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Solutions to the classical balance law

Classical solutions: U € C}(R x [0, T)) solves
Ur+ F(U)x =5(U,x) inRx(0,T),
U(x,0) = Up(x) inR.

Weak solutions: U € BV(R x (0, T)) solves
T

//(‘US"t—F(U)¢x+5(U)<p>dxdt:/UO¢0dX

0 R
for any smooth, compactly supported test function .

Semidiscrete finite volume schemes:

d Fr—Fr

aUK(t) + AX SK.
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Equilibrium variables

Chertock, Herty, Ozcan 2017: equilibrium variables

V:zF—{—R:zF—/S (4)
Classical solutions:

Us + V, = 0. (5)

Finite volume scheme:

d VR—Vr
EUA0+—Z;——0 (6)

Advantage: reconstruction in V gives automatic well-balancing.
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Pipeline networks

m 1D model for network of pipes

Us (x) 3 Ur
Us(x) i g ’
Uz(x) | Ug

m U within the pipes given by Isothermal Euler equations
(pi)e +(qi)x =0

2
q; fe.i qilqil
(gi)e + <; + P(Pi))x = _2gD_ o (7)

Isothermal pressure p(p) = a’p
m Coupling conditions at node ¢(U5, U3, ..., Uy,) =0

RWTH! ) e
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m Schemes which preserve a steady state exactly are called
well-balanced schemes

m Why do we need well-balanced schemes?

m Nonlinear coupling conditions at the junction
m Imbalance of flux and source terms

Wl F(U). = s(u)

m Leads to spurious oscillations for near equilibrium flows

m We extend the approach of Chertock, Herty, Ozcan[2017] to
model flow at the junctions

m Assumptions

m Subsonic flow
m Flow is unidirectional
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Isothermal Euler equations
m Eigenvalues, ’

/\1:%—\/p’(p)<0 Ui /
o /
)\2:%+\/p’(p)>0 U; ;
m Both characteristic fields are - — B N - -
genuinely nonlinear rel Xo X J€l

V)\,(U)r,(U) = :l:% 7& 0 Figure: Conservative variables at the

junction

pape o ape

Figure: Phase plot for incoming pipe Figure: Phase plot for outgoing pipe

Ui = Ui(oi; U?)
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Coupling Conditions

m Coupling conditions at junction given
by Banda, Herty, Klar[2006];Herty,
Seaid[2007]; etc

U
m Mass balance at the junction
Agr =S At 8 Yo | o
Z:q,—z JCH (8) Ux s 3
iel— jel+ 2
m Constant pressure at the junction Ue
2
plpk) =p" VYkel~Ul™ (9)
m Existence and Uniqueness of solution
for these coupling conditions given by
Colombo, Garavello[2006]
For compressor
9 =9
P(p3) = CRp(p1) (10)
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Well-balanced Scheme
m Equilibrium variables, V remain constant at steady state
U+ V, =0, (11)
V(U) = F(U) _/Xs (12)
m For isothermal Euler equations

(pi)e + (Ki)x =0

(gi)c + (Li)x =0 (13)
7
Ki=gqi, Li= ;’ + p(pi) + Ri(x),
X fei qilail
Ri(x) = £ d 14
) / 20, o (14)
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Coupling conditions in terms of equilibrium variables

L—R++/(L—R)?—422K?2
2

P(K,L,R) = (15)

m Mass balance

dCAK =) AK; (16)

iel- Jjelt
m Constant pressure, p* at junction
P(Ki*’L;'kvR;k):p* (17)

® R; at junction is constant, R = R?
Similarly coupling conditions for compressor,

Ki = K
P(Kz, L3, Ry) = CR P(K{, L1, Ry) (18)
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Wave curves in terms of equilibrium variables

m The 1-wave curve for incoming pipe and 2-wave curve for
outgoing pipe are monotonic in the subsonic region

v
1
K-L plot
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Figure: K-L plot for Lax curves of
incoming pipe

Vi(o; V)

K-L plot

Figure: K-L plot for Lax curves of
outgoing pipe

02

m The solution to the coupling conditions gives flux entering the

pipes from the junction
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Lemma

Consider a nodal point with |I~| > 1 incoming and |I*| > 1 outgoing adjacent
pipes.V; = (7(\,, El), i € IE be the corresponding equilibrium variables, with
integrated source terms R;.

Then there exists an open neighborhood V C R2MXM of (V R) := (V;, R;);c
such that for any (V°, R°) € V there exists a unique V* such that (V*,R°) € V
fulfill the coupling conditions (16) and (17).

iel™ x5 xt  jelt

Figure: Equilibrium variables at the junction
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Proof:

m We check the well-posedness of the coupling conditions in
terms of equilibrium variables using approach of Colombo,
Garavello[2006]

m Coupling Conditions

ZIEI* AiKi — Zjeﬁ AiK;
p(V1) — p(V2)

W(V) =
p(Vm—1) — p(Vm)
w(V)=0
_A1% |1~ |terms 7Aj% .. |I+|terms_
2 m o :
o1 o2
d) d)
0 % —% 0 0
D,V =
. 0
dpp—1 _dpy
L 0 0 doy—1 doy |
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det(D, V) :(—1)M*12(A,% I1 %>

icl- Tl el kti do
dK; i
S (g 1 G)
: agj . a0k
jerr KEl® k#j

dK; 0 Viel~ dp
0,-:):{< 'e Pio;=0)>0

d7,-( >0 Vielt' do;

det(D, W) # 0

Thus by IFT there exists neighborhood V for the point (V,, ﬁ,)
such that for all initial data (V°, R°), the solution to the coupling

condition exists and and converges to the steady state (V;, R;).
L]
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Well-balanced scheme
m Central Upwind Scheme
U VT2 =172

19
dt Ax (19)
= At the junction
(AR RVARN NN o
V2= v et (20)
with Ve = VVEic = and Ve = VI e 1t
i E/W , . . ;
V) ' are piecewise linear reconstruction for V/
. A S A .
VIE = Vi XV VY = V- S (21)
. (V7R VZ R VZ A V7 ket S VR V
Vi), = minmod (60— i L9 i) ge1,2
(Vo ( Ax 2Ax Ax ) [1,2]
. . . . 22
= Minmod function is defined as, (22)
min(vi, vo,...,v,) if v;i > OVi
minmod(vi, v2,...,Vvs) = § max(vi, va, ..., v,) if v; < OV (23)

0 otherwise
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Well-balanced scheme

m The integral of source term is calculated using second-order

quadrature with RV = RN™/2 =0 vVie I* ke I~

RIF1/2 _ R4’1/2+Ax@ CI,‘|§IH} RI~1/2 _ R,’;“/2+Ax@ quflﬂ. (24)

' 2D pf 2D g,

= Flux for interior cell boundaries of each pipe is same as that
used by Chertock, Herty, Ozcan[2017]

FHU2\E _ gt1/2 W

i+172 _ Fi+ Vi j+1/2 ) j+1, W i E |V,-j+1—V,-j| Q]
I R e (T )
(25)
(Co)m
H =——  C, 0
D= o O

i+1/2 i+1/2 . .. .
n a{i/ ,af.J“_/ are maximum and minimum eigenvalues
A

— ¥1/2 _j+1)2
"’Hi,+ _‘#,—

respectively and o/,

L  Jriskt

S. Noelle | Well-balanced scheme for gas flow networks | 18/38



Lemma

The numerical scheme given by (19) and flux defined by (25)
preserves the steady state across a node of M adjacent pipes and
coupling conditions given by (16) and (17).

Proof:

m Steady state defined by constant flux within each pipe and
satisfying coupling condition at junction

m The definition of the numerical fluxes in (25) ensure
equilibrium variables are constant in each pipe

m From previous lemma, coupling conditions have unique
solution
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Steady state at junction of pipes

Initial conditions
m 1 incoming, 1 outgoing pipe K1 = K> = 0.15 and
Ll = L2 =04
m 1 incoming, 2 outgoing pipe K; = 0.15, K = K3 = 0.075 and
p*=0.3320r L; =0.4,L, = L3 =0.3492

m 2 incoming, 1 outgoing pipe K3 = 0.15, K1 = K>, = 0.075 and
p*=03320r L3 =0.4,L; = [, =0.3492

Table: Comparison of L-1 errors between well-balanced(WB) and non
well-balanced(NWB) scheme at steady state for a junction at time T=1

1 Incoming, 1 Outgoing 1 Incoming, 2 Outgoing 2 Incoming, 1 Outgoing

No. of cells L1-error

in each pipe for variable WB NWB WB NWB WB NWB
100 K 8.74x10~17  1.56x10~7 1.30x10"%6 0.63x10~% 1.14x10~'® 8.67x10~8
L 1.27x107%6  2.43x10~7 7.74x10~17 8.94x10~® 8.30x10~!" 1.87x107
RWTH )
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Steady state for compressor

Initial condition
Ki = Ky = 0.15 and p; = 0.332, p; = CRp;

Table: Comparison of L-1 errors between well-balanced(WB) and non
well-balanced(NWB) scheme at steady state with a compressor at different

compression ratios at time T=1

CR=1.5 CR=2.0 CR=2.5
No. of cells L1-error
in each pipe for variable WB NWB WB NWB WB NWB
100 K 3.91x107Y7  1.05x1077 1.30x107%6 9.63x107® 4.72x107'® 9.68x10~®
L 5.50x1071®  1.01x10~7 7.74x10"Y" 8.94x10~% 3.61x107'7 8.89x10~7

RWTH D Gy, ana
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1 incoming, 1 outgoing pipes
Initial condition K; = K + n;e~100(x—05
Kr =0.15, LF = 0.4, =103
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3 3
204506 2
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o o
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1 incoming, 2 outgoing pipes
Initial condition K; = K;* + ;e 100008 [, — =
Ky =0.15,K; = K3 = 0.075, )} = 1078, 73 = 1} = 0.5x10¢

0.1500012
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we

0150001
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Summary:

m Equilibrium and near equilibrium flows are resolved accurately
for a junction of gas pipelines.

Work in progress:

m more complex networks
m higher order DG

m study of energy dissipation and entropy production
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Solutions to the classical balance law

Classical solutions:

Weak solutions:

.
//(Ugoth0X+Sgo)dxdt:/U0g00dx (27)
0 R R
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Localization

Space-time cell
K :=(a, b) x (0, At).
Interior cell: ¢ < At

K. :={(x,t) € K| dist((x, t),0K) > ¢}

Cut-off test function: . € C}(K) such that

X, t), for (x,t) € K. (interior of cell
o(x. t)_{so( ) (1) € Ko )

0, for (x,t) ¢ K.
t
e £
T/ AP
a K. | b X
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For a piecewise smooth weak solution,

0://KE(—U<pt—Fch+5go)dxdt

- / / (= Upe = Fpon+Sp)axde  (28)
K\K.

As € — 0, the integral over the boundary strip,

_//K\KS (Soe,ta@57x)(.’ ')dth

becomes a Dirac measure and we obtain
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Theorem (localized weak solution) Let U be a p.w. smooth weak
solution and ¢ a (globally defined) test function. Then, for any
subcell,

At b
0://(—Ug0t—Fg0X+5<p>dxdt
0 a
b At
+ [ Ocelyder [Fool,d (29)
a 0

where Uk and Fg are interior traces w/r cell K.
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Semi-discrete limit

[xL, xr] x [0, At] grid cell

5= ml?xp(F’(u)) maximal wave speed
yL = x. + sAt YR := Xgr — SAt

Consider the domain K = K; U Kc U Kgr

At /: :
K Kc v Kr
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Consider Kc. Divide (29) by At:

At yr

0= Alt//<_ Upr — Fox +5g0)dxdt
0 n
N /yy U(At)A ; U(O)gp "
0 At 0 At
+ 2000 [ ey de - 250 [ Fugu) o
0 0
+ O(At). (30)
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For K,

0 /ﬂ Uan) - 0()

. A
+ap [ FUGD b= 57 [ EUG) de
+ O(At). (31)

Similarly for Kg.
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Classical finite volume scheme

Add the weak formulations over K;, K¢, Kg, let ¢ = ¢(x) and
pass to the limit:

0— lim /XR U(at) — U(0)

d
At—0 v ax

At
XR

+ (P P ) + [ (- Fox +5¢) (32

XL

Due to the Rankine-Hugoniot condition, the flux is the solution of
the Riemann problem at the interface.,

F(U(xt, t)) = FL = Friem(Uxe =), UG +)). (33)
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One-sided equilibrium fluxes

Similarly, in (U, V) variables,

0= lim / wﬁpdx

At—0 At
XR
(VUL + [ (- Vir)a  (9)
XL
However,
RS =V (35)

(36)

RWTH! D Gy, ana
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Finite volume updates

Traditional update:

—Uk(t) = —=F L 4 54 (37)

—Uk(t) = ——F— (38)
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Possible advantages of one-sided equilibrium fluxes
e simplify numerical flux (see pp. 17 - 18)
e a new look on reconstructions
e pipeline networks

e multi-D
divR=S.
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