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Finite volume methods

Consider a hyperbolic system of balance laws of the form

∂tu +∇x · f (u) = s(u).

To integrate the system, one covers the computational domain with N
elements Ωj , j = 1, . . . ,N. Define the cell average of the unknown

u j =
1

|Ωj |

∫
Ωj

u dx .
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elements Ωj , j = 1, . . . ,N. Define the cell average of the unknown
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Integrating the PDEs on each element, one finds the evolution
equation for the cell averages as
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Finite volume methods

Integrating the PDEs on each element, one finds the evolution equation
for the cell averages as

du j

dt
= − 1

|Ωj |

∫
∂Ωj

f · n ds +
1

|Ωj |

∫
Ωj

s(u) dx .

Quadrature rules to approximate the line and volume integrals.

High order reconstruction algorithm, to estimate the point values of
u along ∂Ωj , and within Ωj , from the cell averages.

Approximation of the fluxes along ∂Ωj accounting for intercell
communication (approximate Riemann solvers).

Approximate integration in time.
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Reconstructions

The key point in finite volume schemes is the reconstruction, which
provides from the cell averages u j the point values along the boundary of
Ωj , and at the interior quadrature nodes.
The reconstruction must be

fast to compute: use polynomials to approximate the data;

high order accurate: choose a high degree interpolation polynomial,
which is based on a stencil, i.e. a set of cells around the cell Ωj ;

non oscillatory: choose only information coming from cells which do
not contain discontinuities: non linear algorithm;

efficient: recycle computations as much as possible.
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Weighted essentially non-oscillatory reconstructions (1D)

Given the cell averages uj−r , . . . , uj+r of a bounded function u(x),

Popt

P1 P2 Pr Pr+1

(Popt)j s.t. ∀i = −r , . . . , r :
1

|Ωj+i |

∫
Ωj+i

Popt(x)dx = uj+i

If Rj = (Popt)j , the accuracy is O(h2r+1) in smooth regions.

However (Popt)j is oscillatory if a discontinuity is present in its
stencil.

Thus, downgrade, if needed, to a lower accuracy non-oscillatory
alternative, Rj = Pk , s.t. Pk contains no discontinuities1.

1Shu, 1997
Gabriella Puppo, Matteo Semplice, ... Cool WENO
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Example: WENO3 reconstruction in 1D

Third order linear reconstruction algorithm: R(x)

stencil of 3 cells: Ωj−1,Ωj ,Ωj+1;

∃!Popt ∈ P2 :
∫

Ωi
Poptdx = |Ωi |ui for i = j − 1, j , j + 1.

Instead, for each reconstruction point ξ:

find a convex combination:
Popt(ξ) = dL(ξ)PL(ξ) + dR(ξ)PR(ξ);

compute nonlinear weights ωL and ωR such that

⇒ on smooth data: ωj ≈ dj and Rj(ξ) ≈ Popt(ξ)

⇒ otherwise
either ωR ≈ 0 and Rj(ξ) ≈ PL(ξ)

or ωL ≈ 0 and Rj(ξ) ≈ PR(ξ);

set Rj(ξ) := ωL(ξ)PL(ξ) + ωR(ξ)PR(ξ)

Gabriella Puppo, Matteo Semplice, ... Cool WENO
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Summing up

WENO reconstructions are very popular and effective. The main
ingredients can be summarized as follows.

They are based on an optimal polynomial Popt which guarantees
maximum accuracy but is actually not directly computed.

The idea is to recover Popt when the flow is smooth, from lower
degree polynomials, but this can be achieved only at one
reconstruction point at a time.

Since R = Popt when the flow is smooth, the reconstruction
algorithm becomes linear on smooth flows.

The presence of discontinuities triggers the non linearities of the
scheme, choosing lower degree polynomials, based on smooth
stencils.
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The pain of several reconstruction points

For a FV scheme in 2D, several reconstruction points are needed to
update a single cell. With WENO, the reconstruction must be repeated
at each point.

Things can only get worse on nonuniform grids, as for a mesh
created by an adaptive algorithm, such as AMR.
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For a FV scheme in 2D, several reconstruction points are needed to
update a single cell. With WENO, the reconstruction must be repeated
at each point.

Things can only get worse on nonuniform grids, as for a mesh
created by an adaptive algorithm, such as AMR.

On non uniform grids, you must
reconstruct point values at many
locations on ∂Ωj , and the coefficients
dk may not always be positive.
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On non uniform grids, you must
reconstruct point values at many
locations on ∂Ωj , and the coefficients
dk may not always be positive.

Moreover in AMR, the mesh topology, and therefore the quadrature
nodes, change continuously in time.

You need a reconstruction which is not based on a single point.
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A single reconstruction for all points

Recall, WENO3:

Given x̂ ∈ Ω, R(x̂) = dL(x̂)PL(x̂) + dR(x̂)PR(x̂) (WENO3)

is replaced by

∀x : R(x) = d0 P0(x) + dLPL(x) + dRPR(x) (CWENO3)

how?

P0(x) :=
1

d0

(
Popt(x)− dLPL(x)− dRPR(x)

)

why?

dk do not depend on the reconstruction point
⇒ no dependence on mesh topology,

not even in 2d/3d, AMR, . . .

Levy, Puppo, Russo M2AN (1999)
Gabriella Puppo, Matteo Semplice, ... Cool WENO
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CWENO, the general case

Let p = 2r + 1 be the required accuracy, where r is the degree of
the r + 1 low order polynomials Pk forming the standard WENO
reconstruction. Now,

1 choose d0, d1, dr+1 ∈ (0, 1) such that
∑r+1

k=0 dk = 1;

2 compute P0(x) := 1
d0

(
Popt(x)−

∑r+1
k=1 dkPk(x)

)
;

3 compute WENO-style nonlinear weights dk ; ωk ;
(no x dependence!)

4 compute the reconstruction polynomial (unif. accurate in the
cell!)

R(x) =
r+1∑
k=0

ωkPk(x) = u(x) + O(h)p; ∀x ∈ cell

5 evaluate R(x) on each reconstruction point needed.

Cravero, P., Semplice, Visconti Math. Comp. (2018)
Gabriella Puppo, Matteo Semplice, ... Cool WENO
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A more efficient reconstruction, but...

The CWENO reconstruction we have proposed is more efficient than
standard WENO, but the natural question is:

does CWENO maintain the good properties of standard WENO?

One way to do it is to compare the spectral properties of the two
reconstructions, which means to study the discrete evolution of
Fourier modes of the form uk(x , t) = ûk(t)e ikx in the linear
advection equation.

This brought us to introduce the new concepts of distortion and
temperature for a numerical scheme for conservation laws.

Gabriella Puppo, Matteo Semplice, ... Cool WENO
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Von Neumann analysis

Consider the linear advection equation ut + aux = 0, with periodic initial
and boundary conditions on (0, 2π).

The evolution of a single Fourier mode uk(x , t) = ûk(t) exp(ikx) is
given by

dûk
dt

e ikx = −ik a ûk(t) e ikx , u(x , t = 0) = u0(x).

Then the exact solution can be written as

u(x , t) =
∑
k

ûk(0)e ik(x−at), ûk(0) =
1

2π

∫ 2π

0

u0(x)e−ikx .

Gabriella Puppo, Matteo Semplice, ... Cool WENO
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Von Neumann analysis

Solving the same equation with a linear finite difference scheme on the
stencil {x`h}, ` = −r . . . r , for a single Fourier mode uk(x , t) = ûk(t)e ikx

yields
dûk
dt

e ikx = −a ûk(t)Dx(e ikx),

and the discrete derivative Dx is given by

Dx(e ikx) =

(
r∑

`=−r

c`e
ikh`

)
e ikx = (ik + ω̃k) e ikx .

So e ikx is an eigenfunction also for the discrete derivative Dx , except
that the amplitude of a single Fourier mode is modified to

uk(x , t) = ûk(0)e ik(x−at)e−aω̃k t .

Thus the quantity ω̃k measures the spurious effects due to the
discrete approximation, with ω̃k ≈ O(hp).

Gabriella Puppo, Matteo Semplice, ... Cool WENO
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Artificial diffusion

The real part of ω̃k induces a spurious damping of the amplitude of
uk(x , t), which is faster for high frequency modes (k >> 1).
This is called numerical diffusion: the small scale modes tend to
disappear.

.

For first order Upwind

ω̃k = − 1
2k

2h + O(h2)

and

uk(x , t) ≈ ûk(0)e ik(x−at)e−
1
2 ak2ht

Gabriella Puppo, Matteo Semplice, ... Cool WENO
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Artificial dispersion

The imaginary part of ω̃k induces a spurious propagation speed. Each
mode uk(x , t) moves with speed ã = a + a

k Im(ω̃k). Again, this effect is
stronger for high frequency modes (k >> 1).
This is called numerical dispersion: the small scale modes tend to move
with high relative speed with respect to the initial wave packet. Thus the
Fourier modes separate, and the solution becomes oscillatory.

For a second order scheme

ω̃k = − 1
6 ik

3h2 + O(h3)

and

uk(x , t) ≈ ûk(0)e ik(x−a(1− 1
6 h2k2)t).

Pirozzoli JCP (2006)
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Diffusion and dispersion for WENO and CWENO

Re(ω̃k) and Im(ω̃k), as a function of ` = πk/N for WENO (black),
CWENO (green) and the modified version CWENOZ (red). Order 5.
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Clearly, for ` > π/2, no scheme can resolve the waves correctly: one
has less than 2 grid points per wave number.

All schemes are comparable, but with a definite edge for CWENOZ.
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Diffusion and dispersion for WENO and CWENO
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Diffusion and dispersion in the non linear case

In the non linear case, Fourier modes are coupled. But still one can study
the effect of the numerical derivative on each mode Dxe

ikx . Since we are
working on real functions, let

Dx

[
sin(kx)
cos(kx)

]
=

N∑
`=1

[
ω2`,2k ω2`,2k+1

ω2`+1,2k ω2`+1,2k+1

] [
sin(`x)
cos(`x)

]
,

This defines a matrix Ω. The exact derivative is

D = diag

(
k

[
0 1
−1 0

])
, k = 1, . . . ,N.

Thus E = Ω− D defines the error matrix.

Cravero, P., Semplice, Visconti Comp. Fluids (2018)
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Diffusion, dispersion and distortion

With the introduction of the error matrix E, we could extend previous
analysis of non linear schemes.

If the scheme is linear, the ma-
trix E is block-diagonal with
2 × 2 blocks along the di-
agonal. These blocks con-
tain the artificial diffusion and
dispersion information of the
scheme.
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Diffusion, dispersion and distortion

With the introduction of the error matrix E, we could extend previous
analysis of non linear schemes.

If the scheme is non linear, still
the 2×2 blocks along the diag-
onal give information on how
the k-th mode is transformed.
But now there are non-zero
terms also away from the main
diagonals: the size of these
terms measures distorsive ef-
fects

WENO3
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Distortion for CWENO schemes

The amplitude of the coefficients of the error matrix E shows that as the
order is increased, distorsive effects decrease. .

CWENO3 CWENO7
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Comparing different high order schemes

We study the distortion errors of CWENO and WENO schemes for
different orders of accuracy.

3rd order 7th order

WENO (black), CWENO (red), CWENOZ (blue).
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Temperature

The size of the spurious modes determines the distortion of a scheme,
but another interesting parameter is also how far, in frequency space, are
the spurious modes from the exact mode.
We quantify this idea with the notion of Temperature on the k-th mode

Tk =
1

N3

N∑
`=1

(ΩC)`k

(
k − `
π

)2

.

CWENOZ are the coolest schemes retaining non oscillatory
properties.
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Temperature

The size of the spurious modes determines the distortion of a scheme,
but another interesting parameter is also how far, in frequency space, are
the spurious modes from the exact mode.
We quantify this idea with the notion of Temperature on the k-th mode

Tk =
1

N3

N∑
`=1

(ΩC)`k

(
k − `
π

)2

.

Order 7 Order 9

CWENOZ are the coolest schemes retaining non oscillatory
properties.Gabriella Puppo, Matteo Semplice, ... Cool WENO
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Non oscillatory

A scheme for conservation laws cannot be cold (I mean, with zero
temperature), because it would be oscillatory. Some distortion is
necessary to prevent spurious oscillations. In this sense, CWENO
schemes are cool.
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Background
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The Euler equations with gravity source term
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The Euler equations with gravity source term

The Euler equations for a gas in a gravity field, with potential
Φ(x) are

∂u

∂t
+∇x · f(u) = s(u)


∂tρ +∇x · (ρv) = 0
∂tρv +∇x · (ρv ⊗ v + pI) = −ρ∇Φ
∂tE +∇x · ((E + p)v) = −ρv · ∇Φ
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Equilibrium solutions

These equations have non trivial steady states when

∇x · f(u) = s(u)

Here we will focus on hydrostatic steady states, which require

v = 0, ∇p = −ρ ∇Φ.

Given Φ, these equations do not define a steady state uniquely.

Equilibrium states

We assume we are given two function α(x) and β(x) s.t.

ρeq(x) = ρ0α(x) and p(x)eq = p0β(x), where ∇β = α∇Φ

Gabriella Puppo, Matteo Semplice, ... Cool WENO
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Examples

Two typical examples.

Isothermal equilibrium. Suppose T ≡ Teq. Then the functions
α and β can be chosen as

ρ = α(x) = 1
Teq

e
−φ(x)

Teq , p = β(x) = e
− φ(x)
RTeq .

Polytropic equilibrium. If the gas is polytropic, i.e. p = Cρν ,

ρ = α(x) =
(
1− ν−1

ν φ(x))
)1/(ν−1)

, p(x) = β(x) = Cα(x)ν

In particular, if ν = γ, the equilibrium is isentropic.
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Unbalancing due to the reconstruction

Even if the flow is at equilibrium, the numerical solution may fail
to remain stationary. Consider a standard FV scheme

U
n+1
j = U

n
j −

∆t

∆x

(
Fj+1/2 − Fj−1/2

)
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Unbalancing due to the reconstruction

The numerical flux for the density equation with numerical
diffusion Q is

F ρj+1/2
=

1

2

(
(ρ~v)+

j+1/2
+ (ρ~v)−j+1/2

)
· ~n + Qj+1/2

(
ρ+
j+1/2
− ρ−j+1/2

)
If U

n
j are sampled from an hydrostatic steady-state (~v = 0), then

F ρj+1/2
= Qj+1/2

(
ρ+
j+1/2
− ρ−j+1/2

)
so U

n+1
j = U

n
j is only possible if ρ+

j+1/2
= ρ−j+1/2
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Well balanced reconstruction

One key ingredient to the construction of well balanced schemes is

Well-balanced reconstruction

We say that a reconstruction is well balanced if, whenever U
n
j are

sampled from an equilibrium state ueq, then the reconstructed data
satisfy
U±
j+1/2

= ueq(xj+1/2)
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Well balanced reconstruction

One key ingredient to the construction of well balanced schemes is

Well-balanced reconstruction

We say that a reconstruction is well balanced if, whenever U
n
j are

sampled from an equilibrium state ueq, then the reconstructed data
satisfy
U±
j+1/2

= ueq(xj+1/2)

If the reconstruction is well-balanced, on a steady-state, the
numerical flux is exact:

Fj+1/2 = F
(
ueq(xj+1/2), ueq(xj+1/2)

)
= f (ueq(xj+1/2))
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Flux-source compatibility

A well balanced reconstruction is not enough to ensure well
balancedness.
Consider in fact the momentum equation. Even if a well balanced
reconstruction is used, we have

U
n+1
j − U

n
j

∆t
= − 1

∆x

(
f (ueq(xj+1/2)− f (ueq(xj−1/2)

)
+ Sj(U(x)),

and one gets U
n+1
j = U

n
j only if the quadrature rule employed for

the source term is properly chosen.

Well-balanced quadrature

The quadrature for the source is well balanced if at equilibrium

1

∆x

(
f (ueq(xj+1/2)− f (ueq(xj−1/2)

)
= Sj(U(x))
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Well balanced reconstruction

To obtain a well balanced reconstruction, apply your favorite
reconstruction algorithm to fluctuations from equilibrium.

Let r j = ρj − αj . Then compute r(x) = R(r)(x). At equilibrium,
r j ≡ 0, =⇒ r(x) ≡ 0.

Compute the boundary extrapolated data as
ρ±j+1/2

= r±j+1/2
+ α(xj+1/2).

Momentum is already an equilibrium variable. Compute
m(x) = R(m) and find the point values of the velocity
v(x) = m(x)/ρ(x). Obtain by quadrature the cell average of the
kinetic energy, K . Find the pressure p = (γ − 1)(E − K ).

Compute the reconstruction of the fluctuations of the pressure,
πj = pj − βj , with π(x) = R(π)(x).

Finally, p±j+1/2
= π±

j+1/2
+ β(xj+1/2).

Gabriella Puppo, Matteo Semplice, ... Cool WENO
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Well balanced reconstruction

To obtain a well balanced reconstruction, apply your favorite
reconstruction algorithm to fluctuations from equilibrium.

Let r j = ρj − αj . Then compute r(x) = R(r)(x). At equilibrium,
r j ≡ 0, =⇒ r(x) ≡ 0.

Compute the boundary extrapolated data as
ρ±j+1/2

= r±j+1/2
+ α(xj+1/2).

Momentum is already an equilibrium variable. Compute
m(x) = R(m) and find the point values of the velocity
v(x) = m(x)/ρ(x). Obtain by quadrature the cell average of the
kinetic energy, K . Find the pressure p = (γ − 1)(E − K ).

Compute the reconstruction of the fluctuations of the pressure,
πj = pj − βj , with π(x) = R(π)(x).

Finally, p±j+1/2
= π±

j+1/2
+ β(xj+1/2).

Note that ρ, v and p are all continuous across interfaces at equilibrium.
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Source term discretization

Given α, β s.t. α(x)∇Φ = ∇β, the cell average of the source can be
written as

1

∆x

∫ xj+1/2

xj−1/2

ρ∇Φ =
1

∆x

∫ xj+1/2

xj−1/2

ρ

α
∇β.

The well balanced quadrature then is

1

∆x

∫ xj+1/2

xj−1/2

ρ

α
∇β ≈ 1

2

(
ρ+
j−1/2

α(xj−1/2)
+

ρ−j+1/2

α(xj+1/2)

)
β(xj+1/2)− β(xj−1/2))

∆x

The scheme is well-balanced: on equilibrium data,

W.B. reconstruction ⇒ p±j+1/2
= β(xj+1/2)), ρ

±
j+1/2

= α(xj+1/2)

density flux: F ρj+1/2
= 0

momentum flux: F ρvj+1/2
= F

(
p−j+1/2, p

+
j+1/2

)
= β(xj+1/2)

momentum equation: for any consistent F
d

dt
ρv j = −

β(xj+1/2) − β(xj−1/2))

∆x
+

1

2

(
α(xj−1/2)

α(xj−1/2)
+

α(xj+1/2)

α(xj+1/2)

)
β(xj+1/2) − β(xj−1/2))

∆x
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Source term discretization

Given α, β s.t. α(x)∇Φ = ∇β, the cell average of the source can be
written as

1

∆x

∫ xj+1/2

xj−1/2

ρ∇Φ =
1

∆x

∫ xj+1/2

xj−1/2

ρ

α
∇β.

The well balanced quadrature then is

1

∆x

∫ xj+1/2

xj−1/2

ρ

α
∇β ≈ 1

2

(
ρ+
j−1/2

α(xj−1/2)
+

ρ−j+1/2

α(xj+1/2)

)
β(xj+1/2)− β(xj−1/2))

∆x

The scheme is well-balanced: on equilibrium data,

W.B. reconstruction ⇒ p±j+1/2
= β(xj+1/2)), ρ

±
j+1/2

= α(xj+1/2)

density flux: F ρj+1/2
= 0

momentum flux: F ρvj+1/2
= F

(
p−j+1/2, p

+
j+1/2

)
= β(xj+1/2)

momentum equation: for any consistent F
d

dt
ρv j = −

β(xj+1/2) − β(xj−1/2))

∆x
+

1

2

(
α(xj−1/2)

α(xj−1/2)
+

α(xj+1/2)

α(xj+1/2)

)
β(xj+1/2) − β(xj−1/2))

∆x
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Source term discretization

Given α, β s.t. α(x)∇Φ = ∇β, the cell average of the source can be
written as
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ρ∇Φ =
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ρ

α
∇β.
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ρ

α
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(
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+
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)
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∆x

The scheme is well-balanced: on equilibrium data,

W.B. reconstruction ⇒ p±j+1/2
= β(xj+1/2)), ρ

±
j+1/2

= α(xj+1/2)

density flux: F ρj+1/2
= 0

momentum flux: F ρvj+1/2
= F

(
p−j+1/2, p

+
j+1/2

)
= β(xj+1/2)

momentum equation: for any consistent F
d

dt
ρv j = −

β(xj+1/2) − β(xj−1/2))

∆x
+

1

2

(
α(xj−1/2)

α(xj−1/2)
+

α(xj+1/2)

α(xj+1/2)

)
β(xj+1/2) − β(xj−1/2))

∆x
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Source term discretization

Given α, β s.t. α(x)∇Φ = ∇β, the cell average of the source can be
written as

1

∆x

∫ xj+1/2

xj−1/2

ρ∇Φ =
1

∆x

∫ xj+1/2

xj−1/2

ρ

α
∇β.

The well balanced quadrature then is

1

∆x

∫ xj+1/2

xj−1/2

ρ

α
∇β ≈ 1

2

(
ρ+
j−1/2

α(xj−1/2)
+

ρ−j+1/2

α(xj+1/2)

)
β(xj+1/2)− β(xj−1/2))

∆x

The scheme is well-balanced: on equilibrium data,

W.B. reconstruction ⇒ p±j+1/2
= β(xj+1/2)), ρ

±
j+1/2

= α(xj+1/2)

density flux: F ρj+1/2
= 0

momentum flux: F ρvj+1/2
= F

(
p−j+1/2, p

+
j+1/2

)
= β(xj+1/2)

momentum equation: for any consistent F
d

dt
ρv j = −

β(xj+1/2) − β(xj−1/2))

∆x
+

1

2

(
α(xj−1/2)

α(xj−1/2)
+

α(xj+1/2)

α(xj+1/2)

)
β(xj+1/2) − β(xj−1/2))

∆x
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High order source term discretization (2D)

To boost accuracy, use Richiarson extrapolation on the well
balanced quadrature2

use Gaussian rules for flux integration on faces:

use product of “Gaussian” × “well-balanced” for the sources

and

on equilibrium data, the fluxes/source term contribution in
each dashed rectangle balance each other exactly

2Noelle, Pankratz, P., Natvig, JCP 2006.
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Accuracy test in 2D

φ(x , y) = x + y

ρ0(t, x , y) = 1 + 0.2 sin(π((x + y)− t(u0 + v0)))

u(t, x , y) = u0 = 1 v(t, x , y) = v0 = 1

p(t, x , y) = 4.5 + t(u0 + v0)− (x + y) + 0.2 cos(π ∗ (x + y − t(u0 + v0)))/π

On an N × N cartesian grid:

density energy
N error rate error rate

20 6.83e-03 8.91e-03
40 8.61e-04 2.99 1.16e-03 2.94
80 1.08e-04 3.00 1.46e-04 2.99

160 1.35e-05 3.00 1.82e-05 3.00
320 1.68e-06 3.00 2.27e-06 3.00
640 2.10e-07 3.00 2.84e-07 3.00

1280 2.63e-08 3.00 3.55e-08 3.00
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Well-balancing for a general equilibrium

Consider the gravity potential φ(x) = − 1
2x

2

Polytropic atmosphere:

α(x) =
(

1 + ν−1
νρ0

(φ0 − φ(x))
)1/ν−1

, β(x) = α(x)ν (P)

Neither iso-thermal nor polytropic steady-state:

α(x) = e−x , β(x) = (1 + x) e−x , T (x) = 1 + x (G)

(P) (G)

order ρ ρu E ρ ρu E

1 1.62e-16 2.28e-16 4.42e-16 1.16e-17 2.74e-16 1.94e-16
2 2.37e-16 1.60e-16 4.65e-16 1.95e-16 1.93e-16 6.57e-16
3 3.80e-16 2.20e-16 6.77e-16 2.30e-16 1.68e-16 4.76e-16
5 6.05e-16 2.38e-16 8.78e-16 5.22e-16 2.40e-16 8.70e-16
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Radial Raylegh-Taylor instability
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Conclusions

A new paradigm to obtain high order non oscillatory
reconstructions has been formalized, which is particularly
interesting in the context of balance laws3.

Numerical artifacts, such as numerical diffusion, dispersion,
distortion and temperature have been considered4.

We have proposed new well balanced high order schemes for
Euler equations with gravity.

In particular, we can build well balanced schemes also for
some moving equilibria, characterized by a constant speed5.

3Cravero, P., Semplice, Visconti, Math. Comp. 2018
4Cravero, P., Semplice, Visconti, Comp. Fluids, 2018
5Klingenberg, P., Semplice, submitted to SISC
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