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I feel very lucky, and honored, to be here for this celebration

of Garys brilliant career and achievements

Gary is the closest approximation,

within our community,

to a Renaissance man




Knows (almost) everything and interested in everything

v before its time !
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1. Introduction

Todays talk will be about a famous moduli space:

that of Calabi-Yau manifolds

and its associated solitons: wrapped D-branes

< RI,B

Our world ?

2

Moduli (A) : massless scalar fields; metric determines eff. action

D-branes: solitons with )\ - dependent mass and charge




Computing gr7(A) and MS()\) Is time-honored problem

iIn physics and mathematics.

T~

Gromov-Witten invariants

Recent progress in susy field theories has opened a new

avenue for the solution of these problems.

They are related to 2D Weyl anomalies, which shows in turn

that they can be computed by the ftechnique of localization

;

Pestun 2007

Benini, Cremonesi 1206.2356
Doroud, Gomis, Le Floch, Lee 1206.2606



Based on dictionary:

Target space worldsheet
Calabi-Yau N=(2,2) SCFT
moduli  )\{ marginal deformations
moduli space superconformal manifold
meftric Zamolodchikov meftric
wrapped brane boundary conditions 2
mass bnry degeneracy gQ

Affleck, Ludwig

New way to compute r.h.s.



More precisely :

This CY moduli space is known to factorize locally:

but see arXiv:1611.03101
Gomis, Komargodski, Ooguri, Seiberg, Wang

'/\/lC X ./\/ltc
h*! complex structure h'! Kéhler modul

(c,c) (c,a)

What is the metric on this moduli space ?


http://arxiv.org/abs/arXiv:1611.03101

Strong constraints from AN = 2 supersymmetry of

type-II string theory compactified on CY3:

ITA: hAY1 wvector Rl +1 hyper
IIB: k%' wector ptl 1 hyper

| |

special Kahler quaternionic

The string coupling is a hyper, while the volume is a Kahler modulus

metric on complex-structure m.s. is classical

:>
metric on Kahler m.s. has instanton corrections

N\

Gromov-Witten invariants



It has been shown that the Kahler m.s. metric is

computed by the partition function on the 2-sphere

c/3 _
257 = (L) e KON 917 = 010K

o

Conjectured by Jockers, Kumar, Lapan, Morrison, Romo (1208.6244)
Shown with help of tt* eqns by Gomis + Lee (1210.6022)

Last year: Gomis, Komargodski, Hsin, Schwimmer, Seiberg, Theisen (1509.08511)

gave an elegant new proof based on a “new kind” of Weyl anomaly

Osborn ‘91



This is a powerful circle of ideas with non-trivial corollaries
and generalizations to higher D:

Curved-space

Localization
partition functions

SUSY
SUSY

Anomalies

Metric of
moduli space



With Daniel Plencner we generalized
this line of argument to the hemisphere

arXiv: 1612.06386

We show in particular that the hemishpere partition function computes
the second important piece of geometric data:

The central charge C**()\), and the mass of CY D-branes.

Honda + Okuda 1308.2217
Hori + Romo 1308.2438
Sugishita + Terashima 1308.1973



Rest of this talk:

2) Superconformal manifolds & Anomalies

3) Corollaries for Z(S*) and CY moduli space

4) Extension to Boundaries and D-brane mass/charge

5) Summary



2. “*Mixed” super-Weyl anomalies

Anomalies imply non-conservation in correlation functions:

<8Mj“ O1(p1) -+ On(pn)) #0

When r.h.s. proportional to momenta: non-conservation only

in presence of spacetime-dependent background fields

U(1)a

-3 — Oujy=FAF

axial charge violated by
& (; instantons, cf t Hooft
matching conditions



For chiral anomalies: background is gauge or gravitational

For trace (Weyl) anomaly, can be exactly-marginal couplings:

Osborn ‘91
Osborn, Petkou '93

In 2D the 2-point function of marginal operators reads:

Zamolodchikov metric anomaly

o |

= 017 500" log(|z — wl?)]’

differential regularization of distribution



Turn on space-dependent couplings A’

Anomaly is invisible for constant couplings. But supersymmetry

relates it fo a term that does not vanish when 9, \' =0
Gomis et al (1509.08511)

This term can be removed by non-susy local counterterm;

but SUSY gives it universal meaning



Technical details:

To N =(2,2) SCFTs have U(l)y xU(1)4 R-symmetry.

In computing the anomaly we choose to preserve the vector-like
symmetry, so we must couple it fo the N =2 supergravity in

which this symmetry is gauged by a field V*
Closset + Cremonesi (1404.2636)

In superconformal gauge:

20 1%
G =€nw, VE=€"0,a

Classically O and @ decouple, but in the quantum theory they dont

due fo the Weyl and axial anomalies.



Supersymmetry places these fields in a twisted-chiral multiplet

M(y*) = (0 +ia) +0Txy +0 x_ +0T0 w

with components functions of yi = & FihTOT

The tc field obeys D X = D_¥ =0

= O i0*0..  Di=-— o tios.

where Dy e

It is useful to also promote the marginal couplings fo vevs of tc fields

A= MyH) 4+, AT =M+ Seiberg

so as to make the susy of the anomaly manifest.



The anomaly  {A(0Y) :=dxlog Zy (M)  is the susy invariant

Ao = A + 40 = L [ / 16 [C(B8 5 +05%) — (62 + 05K (A, K)|

Gomis et al (1509.08511)

This obeys Wess-Zumino consistency s A(0Y') — 65 A(6%) =

and can be integrated with the result:
log Zyv D L/d%/d% [EZE_] — (EH—E_])K} .
4 M 0

RN

super-Liouville super-Osborn 91



Expand in components:

1
AW = [ g2y [50 Co 4+ dala 4+ = (dw w + dww) + a”b(l)} + fermions |,
127 /,, 2 p

A = —2i / d>x [50 (0N 04 XT)007K — %K 00 — (0*6a)K, + aﬂb,g?)}
T JM

where K, := %(aIKaMAI — ;K9\ <«  Kahler one-form

(Cohomologically) non-trivial, real anomalies

Variation of local invariant counterterm

~ / VIRP K (XN



The first term in A is the scale anomaly in the 2-point function

as follows from do = —dlogu, 0dlog|z|? = ndP(2)

and 0;0;K = g;7
contact term

The non-vanishing term for constant couplings is the red one

It could be removed by change of scheme in bosonic theory,
but supersymmetry relates it to the non-trivial blue terms !

Similar remark made previously for 4D Casimir energy by
Assel, Cassani, Di Pietro, Komargodski, Lorenzen, Martelli 1503.05537



3. Some corollaries

Integrating the anomaly for constant couplings gives

c/3 B
Ko =—-4rK — 25(52) — <L> e~ (AN

S2 T0

so the 2-sphere free energy computes the Kahler potential

on the SCFT2 moduli space (both chiral and twisted chiral)

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------




Resolution

The difference amounts to change of renormalization scheme:
1 _
AxwA? = - — / d2x/d4(9 (63 + 6X)H + c.c.
4 M

1 _ _
= —— [ d&?x[d0Tdi (DLD_6%)H + / d*z (0"Y,) + c.c.
M

twisted F-term )
R=D,.D_Y= —w + 07079,0_(c —ia) + ---

curvature superfield

So local, susy and diffeo-invariant counterterm compensates
the Kahler-Weyl (gauge) transformation !



An interesting conjecture

Gomis et al (1509.08511)

If the moduli space had non-vanishing Kahler class one could

pick A (z) such that S? _5 M is non-trivial 2-cycle

Then there would be no global renormalization scheme !

Way out: Moduli space has Kahler class =0



4. Boundary anomaly

Consider half space:

boundary condition ()

One-point functions of marginal operators:

©i@)e = @R = df o} (0" logletullo




For susy-preserving (B-type) boundary conditions, the lpt-function

coefficients are not independent. They are related to a holomorphic

boundary charge ¢ ()

Argument: vacuum projection of boundary state

Myac |2) := ¢ |0)rr + > [Drr
1

is flat section of the improved connection V — ('  on moduli space

™~

structure constants
of chiral ring



Our result: prove these relations from Weyl-Osborn anomaly,

and show that hemisphere p.f. computes bnry charge

Z (D?) = (T)C/G N\, Z_(D? = (T)C/G () .

o

Under Kahler Weyl transformations A= el

The boundary entropy is the scheme-independent combination




In string-theory compactifications, gQ and CQ are

the mass and RR charge of the 1/2 BPS D-brane states

|

dyons in field-theory limits

These follow from worldsheet anomalies !



Technical details:

3 steps in calculation:

Take into account the divergence terms in A joseq

bt = i(a 6o )o 50 0,0 + = (a da)a — géaﬁua
1
2) _
b = - (0u00) K — ZdaauK.

Add “minimal’ boundary term needed for susy

Extra boundary-superinvariant additions
using formalism of boundary superspace



Reference boundary completion
top component

Consider the D-fterm : / d*z /d498 / A’z

The type-B susy generator is  Dgusy = €(Q+ + Q-) —€(Q+ + Q)

0

90% +z€i6i : @i:—T—i@iai

where Qi =

The transformation of the D-term is a total derivative

Agusy [Sltop = / d*0 DyusyS = e / d*0 (0T0,.S +070_8) + c.c

We want to write as the susy transformation of a boundary term.



Standard manipulations give:

ASusy [S]top — _Asusy(al [S]bnry) + aOY

s that Ip(S) = / 22 [S]op + / 029 [Slons

IS our susy-invariant standard completion.

For the case of inferest, the integrated superfield is S

with S=— [fzi _ (2+2)K}



Boundary superspace

Hori (hep-th/0012179)

rt=x", h=e POt =P h. h=eP 0T =e PP

Restrictions of bulk superfields, e.g.
Ylom = 0 +ia+ 0xy +Ox_ + 00w — 01 (0 +ia)]

Usual D-term and F-term integrals of bnry superfields are invariant

Brunner + Hori (hep-th/0303135)

—

WZ-consistency, locality and parity covariance leads to ansatz for
boundary-superinvariant contribution to anomaly:
1

/dazo Bl ~ wWhere  B=_— [#1—02(22 ~ 33 +3GHA,A) - ZGH(A, A)}

oM

and reality condition  G%(A,A) = [GP(A, A)]*



Collecting everything:

Aopen = / d*x [0S]top + / dz” ([6S]bnry + [68] g5)
M oM

1 ness _
where S = yp [EZE—(ZHLZ)K}
1 1
[Slonry = 2 ([8} 9+9‘—_[5}9—9+> N 131 [8]@
I T S NI P PN N Q%
B=— {#12(2 $2)  SGAA) - 2 (A,A)}

oM
central-charge anomaly Wey|-Osborn anomaly

cf Polchinski; Solodukhin for higher D



Susy Ward identity: ([ Lu [3Lscem) =0 if 6% = AT =0

—> no terms propto X A’

—> G\ A) =K\ A+ 2log ¢E(N)

Kdhler-Weyl covariance (up to local counterterms) requires

Q. _h% . ..
cC =e€ section of holomorphic line bundle

K—-K+H+H R s p



final ingredient: susy hemisphere

Seiberg, Festuccia 1105.0689

Aopeng(;{_i/dzx (000 — ia)h® + O(o + ia)7] +i/dxo oh? - wh?])

47 \ A7
integrated anomaly subtracted so as to vanish for infinitesimal

disk depends only the holomorphic boundary charge, plus the

auxiliary field of the metric.



Killing-spinor equations imply

W = QiE—J:@Z(a—kia—l—logC_) — 2i§—i8Z(0+7ja—|—logC+),
W = — 2ig(3’z(a —ia+log(T) = —QiC:—_ﬁz(U —ia+log (™).
G~ CT

where the unbroken superconformal symmetries are

€+ = EC_(Z) y €= _€€+(2) , €4 = EC__(Z) , €= _EC+(Z)

Two solutions for hemisphere with B-type bnry condition:

(_I_) : C_ =1, C—i_ = z, C_-_ — < C__}_ =1,
(_) : C_ — 2, C—i_ — _17 Qt_ — 1, C_—I_ = —Z



Supersymmetric hemispheres with B-type bnry condition:

o = —log(1 + zZ) 4 constant , a=0
(+): w:w:_1iizz - ) w=ws 1—?25
which implies
7 (D?,Q) = Zy (N, Z_(D%,Q) = Zyc*(N).

qed



5. Summary + outlook

Computed the super-Weyl anomaly for N = (2,2) models on
a surface with boundary generalizing the result of

Gomis, Komargodski, Hsin, Schwimmer, Seiberg, Theisen (1509.08511)

Not only the Kahler potential but also the brane charge & mass
are given by an ("Osborn-type’) anomaly. They can be computed

by localization

Extension to higher dimensions and other co-dimension defects



Many thanks to the organizers

and congratulations to Gary !



