution of parasites and hosts has shaped the immune system. One such “arms race” is between parasitic nematodes and their molluscan hosts. One such species (Phasmarhabditis hermaphrodita) can infect and kill several gastropod species and has been formulated into a biological control agent (called Nemaslug®) available across northern Europe. I am interested in how it evolved to be the only nematode out the entire phylum Nematoda able to kill slugs and snails. To do this I study natural variation in virulence as well as their host finding behaviour and we have begun using genomics and transcriptomics to elucidate the associated molecular mechanisms.

Dr Robbie Rae
Liverpool John Moores University
School of Biological and Environmental Sciences
Greenfield Park, Stillorgan, Dublin - IE
Email: r.g.rae@ljmu.ac.uk
Phone:+44 15 12 31 24 86

Dr Natalie Reznikov
McGill University
3480 University Street, Montréal
Québec, Canada H3A 0E9
Email: natalie.reznikov@mccill.ca
Phone: +1-514-441-4536

Application of deep learning for segmentation of 3D images in biomineralization research

Co-authors : Dr. Nicolas Piché
Object Research Systems Inc., Montréal, Québec, Canada

Modern 3D imaging methods in biomineralization – such as X-ray tomography and dual-beam electron tomography – produce datasets that are rich in fine detail and enormous in size, often containing inevitable artifacts. Rendering segmentations of such datasets is a daunting task. The recent introduction of artificial neural network-based deep learning into bioimaging has made 3D segmentation reliable, accurate and fast. A highlight of convolutional neural networks (CNNs) is that artificial “neurons” are interlinked hierarchically, similarly to how feature-forming patterns of an image are related. Accordingly, when a raw image is presented to a deep net, the neurons of different layers perceive the patterns of different complexity. Upper-level neurons detect small patterns within their local context, and the local context itself forms patterns for deeper neuronal layers, and within a larger context, and so on. Thus, identification of features based on overt (e.g. contrast, gradient) and covert patterns (e.g. level of noise, wavelet frequency) becomes not only accurate, but also generalizable. Once image patterns can be accurately enough identified as being features of interest – and thus the CNN is “trained” – such patterns can be segmented automatically on any similar image. In machine learning, as in biological learning, the accuracy of pattern detection and classification improves with experience. Once trained, a CNN can be treated like an image filter – easy to preview, fast to apply, simple to share, and handy to reuse. In this presentation, I will explain the essence of deep learning and CNN operation for non-computer scientists, and will illustrate this with examples of “difficult” 3D images [a chick embryo inside a fertilized egg, and coral].
Mechanisms of eggshell biomineralization

The avian eggshell is a thin mineral layer (350 µm thick in chicken) that protects the egg content against mechanical impacts, dehydration and microorganism contamination. Eggshell formation is a highly controlled and rapid mineralization process occurring while the egg is residing in the uterus during the night. The composition of the uterine fluid changes at each stage of eggshell formation (initiation, linear growth, termination) with the expression of specific proteins that actively regulate calcium carbonate precipitation, selecting the mineral phase to form (calcite), inducing the nucleation of crystals and controlling their growth, morphology and size. Eggshell formation is terminated with the deposition of the cuticle about 2 hours before oviposition. Egg laying is highly demanding and female birds have developed specific physiological adaptations for it. They need a large and continuous supply of calcium. A stimulated production of vitamin D leads to an increase in calcium absorption by intestinal and uterine tissues. Also, hens develop a new type of bone within the marrow cavities of their long bones (medullary bone) that serves as a calcium reservoir for eggshell calcification during the night when hens are not eating and the intestinal calcium supply is exhausted. The formation and resorption of medullary bone is synchronized with the egg daily cycle. Laying hens also provide enough respiratory CO2 to form carbonate ions needed for eggshell calcium carbonate deposition. We will revise in this presentation the new developments in the study of eggshell structure, formation and quality.
Dr. Nikki Traylor-Knowles is an Assistant Professor in Marine Biology and Ecology at University of Miami, Rosenstiel School of Marine and Atmospheric Sciences. She received her B.S. and M.S. in Cell and Molecular Biology from Johns Hopkins University, and her Ph.D. in Biology from Boston University. Dr. Traylor-Knowles is passionate about innovative ocean conservation solutions and mentorship of BIPOC. She leads the Cnidarian Immunity Laboratory which investigates the mechanisms of immune function in corals. Her lab is particularly focused on developing innovative actions for saving coral reefs. She also founded the Black Women in Ecology, Evolution and Marine Science and has become an advocate for Black women in science and academia.

Coral eco-immunity in a disease landscape of unknowns

Coral reefs are some of the most economically valuable tropical ecosystems on Earth. Yet they are critically endangered due to anthropogenic climate change and locally induced human stressors such as pollution and fishing damage. Corals, the animals which produce coral reefs, have a diverse, yet poorly understood immune system that responds to a many different stressors. In this presentation, we will discuss what is understood about the coral immune system from a gene to cell level, and present hypotheses for the interaction of the coral immune system with the biomineralization system.

Dr. Nikki Traylor-Knowles
University of Miami, Rosenstiel School of Marine and Atmospheric Sciences
4600 Rickenbacker Causeway
Miami, FL, 33149 - USA
Email: ngt14@miami.edu
Phone: +1-410-905-5107

Jeroen van de Water is a Research Scientist at the Monaco Scientific Centre. His research aims to understand better the interactions between microbes and corals, and can be divided in two main areas: (1) investigating the structure and regulation of microbial communities associated with corals and elucidating the roles of these symbioses in coral holobiont health and resilience; and (2) examining how environmental change could disrupt these interactions leading to disease. Jeroen obtained his PhD in 2015 from James Cook University and the Australian Institute of Marine Science, with his research addressing the responses employed by corals to environmental, biological and anthropogenic stress. He is currently also involved in projects linking ocean and human health, with a focus on the impacts of coastal urbanization and pollution on marine ecosystems, the associated health risk for humans, and strategies to mitigate diseases.

Host – Microbe Interactions in Octocoral Holobionts

Co-authors: Denis Allemand 1, Christine Ferrier-Pagès 2
1Monaco Scientific Center
2Monaco Scientific Center

Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to reef-building corals, octocorals generally do not produce calcium carbonate skeletons. Instead, they rely on a hydrostatic or proteinaceous skeleton for support and produce only small fragments of CaCO₃, called spicules or sclerites. These spicules have generally been considered to have a deterring effect on predators, but there may also be a role for them in antimicrobial defence. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite these capacities, some octocoral populations have been severely impacted by disease outbreaks. In this talk, I will provide an overview of the current knowledge on octocorals and their interactions with microbes, with an emphasis on one of the few octocorals that actually do make biomineralized CaCO₃ skeletons, the precious coral Corallium rubrum. In particular, I will discuss how a few microbial species dominate the octocoral microbiota, the stability of these associations and the co-evolutionary patterns between octocorals and their microbial symbionts that highlight intricate relationships. In addition, I will touch on the subjects of how octocorals use their immune system to fight pathogens, and how not only the octocoral but also its associated microbes may be involved in antimicrobial defence.
• Proteomics of shell matrix proteins from the cuttlefish bone reveals unique evolution for cephalopod biomineralization
 Liu Chuang1, Ji Xin1, Wang ziwen1, Ni minghong1
 [1] College of Oceanography, Hohai University, China
 Email: 20190099@hhu.edu.cn

• Deciphering the role of the chorioallantoic membrane in eggshell decalcification during chicken embryonic development
 Maeva Halgrain1, Sonia Georgeaud1, Nelly Bernardet1, Maxwell T. Hincke2, Sophie Réhault-Godbert1
 [1] INRAE, Université de Tours, BOA, 37380, Nouzilly, France.
 [2] IBISA EM Facility, University of Tours and CHRU of Tours, France.

• Food safety of table eggs is modified by bird environment and behaviour as reflected by eggshell cuticle quality
 Garima Kulshreshtha1, Cristina Benavides Reyes1, Alejandro Rodriguez Navarro1, Maxwell Hincke2
 [1] Department: Departamento de Mineralogía y Petrología, Universidad de Granada, Campus de Fuentenueva, 18002 Granada, Spain
 [2] Institution - Innovation in Medical Education / Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
 Email: gkulshre@uottawa.ca

PAST LE STUDIUM CONFERENCES

2021
Dr Rebecca Tharme & Prof. Karl Matthias Wantzen
Managing riverscapes and flow regimes for biocultural diversity
20-21 January 2021

2020
Dr Magdalena Malinowska & Dr Arnaud Lanoué
Exploring the molecular diversity of grape, a source of natural ingredients
3 December 2020

Dr Jean-François Deluche & Prof. Nathalie Champroux
What are our lives worth to a neoliberal government? Capitalism, War and Biopolitics in the Pandemic Era
18 - 19 November 2020

Dr Pieter Hiemstra & Dr Mustapha Sistah
Novel host- and microbiota-directed strategies for treating respiratory infections
24 - 25 September 2020

Dr Emilio Maria Sanfilippo & Xavier Rodier
FAIR Heritage: Digital Methods, Scholarly Editing and Tools for Cultural and Natural Heritage
17-18 June 2020

Dr Margriet Hoogvliet & Prof. Chiara Lastrioli
Spatial Humanities and Urban Experiences During the Long Fifteenth Century
11 Mai 2020

Dr Thimmalapura Marulappa Vishwanatha & Dr Vincentaucrangi
Challenges and prospects in chemoselective ligation: from protein synthesis to site-specific conjugation
27-29 January 2020

2019
Dr Arunabh Ghosh & Prof. Fouad Ghamouss
Towards Futuristic Energy Storage; paving its way through Supercapacitors, Li-ion batteries and beyond
22-24 January 2020

Dr Yuri Dancik & Dr Franck Bonnier
Skin Models in Cosmetic Science: Bridging Established Methods and Novel Technologies
2 - 4 December 2019

Dr Eric Robert, Dr Jean-Michel Pousset & Dr Catherine Grillon
International Meeting on Plasma Cosmetic Science
25-27 November 2019

Prof. Richard Freedman & Prof. Philippe Vendrix
Counterpoints: Renaissance Music and Scholarly Debate in the Digital Domain
14-16 November 2019

Prof. Manuela Simoni, Dr Frédéric Jean-Alphonse, Dr Pascale Crépieux & Dr Eric Reiter
Targeting GPCR to generate life, preserve the environment and improve animal breeding: technological and pharmacological challenges
16-18 October 2019

Prof. Akkihebbal Ravishankara & Dr Abdelwahid Meloukii
Climate, air quality and health: long-term goals and near-term actions
28 June 2019

Dr Wolfram Kloppmann
N and P cycling in catchments: How can isotopes guide water resources management?
18 June 2019

Dr Thimmalapura Marulappa Vishwanatha & Dr Vincentaucrangi
Challenges and prospects in chemoselective ligation: from protein synthesis to site-specific conjugation
27-29 January 2020
<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Locations</th>
<th>Organizers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Kristina Djianavshili & Dr Éva Jakab Tóth Is Multimodal Imaging an Invention with a Future? The Input of Chemistry</td>
<td>11-13 December 2017</td>
<td>LE STUDIUM Conference</td>
<td>Prof. Emmanuel Saridakis & Dr Marc Boudvillain</td>
</tr>
<tr>
<td>Dr Mauro Simonato & Dr Jérôme Rousselet Species spread in a warmer and</td>
<td>23-24 October 2017</td>
<td>LE STUDIUM Conference</td>
<td>Prof. Michiel Postema & Dr Ayache Bouakaz</td>
</tr>
<tr>
<td>globalized world</td>
<td></td>
<td></td>
<td>Acoustic bubbles in therapy: recent advances with medical microbubbles, clouds and harmonic antibubbles</td>
</tr>
<tr>
<td>Dr Sophie Heywood & Dr Cécile Boulaire 1968 and the boundaries of childhood</td>
<td>12-14 October 2017</td>
<td>LE STUDIUM Conference</td>
<td>Prof. Mihai Mutascu & Prof. Camelia Turcu</td>
</tr>
<tr>
<td>Dr Dr Mauro Manno & Prof. Richard Daniellou 2018 The role of glycosylation on serpin biology and conformational disease</td>
<td>27-29 September 2017</td>
<td>LE STUDIUM Conference</td>
<td>Innate immunity in a biomineralized context: trade-offs or synergies?</td>
</tr>
</tbody>
</table>
2016

Dr Mohammed Ayoub & Dr Eric Reiter
Antibodies Targeting GPCRs, Recent Advances and Therapeutic Challenges
24-25 November 2016

Prof. David Koester, Dr Bernard Buron & Dr Jean-Philippe Fruguet
Practical Engagements and the Social-Spatial Dimensions of the Post-Petroleum Future
7-9 November 2016

Dr Jorge Gutierrez & Dr Philippe Frank
Lipids, Nanotechnology and Cancer
10-12 October 2016

Dr Ferenc Kálmán & Dr Eva Jakab Tóth
Being Smart in Coordination Chemistry: Medical Applications
26-28 September 2016

2015

Jean-Philippe Bouillon, Mourad Elhabiri, Jiri Kozelka, Laurent Plasseraud, Michèle Salmain & Eva Tóth, Roman Bulánek, Radek Cibulka, Michal Otyepka, Jan Presier, Vladimir Sindelář & Irena Valterová
7th French-Czech "Vltava" Chemistry Meeting
Advancing Chemistry through Bilateral Collaboration
5-6 September 2015

Dr Satyajit Phadke, Dr Chandrasekaran & Prof. Méridam Anouti
Future strategies in electrochemical technologies for efficient energy utilisation
7-9 September 2015

Prof. Peter Bennett & Prof. Philippe Vendrix
Sacred/secular intersections in early-modern European ceremonial: Text, music, image and power
11-13 July 2015

Prof. Leandros Skaltsounis & Prof. Claire Elfakir
Olive Bioactivities: applications and prospects
4-6 July 2015

Dr Mikhail Zubkov & Dr Maxim Chernodub
Condensed matter physics meets relativistic quantum field theory
13-15 June 2015

Prof. Brown-Grant, Dr Carmassi, Prof. Drossbach, Prof. Hedeman, Dr Turner & Prof. Ventura
Inscribing Knowledge on the Page: Sciences, Tradition, Transmission and Subversion in the Medieval Book
6-9 June 2015

Prof. Gary Gibbons & Prof. Sergey Solodukhin
Classical and quantum black holes
30-31 May 2015

Dr Gyula Tircsó & Dr Éva Jakab Tóth
Medicinal flavor of metal complexes: diagnostic and therapeutic applications
7-9 December 2015

2014

Prof. Erminia Ardissino & Dr Elise Boilet
Lay Readings of the Bible in Early Modern Europe
24-26 November 2015

Prof. Kathleen Campbell & Dr Frances Westall
Habits and inhabitants on the early Earth and Mars
17-18 November 2015

Prof. Marion Harris & Dr David Giron
Insects, pathogens, and plant reprogramming: from effector molecules to ecology
5-7 October 2015

Dr Arayik Hambardzumyan & Dr Sylvie Bonnamy
Bioinspired molecular assemblies as protective and delivery systems
7-9 September 2015

Dr Peter Arensburger & Dr Yves Bigot
Analysis and Annotation of DNA Repeats and Dark Matter in Eukaryotic Genomes
8-10 July 2015

Prof. Scott Kroeker & Dr Pierre Florian
Nuclear Waste Disposal: Designing Materials For the End of Time
27-29 May 2015

Prof. Gary Gibbons & Prof. Sergey Solodukhin
Entanglement, Holography and Geometry
17 April 2015

Prof. Kari Astala & Dr Athanasios Batakis & Prof. Michel Zinsmeister
Conformal Methods in Analysis, Random Structures & Dynamics
12 April 2015

Prof. Kari Astala & Dr Athanasios Batakis
Loire Valley Workshop on Conformal Methods in Analysis, Random Structures & Dynamics
12-16 April 2015

2013

Prof. Chandini Lokuge & Prof. Trevor Harris
Postcolonialism now
17-18 March 2013
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Geochemical reactivity in CO₂ geological storage sites, advances in optimizing injectivity, assessing storage capacity and minimizing environmental impacts</td>
<td>Dr Fabrizio Gherardi & Dr Pascal Audigane, 25-26 February</td>
</tr>
<tr>
<td>2013</td>
<td>Vector-borne diseases: a multidisciplinary approach</td>
<td>Prof. Marcos Horacio Pereira & Prof. Claudio Lazzari, 8-9 April</td>
</tr>
<tr>
<td>2013</td>
<td>Bottom-up approaches to Nanotechnology</td>
<td>Prof. Marc Hillmyer & Prof. Christophe Sinturel, 29-31 May</td>
</tr>
<tr>
<td>2013</td>
<td>Lanthanide-based compounds: from chemical design to applications</td>
<td>Dr Svetlana Eliseeva & Prof. Stéphane Petoud, 11-12 July</td>
</tr>
<tr>
<td>2013</td>
<td>Vision and image-making: constructing the visible and seeing as understanding</td>
<td>Prof. Pietro Roccasecca & Prof. Philippe Vendrix, 13-14 September</td>
</tr>
<tr>
<td>2013</td>
<td>Chronic inflammatory lung diseases: The next-generation therapeutic targets to consider</td>
<td>Prof. Reuben Ramphal & Prof. Mustapha Si-Tahar, 20-21 September</td>
</tr>
<tr>
<td>2013</td>
<td>Co-housing: born out of need or new ways of living?</td>
<td>Dr Lidewij Tummers & Prof. Sylvette Denèfle, 12-14 March</td>
</tr>
<tr>
<td>2012</td>
<td>Innate immunity in a biomineralized context: trade-offs or synergies?</td>
<td>Prof. Clive Oppenheimer & Dr Bruno Scaillet, Mount Erebus, Antarctica, 15-16 March</td>
</tr>
<tr>
<td>2012</td>
<td>Life and innovation cycles in the field of raw material supply and demand — a transdisciplinary approach</td>
<td>Prof. Friedrich Wellmer, 19-20 April</td>
</tr>
<tr>
<td>2012</td>
<td>Rare earth elements in our environment from ores towards recycling through the continental cycle</td>
<td>Dr Gerard Klaver, Dr Emmanuelle Petelet & Dr Philippe Negrel, 10-11 May</td>
</tr>
<tr>
<td>2012</td>
<td>Textual and visual representations of power and justice in medieval manuscript culture</td>
<td>Prof. Rosalind Brown-Grant & Prof. Bernard Ribémont, 5-6 July</td>
</tr>
<tr>
<td>2012</td>
<td>Defeating Cancer Can non-coding small RNAs be new players?</td>
<td>Dr Agata Matejk & Prof. Claudine Kieda, 24-25 September</td>
</tr>
<tr>
<td>2011</td>
<td>Osteocyte Imaging</td>
<td>Prof. Nicola Fazzalari & Prof. Claude-Laurent Benhamou, 13-14 January</td>
</tr>
<tr>
<td>2011</td>
<td>Macromolecular crowding effects in cell biology: models and experiments</td>
<td>Prof. Sergey Traytak & Prof. Francesco Piazza, 24-25 October</td>
</tr>
<tr>
<td>2010</td>
<td>Innate immunity in a biomineralized context: trade-offs or synergies?</td>
<td>Prof. Clive Oppenheimer & Dr Bruno Scaillet, Mount Erebus, Antarctica, 15-16 March</td>
</tr>
<tr>
<td>2010</td>
<td>Life and innovation cycles in the field of raw material supply and demand — a transdisciplinary approach</td>
<td>Prof. Friedrich Wellmer, 19-20 April</td>
</tr>
<tr>
<td>2010</td>
<td>Rare earth elements in our environment from ores towards recycling through the continental cycle</td>
<td>Dr Gerard Klaver, Dr Emmanuelle Petelet & Dr Philippe Negrel, 10-11 May</td>
</tr>
<tr>
<td>2010</td>
<td>Textual and visual representations of power and justice in medieval manuscript culture</td>
<td>Prof. Rosalind Brown-Grant & Prof. Bernard Ribémont, 5-6 July</td>
</tr>
<tr>
<td>2010</td>
<td>Defeating Cancer Can non-coding small RNAs be new players?</td>
<td>Dr Agata Matejk & Prof. Claudine Kieda, 24-25 September</td>
</tr>
<tr>
<td>2011</td>
<td>Osteocyte Imaging</td>
<td>Prof. Nicola Fazzalari & Prof. Claude-Laurent Benhamou, 13-14 January</td>
</tr>
<tr>
<td>2011</td>
<td>Macromolecular crowding effects in cell biology: models and experiments</td>
<td>Prof. Sergey Traytak & Prof. Francesco Piazza, 24-25 October</td>
</tr>
<tr>
<td>2010</td>
<td>Innate immunity in a biomineralized context: trade-offs or synergies?</td>
<td>Prof. Clive Oppenheimer & Dr Bruno Scaillet, Mount Erebus, Antarctica, 15-16 March</td>
</tr>
<tr>
<td>2010</td>
<td>Life and innovation cycles in the field of raw material supply and demand — a transdisciplinary approach</td>
<td>Prof. Friedrich Wellmer, 19-20 April</td>
</tr>
<tr>
<td>2010</td>
<td>Rare earth elements in our environment from ores towards recycling through the continental cycle</td>
<td>Dr Gerard Klaver, Dr Emmanuelle Petelet & Dr Philippe Negrel, 10-11 May</td>
</tr>
<tr>
<td>2010</td>
<td>Textual and visual representations of power and justice in medieval manuscript culture</td>
<td>Prof. Rosalind Brown-Grant & Prof. Bernard Ribémont, 5-6 July</td>
</tr>
<tr>
<td>2010</td>
<td>Defeating Cancer Can non-coding small RNAs be new players?</td>
<td>Dr Agata Matejk & Prof. Claudine Kieda, 24-25 September</td>
</tr>
<tr>
<td>2011</td>
<td>Osteocyte Imaging</td>
<td>Prof. Nicola Fazzalari & Prof. Claude-Laurent Benhamou, 13-14 January</td>
</tr>
<tr>
<td>2011</td>
<td>Macromolecular crowding effects in cell biology: models and experiments</td>
<td>Prof. Sergey Traytak & Prof. Francesco Piazza, 24-25 October</td>
</tr>
</tbody>
</table>
CONTACT

Dr Aurélien Montagu
Scientific Relations Manager
+33 2 38 21 14 86
aurelien.montagu@lestudium-ias.fr

LE STUDIUM
Loire Valley
Institute for Advanced Studies

www.lestudium-ias.com
1, rue Dupanloup • 45000 Orléans • FR