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Solutions to the classical balance law

Classical solutions: U ∈ C 1(R× [0,T )) solves

Ut + F (U)x = S(U, x) in R× (0,T ), (1)

U(x , 0) = U0(x) in R.

Weak solutions: U ∈ BV (R× (0,T )) solves
T∫

0

∫
R

(
− U ϕt − F (U)ϕx + S(U)ϕ

)
dxdt =

∫
R

U0ϕ0 dx (2)

for any smooth, compactly supported test function ϕ.

Semidiscrete finite volume schemes:

d

dt
UK (t) +

FR −FR

∆x
= SK . (3)
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Equilibrium variables

Chertock, Herty, Özcan 2017: equilibrium variables

V := F + R := F −
∫ x

S (4)

Classical solutions:

Ut + Vx = 0. (5)

Finite volume scheme:

d

dt
UK (t) +

VR − VR

∆x
= 0. (6)

Advantage: reconstruction in V gives automatic well-balancing.
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Pipeline networks

1D model for network of pipes

O U3(x)

U1(x)

U2(x)

U∗1 U∗3U∗2

Uo
1

Uo
2

Uo
3

U within the pipes given by Isothermal Euler equations

(ρi )t + (qi )x = 0

(qi )t +
(q2

i

ρi
+ p(ρi )

)
x

= − fg ,i

2Di

qi |qi |
ρi

(7)

Isothermal pressure p(ρ) = a2ρ

Coupling conditions at node φ(U∗1 ,U
∗
2 , ...,U

∗
M) = 0
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Schemes which preserve a steady state exactly are called
well-balanced schemes

Why do we need well-balanced schemes?

Nonlinear coupling conditions at the junction

Imbalance of flux and source terms

��>
0

Ut + F (U)x = S(U)

Leads to spurious oscillations for near equilibrium flows

We extend the approach of Chertock, Herty, Özcan[2017] to
model flow at the junctions

Assumptions

Subsonic flow

Flow is unidirectional
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Isothermal Euler equations
Eigenvalues,

λ1 = q
ρ −

√
p′(ρ) < 0

λ2 = q
ρ +

√
p′(ρ) > 0

Both characteristic fields are
genuinely nonlinear

∇λi (U).ri (U) = ± a
ρ 6= 0

x−oi ∈ I−

Uo
i

U∗i

x+
o j ∈ I +

U∗j

Uo
j

Figure: Conservative variables at the

junction

Figure: Phase plot for incoming pipe Figure: Phase plot for outgoing pipe

U∗i = Ūi (σi ; Uo
i )
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Coupling Conditions

Coupling conditions at junction given
by Banda, Herty, Klar[2006];Herty,
Seaid[2007]; etc

Mass balance at the junction∑
i∈I−

Ai q
∗
i =

∑
j∈I +

Aj q
∗
j (8)

Constant pressure at the junction

p(ρ∗k ) = p∗ ∀k ∈ I− ∪ I + (9)

Existence and Uniqueness of solution
for these coupling conditions given by
Colombo, Garavello[2006]

U∗1 U∗3U∗2

Uo
1

Uo
2

Uo
3

For compressor
q∗1 = q∗2

p(ρ∗2) = CRp(ρ∗1) (10)
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Well-balanced Scheme

Equilibrium variables,V remain constant at steady state

Ut + Vx = 0, (11)

V (U) = F (U)−
∫ x

S (12)

For isothermal Euler equations

(ρi )t + (Ki )x = 0

(qi )t + (Li )x = 0 (13)

Ki = qi , Li =
q2

i

ρi
+ p(ρi ) + Ri (x),

Ri (x) =

∫ x

x0

fg ,i

2Di

qi |qi |
ρi

dx (14)
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Coupling conditions in terms of equilibrium variables

P(K , L,R) =
L− R +

√
(L− R)2 − 4a2K 2

2
(15)

Mass balance ∑
i∈I−

Ai K
∗
i =

∑
j∈I +

Aj K
∗
j (16)

Constant pressure, p∗ at junction

P(K∗i , L
∗
i ,R

∗
i ) = p∗ (17)

Ri at junction is constant, R∗i = Ro
i

Similarly coupling conditions for compressor,

K∗1 = K∗2
P(K∗2 , L

∗
2,R

∗
2 ) = CR P(K∗1 , L

∗
1,R

∗
1 ) (18)
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Wave curves in terms of equilibrium variables

The 1-wave curve for incoming pipe and 2-wave curve for
outgoing pipe are monotonic in the subsonic region

V ∗i = V̄i (σ; V o
i )

Figure: K-L plot for Lax curves of

incoming pipe

Figure: K-L plot for Lax curves of

outgoing pipe

The solution to the coupling conditions gives flux entering the
pipes from the junction
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Lemma
Consider a nodal point with |I−| ≥ 1 incoming and |I +| ≥ 1 outgoing adjacent

pipes.V̂i = (K̂i , L̂i ), i ∈ I± be the corresponding equilibrium variables, with

integrated source terms R̂i .

Then there exists an open neighborhood V ⊂ R2M×M of (V̂ , R̂) := (V̂i , R̂i )i∈I±

such that for any (V o ,Ro) ∈ V there exists a unique V ∗ such that (V ∗,Ro) ∈ V
fulfill the coupling conditions (16) and (17).

x−oi ∈ I−

V o
i

V ∗i

x+
o j ∈ I +

V ∗j

V o
j

Figure: Equilibrium variables at the junction
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Proof:

We check the well-posedness of the coupling conditions in
terms of equilibrium variables using approach of Colombo,
Garavello[2006]
Coupling Conditions

Ψ(V ) =


∑

i∈I− Ai Ki −
∑

j∈I + Aj Kj

p(V1)− p(V2)
...

p(VM−1)− p(VM )


Ψ(V̂ ) = 0

DσΨ =



A1
dK1
dσ1

. . . |I−|terms −Aj
dKj
dσj

. . . |I +|terms

dp1
dσ1

− dp2
dσ2

0 . . . . . . 0

0
dp2
dσ2

− dp3
dσ3

0 . . . 0

.

.

.
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0

0 . . . . . . 0
dpM−1
dσM−1

− dpM
dσM


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det(DσΨ) =(−1)M−1
∑
i∈I−

(
Ai

dKi

dσi

∏
k∈I±,k 6=i

dpk

dσk

)
+ (−1)M

∑
j∈I +

(
Aj

dKj

dσj

∏
k∈I±,k 6=j

dpk

dσk

)

dKi

dσi
(σi = 0) =

{
< 0 ∀i ∈ I−

> 0 ∀i ∈ I +
,

dpi

dσi
(σi = 0) > 0

det(DσΨ) 6= 0

Thus by IFT there exists neighborhood V for the point (V̂i , R̂i ),
such that for all initial data (V o ,Ro), the solution to the coupling

condition exists and and converges to the steady state (V̂i , R̂i ).
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Well-balanced scheme
Central Upwind Scheme

dU j
i

dt
= −
V j+1/2

i − V j−1/2
i

∆x
(19)

At the junction
VN+1/2

i = V ∗i , i ∈ I−

V1/2
i = V ∗i , i ∈ I + (20)

with V o
i = V N,E

i , i ∈ I− and V o
i = V 1,W

i , i ∈ I +

V
j,E/W
i are piecewise linear reconstruction for V j

i

V j,E
i = V j

i +
∆x

2
(Vx )j

i , V j,W
i = V j

i −
∆x

2
(Vx )j

i (21)

(Vx )j
i = minmod

(
θ

V j+1
i − V j

i

∆x
,

V j+1
i − V j−1

i

2∆x
, θ

V j
i − V j−1

i

∆x

)
, θ ∈ [1, 2]

(22)
Minmod function is defined as,

minmod(v1, v2, . . . , vn) =


min(v1, v2, . . . , vn) if vi > 0∀i

max(v1, v2, . . . , vn) if vi < 0∀i

0 otherwise

(23)
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Well-balanced scheme

The integral of source term is calculated using second-order

quadrature with R
1/2
i = R

N+1/2
k = 0 ∀i ∈ I +, k ∈ I−

R
j+1/2
i = R

j−1/2
i +∆x

fg,i

2Di

qj
i |q

j
i |

ρj
i

, R
j−1/2
k = R

j+1/2
k + ∆x

fg,k

2Dk

qj
k |q

j
k |

ρj
k

. (24)

Flux for interior cell boundaries of each pipe is same as that
used by Chertock, Herty, Özcan[2017]

V j+1/2
i =

a
j+1/2
i,+ V j,E

i − a
j+1/2
i,− V j+1,W

i

a
j+1/2
i,+ − a

j+1/2
i,−

+ α
j+1/2
i (U j+1,W

i − U j,E
i )H

( |V j+1
i − V j

i |
∆x

|Ω|
maxj{V j

i }

)
(25)

H(φ) =
(Cφ)m

1 + (Cφ)m
, C ,m > 0

a
j+1/2
i,+ , a

j+1/2
i,− are maximum and minimum eigenvalues

respectively and α
j+1/2
i =

a
j+1/2
i,+ a

j+1/2
i,−

a
j+1/2
i,+ −a

j+1/2
i,−
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Lemma

The numerical scheme given by (19) and flux defined by (25)
preserves the steady state across a node of M adjacent pipes and
coupling conditions given by (16) and (17).

Proof:

Steady state defined by constant flux within each pipe and
satisfying coupling condition at junction

The definition of the numerical fluxes in (25) ensure
equilibrium variables are constant in each pipe

From previous lemma, coupling conditions have unique
solution
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Steady state at junction of pipes

Initial conditions

1 incoming, 1 outgoing pipe K1 = K2 = 0.15 and
L1 = L2 = 0.4

1 incoming, 2 outgoing pipe K1 = 0.15,K2 = K3 = 0.075 and
p∗ = 0.332 or L1 = 0.4, L2 = L3 = 0.3492

2 incoming, 1 outgoing pipe K3 = 0.15,K1 = K2 = 0.075 and
p∗ = 0.332 or L3 = 0.4, L1 = L2 = 0.3492

Table: Comparison of L-1 errors between well-balanced(WB) and non

well-balanced(NWB) scheme at steady state for a junction at time T=1

1 Incoming, 1 Outgoing 1 Incoming, 2 Outgoing 2 Incoming, 1 Outgoing

No. of cells
in each pipe

L1-error
for variable WB NWB WB NWB WB NWB

100 K 8.74x10−17 1.56x10−7 1.30x10−16 9.63x10−8 1.14x10−16 8.67x10−8

L 1.27x10−16 2.43x10−7 7.74x10−17 8.94x10−8 8.30x10−17 1.87x10−7
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Steady state for compressor

Initial condition
K1 = K2 = 0.15 and p∗1 = 0.332, p∗2 = CRp∗1

Table: Comparison of L-1 errors between well-balanced(WB) and non

well-balanced(NWB) scheme at steady state with a compressor at different

compression ratios at time T=1

CR=1.5 CR=2.0 CR=2.5

No. of cells
in each pipe

L1-error
for variable WB NWB WB NWB WB NWB

100 K 3.91x10−17 1.05x10−7 1.30x10−16 9.63x10−8 4.72x10−16 9.68x10−8

L 5.59x10−16 1.01x10−7 7.74x10−17 8.94x10−8 3.61x10−17 8.89x10−7
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1 incoming, 1 outgoing pipes
Initial condition Ki = K∗i + ηi e−100(x−0.5)2

, Li = L∗i
K∗i = 0.15, L∗i = 0.4, η = 10−3

η = 10−6

(a) Pipe 1 (b) Pipe 2
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1 incoming, 2 outgoing pipes
Initial condition Ki = K∗i + ηi e

−100(x−0.5)2

, Li = L∗i
K∗1 = 0.15,K∗2 = K∗3 = 0.075, η∗1 = 10−6, η∗2 = η∗3 = 0.5x10−6

O

(a) Junc. with 1
incoming and 2 outgoing
pipe (b) Pipe 1

(c) Pipe 2 (d) Pipe 3

Figure: Perturbation of order 10−6 to junction with 1 incoming and 2 outgoing

pipes
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Summary:

Equilibrium and near equilibrium flows are resolved accurately
for a junction of gas pipelines.

Work in progress:

more complex networks

higher order DG

study of energy dissipation and entropy production
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Solutions to the classical balance law

Classical solutions:

Ut + Fx = S (26)

Weak solutions:

T∫
0

∫
R

(
− U ϕt − F ϕx + S ϕ

)
dxdt =

∫
R

U0ϕ0 dx (27)
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Localization

Space-time cell
K := (a, b)× (0,∆t).

Interior cell: ε� ∆t

Kε := {(x , t) ∈ K | dist
(
(x , t), ∂K ) > ε}

Cut-off test function: ϕε ∈ C 1
0 (K̄ ) such that

ϕε(x , t) =

{
ϕ(x , t), for (x , t) ∈ Kε (interior of cell)

0, for (x , t) /∈ K .

xba Kε

t
ϕ

ϕε
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For a piecewise smooth weak solution,

0 =

∫∫
Kε

(
− U ϕt − F ϕx + Sϕ

)
dxdt

+

∫∫
K\Kε

(
− U ϕε,t − F ϕε,x + Sϕ

)
dxdt (28)

As ε→ 0, the integral over the boundary strip,

−
∫∫

K\Kε

(
ϕε,t , ϕε,x

)
(·, ·)dxdt

becomes a Dirac measure and we obtain
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Theorem (localized weak solution) Let U be a p.w. smooth weak
solution and ϕ a (globally defined) test function. Then, for any
subcell,

0 =

∆t∫
0

b∫
a

(
− U ϕt − F ϕx + S ϕ

)
dxdt

+

b∫
a

ÛK ϕ|∆t
t=0 dx +

∆t∫
0

F̂K ϕ|bx=a dt. (29)

where ÛK and F̂K are interior traces w/r cell K .
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Semi-discrete limit

[xL, xR ]× [0,∆t] grid cell

s := max
K

ρ(F ′(u)) maximal wave speed

yL := xL + s∆t yR := xR − s∆t

Consider the domain K = KL ∪ KC ∪ KR

∆t

xL xR

KC

yL

KL

yR

KR
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Consider KC . Divide (29) by ∆t:

0 =
1

∆t

∆t∫
0

yR∫
yL

(
− Uϕt − Fϕx + Sϕ

)
dxdt

+

∫ yR

yL

Û(∆t)− Û(0)

∆t
ϕ dx

+
ϕ(xR , 0)

∆t

∆t∫
0

F (U(yR)) dt − ϕ(xL, 0)

∆t

∆t∫
0

F (U(yL)) dt

+O(∆t). (30)
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For KL,

0 =

∫ yL

xL

Û(∆t)− Û(0)

∆t
dx

+
1

∆t

∆t∫
0

F (U(yL)) dt − 1

∆t

∆t∫
0

F̂ (U(xL)) dt

+O(∆t). (31)

Similarly for KR .
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Classical finite volume scheme

Add the weak formulations over KL,KC ,KR , let ϕ = ϕ(x) and
pass to the limit:

0 = lim
∆t→0

∫ xR

xL

Û(∆t)− Û(0)

∆t
ϕ dx

+
(
ϕ(x) F̂ (U(x , t))

)
|xR
x=xL

+

xR∫
xL

(
− Fϕx + Sϕ

)
dx (32)

Due to the Rankine-Hugoniot condition, the flux is the solution of
the Riemann problem at the interface.,

F̂ (U(xL, t)) = FL = FRiem(U(xL−),U(xL+)). (33)

S. Noelle | Well-balanced scheme for gas flow networks | 35/38



One-sided equilibrium fluxes

Similarly, in (U,V ) variables,

0 = lim
∆t→0

∫ xR

xL

Û(∆t)− Û(0)

∆t
ϕ dx

+
(
ϕ(x) V̂ (U, x)

)
|xR
x=xL

+

xR∫
xL

(
− Vϕx

)
dx (34)

However,

V̂ (U, xL) = FL + R̂+
L =: V̂ +

L (35)

V̂ (U, xR) = FL + R̂−R =: V̂−R (36)
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Finite volume updates

Traditional update:

d

dt
UK (t) = −FR −FL

∆x
+ SK (37)

Chertock et al. update:

d

dt
UK (t) = −

V̂−R − V̂ +
L

∆x
(38)
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Possible advantages of one-sided equilibrium fluxes

• simplify numerical flux (see pp. 17 - 18)

• a new look on reconstructions

• pipeline networks

• multi-D
div R = S .
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