

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Acknowledgements

Experimental team

Collaborators

Marino Marsi Evangelos Papalazarou Lama Khalil Niloufar Nilforoushan Marco Caputo Nicolas Moisan

Former members Gabriel Lantz Mahdi Hajlaoui Julien Mauchain

Luca Perfetti Davide Boschetto

Amina Taleb-Ibrahimi

SYNCHROTRON

Z. Jiang

I. Miotkowski Y. P. Chen

Robert J. Cava M. Z. Hasan T. Durakiewicz

Workshop Condensed Matter Physics - Le Studium 2016, 13-15 June Tours (France)

Evangelos Papalazarou

Outline

- □ Time- and angle-resolved photoelectron spectroscopy
 - □ Basic principles
 - □ The FemtoARPES setup
- □ Surface carrier (electrons and holes) relaxation dynamics in Bismuth chalcogenide compounds (n- and p-type Bi₂Te₃, Bi₂Te₂Se)
- Tuning a Schottky barrier in a photo-excited topological insulator with transient electron-hole asymmetry in Dirac-like surface states

è

Studying matter out-of-equilibrium

- Resolves non-equilibrium dynamics of fundamental times and spatial scales of electronic and nuclear motion.
- Understanding the relaxation mechanisms: electron-phonon coupling
- Determine the key mechanism leading to photo-induced phase transitions
- Controlling phase transitions: Solid-liquid, insulator-metal

3D Topological insulator: A novel quantum material

Destructive Interference!

A new type of 2DEG with unusual properties:

□ A Z2 topological invariant (single Dirac cone, massless Dirac fermions) ⇒ Linear energy dispersion

□ Helical spin texture

For in-gap Dirac fermions their spin lies in-plane and perpendicular to its wave-vector

Quasiparticle back-scattering with non-magnetic impurities is suppressed

Time-inversion symmetry protects fermions from backscattering

Hsieh et al., Nature (2009)

Workshop Condensed Matter Physics - Le Studium 2016, 13-15 June Tours (France)

Towards "topotronics" ?

states coexists with a bulk photocurrent

McIvan et al., Nature Nano (2011) Junk et al., Phys. Rev. B (2013)

Towards "topotronics" ?

Junk et al., Phys. Rev. B (2013)

ORSAY

□ What is the interband and intraband scattering rate of topologically protected surface states?

Angle-resolved photoelectron spectroscopy (ARPES)

ORSAY

The measured photoelectron intensity $I(k, E_{kin})$ in the sudden approximation limit:

$$I(k, E_{kin}) \propto f_{FD}(h\nu, T) \cdot \delta(h\nu - E_f - E_i) \cdot |\langle \psi_{f,N} | H_{int} | \psi_{i,N} \rangle|^2 \qquad |\psi_{i,N}\rangle = |\varphi_{f,k,h\nu}\rangle |\psi_{i,k,N-1}\rangle_s \leftarrow |\psi_{f,N}\rangle = |\psi_{f,N}\rangle = |\varphi_{f,k,h\nu}\rangle |\psi_{i,k,N-1}\rangle_s \leftarrow |\psi_{f,N}\rangle = |\psi_{f,N}\rangle = |\psi_{f,N}\rangle = |\psi_{f,N}\rangle = |\psi_{f,N}\rangle |\psi_{i,k,N-1}\rangle_s \leftarrow |\psi_{f,N}\rangle = |\psi_{f,N}\rangle = |\psi_{f,N}\rangle |\psi_{i,k,N-1}\rangle_s \leftarrow |\psi_{f,N}\rangle = |\psi_{f,N}\rangle |\psi_{i,k,N-1}\rangle_s \leftarrow |\psi_{f,N}\rangle = |\psi_{f,N}\rangle |\psi_{i,k,N-1}\rangle_s \leftarrow |\psi_{f,N}\rangle |\psi_{i,k,N-1}\rangle |\psi_{i,k,N-1}\rangle_s \leftarrow |\psi_{f,N}\rangle |\psi_{i,k,N-1}\rangle_s \leftarrow |\psi_{i,k,N}\rangle |\psi_{i,k,N-1}\rangle |\psi_{i,k,N}\rangle |\psi_{i,k,N-1}\rangle |\psi_{i,k,N}\rangle |\psi_{i,k,N-1}\rangle |\psi$$

$$I(k, E_{kin}) \propto f_{FD}(h\nu, T) \cdot \left| \left\langle \varphi_{f,k} \middle| H_{int} \middle| \varphi_{i,k} \right\rangle \right|^2 \cdot \sum_{s} \delta \left(E_{i,N-1} - E_{f,s,N-1} - h\nu \right) \cdot \left| \left\langle \psi_{f,s,(N-1)} \middle| \psi_{i,k,N-1} \right\rangle \right|^2$$

one-particle spectral function

- Typical ARPES based on synchrotron radiation they can only attain a resolution of about 5 meV
- ❑ Energy resolution limits the detection energy range
 → impractical to explore low energy interactions

ORSAY

R. C. Hatch et al., PRB 83, 241303 (2011)

Time-resolved UV photoelectron spectroscopy (TR-ARPES)

Direct access to transient electronic population and its density of states

The FemtoARPES set-up

- **G** 5-axis manipulator
- □ Temperature range ~30-800 K
- □ SPECS Phoibos 150 analyzer
- □ energy resolution : 80 meV
- \Box angle resolution : < 0.15°
- **UHV** ~7.10⁻¹¹ mbars

Optical pump – UV probe

TR-ARPES in n-doped Bi₂Te₃

TR-ARPES in n-doped Bi₂Te₃

- \Box Direct excitation of electron population in higher excited states, *i.e.* band B^{*}₁
- \square B^{*}₁ scatters to B^{*}₂ and S^{*} through interband scattering processes
- □ Thermalization and relaxation through interband and intraband scattering processes
- Recombination of surface and bulk states

Hajlaoui et al., Nano Lett. (2012)

- □ Relaxation dynamics fitted with single exponential.
- □ The very similar values of τ_{D1} and τ_2 indicates that S*(t) and B*₂(t) present a parallel evolution \Rightarrow no explicit insert of a scattering term between them in the rate equations.
- Similarity indicates that an effective carrier exchange takes place between the two bands S*(t) and B*₂(t).

Measured transient k-integrated photoelectron intensity: $I(\epsilon, t) = D_1(\epsilon) * f_{FD}(\epsilon, T(t))$

Thermalization of hot Dirac electrons takes ~0.5 ps :

- □ Theoretically thermalization of Dirac electrons ~20-40 fs
- □ Strong presence of high energy electrons.
- □ The population of S* increases due to flow of charge carriers from the bulk bands.

Scattering distance of Dirac electron ~ $\tau_{C} v_{F} = (0.5 \text{ ps})(0.36 \text{ m/}\mu\text{s}) = 180 \text{ nm}$

Transient Dirac states in n-doped Bi₂Te₃

Thermalization of hot Dirac electrons takes ~0.5 ps :

- □ Theoretically thermalization of Dirac electrons ~20-40 fs
- Strong presence of high energy electrons.
- □ The population of S* increases due to flow of charge carriers from the bulk bands.

Scattering distance of Dirac electron ~ $\tau_{\rm C}$ v_F = (0.5 ps)(0.36 m/µs) = 180 nm

TR-ARPES in Bi_{2.2}Te₃ (p-doped)

Bi_{2.2}Te₃

TR-ARPES in Bi_{2.2}Te₃ (p-doped)

- Direct excitation to higher energy states B*
- \Box Higher states scatters to B_p^* and S_p^* through interband scattering processes
- □ Thermalization and relaxation through interband and intraband scattering processes
- □ Slow relaxation of Dirac electrons (extremely weak electron-phonon coupling)
- □ No carriers can be detected at the bottom of the CB (B_p^*) for time delays > 10 ps

Time evolution of excess electron and hole populations

Nearly flat-band system:

- The electron and hole populations are well-balanced at all time delays
- System with downward band bending:
 - Asymmetry of transient excess carriers: hot electrons accumulate in the Dirac surface states

0.8

-0.2

-0.4

Hajlaoui et al., Nature Comm (2013)

Workshop Condensed Matter Physics - Le Studium 2016, 13-15 June Tours (France)

The lack of holes in the surface and subsurface region acts as the effective bottleneck for the recombination of excess Dirac electrons

Workshop Condensed Matter Physics - Le Studium 2016, 13-15 June Tours (France)

- Dirac and bulk conduction electrons appear to have similar decay rates
 - \Rightarrow Strong carrier exchange
 - ⇒ Fast decay channel for Dirac electrons through interband scattering with bulk conduction states
- Decay rates defer substantially for states below the conduction band edge
 - ⇒ Slow decay channels for electrons in Dirac states with binding energies below the conduction band edge (in the gap)
 - \Rightarrow Smaller available phase-space

The effect of band bending on decay rate in p-type Bi_{2.2}Te₃

- ❑ Strong band bending ⇒ substantial increase of Dirac electron's relaxation rate (>100 ps)
 - \Rightarrow Confinement of electrons at the surface
 - \Rightarrow Strongly out-of-equilibrium quantum states (upusual for a motallic state)
 - (unusual for a metallic state)

Summary

è

- Using time-resolved ARPES, we provided a direct visualization of the excess carrier population and of its evolution.
- We found that the ultrafast dynamics of the carriers in the surface Dirac states is up to 0.5 ps; the bulk acts as a reservoir that keeps providing a relevant charge flow
- The subsequent relaxation phase (more than 10 ps), governed by charge diffusion and weak electron-phonon coupling, is less efficient than the typical bulk recombination.
- □ We show that one can effectively photo-induce a strongly out-of-equilibrium quantum state by acting on the charge balance between bulk and Dirac states

Thank you!

Workshop Condensed Matter Physics - Le Studium 2016, 13-15 June Tours (France)

Evangelos Papalazarou